Primes and squares with preassigned digits

Cathy Swaenepoel

IMJ-PRG, Université Paris Cité.

32èmes Journées Arithmétiques, Nancy, July 3, 2023.

Representation of an integer $k \in\left[0, g^{n}[\right.$ in base $g \geqslant 2$:

$$
k=\sum_{j=0}^{n-1} \varepsilon_{j}(k) g^{j}
$$

where $\varepsilon_{j}(k) \in\{0, \ldots, g-1\}$ is the digit of k at the position j.

$$
\text { base } g \text { expansion } \begin{aligned}
\text { independence? } \\
\longleftrightarrow
\end{aligned} \begin{aligned}
& \text { multiplicative representation } \\
& \text { (as a product of prime factors) }
\end{aligned}
$$

Integers with preassigned digits

- $A \subset\{0, \ldots, n-1\}$: set of positions,
- $\boldsymbol{d}=\left(d_{j}\right)_{j \in A}$: preassigned digits at these positions.

Prime numbers with preassigned digits

Goal: estimate $\left|\left\{p<g^{n}: \forall j \in A, \varepsilon_{j}(p)=d_{j}\right\}\right|$ as $n \rightarrow+\infty$.

- Kátai (1986).
- Wolke (2005): asymptotic, $|A| \leqslant 2$

$$
(|A| \leqslant(1-\varepsilon) \sqrt{n} \text { under GRH })
$$

- Harman (2006): lower bound, $|A| \leqslant$ constant.
- Harman-Kátai (2008): asymptotic, $|A| \ll \sqrt{n}(\log n)^{-1}$.
- Bourgain (2013): asymptotic, $|A| \ll n^{4 / 7}(\log n)^{-4 / 7}$, in base 2 .
- Bourgain (2015): asymptotic, $|A| \leqslant c n$, in base 2 ($c>0$ absolute constant).

Theorem 1 (S. 2020)

For any $g \geqslant 2$, there exist an explicit $c=c(g) \in] 0,1[$ and $\delta=\delta(g)>0$ such that for any $n \geqslant 1$, for any $A \subset\{0, \ldots, n-1\}$ satisfying $\{0, n-1\} \subset A$ and

$$
|A| \leqslant c n
$$

for any $\left(d_{j}\right)_{j \in A} \in\{0, \ldots, g-1\}^{A}$ such that $\left(d_{0}, g\right)=1$ and $d_{n-1} \geqslant 1$, we have

$$
\left|\left\{p<g^{n}: \forall j \in A, \varepsilon_{j}(p)=d_{j}\right\}\right|=\frac{g^{n-|A|}}{\log g^{n}} \frac{g}{\varphi(g)}\left(1+O_{g}\left(n^{-\delta}\right)\right)
$$

This generalizes Bourgain's result (2015) to any base.

Theorem 1 holds with $c(g)$ given by

g	2	3	4	5	10	10^{3}	2^{200}
$c(g) \cdot 10^{2}$	0.21	0.31	0.36	0.40	0.47	0.68	0.90

Squares with preassigned digits

Denote $\mathcal{S}=\left\{\ell^{2}, \ell \geqslant 0\right\}$ the set of squares.
Goal: estimate $\left|\mathcal{S} \cap\left\{k<g^{n}: \forall j \in A, \varepsilon_{j}(k)=d_{j}\right\}\right|$ as $n \rightarrow+\infty$.

- Squares are a priori easier to handle than primes (distribution in short intervals, in arithmetic progressions, ...).

But

- squares are sparser than primes,
- there are algebraic constraints on the digits of squares.
\rightarrow New difficulties for squares.
$v_{2}(g)=2$-adic valuation of g.
- If g is odd or $v_{2}(g) \geqslant 3$,

$$
\mathcal{H}(g): \quad\{0\} \subset A,\left(d_{0}, g\right)=1, d_{0} \text { square } \bmod g
$$

- If $v_{2}(g)=2$,

$$
\mathcal{H}(g): \quad\{0,1\} \subset A,\left(d_{0}, g\right)=1, d_{1} g+d_{0} \text { square } \bmod g^{2} .
$$

- If $v_{2}(g)=1$ (e.g. $g=2$ or $g=10$),

$$
\mathcal{H}(g): \quad\{0,1,2\} \subset A,\left(d_{0}, g\right)=1, d_{2} g^{2}+d_{1} g+d_{0} \text { square } \bmod g^{3} .
$$

Theorem 2 (S. 2023+)

For any $g \geqslant 2$, there exist an explicit $c=c(g) \in] 0,1 / 2[$ and $\delta=\delta(g)>0$ such that for any $n \geqslant 3$, for any $A \subset\{0, \ldots, n-1\}$ and $d=\left(d_{j}\right)_{j \in A} \in\{0, \ldots, g-1\}^{A}$ satisfying $\mathcal{H}(g), n-1 \in A, d_{n-1} \geqslant 1$ and

$$
|A| \leqslant c n,
$$

we have

$$
\left|\mathcal{S} \cap\left\{k<g^{n}: \forall j \in A, \varepsilon_{j}(k)=d_{j}\right\}\right|=\mathfrak{S}(g, n, A, \boldsymbol{d})\left(1+O_{g}\left(n^{-\delta}\right)\right)
$$

where

$$
\mathfrak{S}(g, n, A, \boldsymbol{d})=\sum_{\substack{k<g^{n} \\ \forall j \in A, \varepsilon_{j}(k)=d_{j}}} \frac{\eta(g)}{2 \sqrt{k}}, \quad \eta(g)= \begin{cases}2^{\omega(g)}, & g \text { odd }, \\ 2^{\omega(g)+1}, & g \text { even } .\end{cases}
$$

In particular, the order of magnitude of $\left|\mathcal{S} \cap\left\{k<g^{n}: \forall j \in A, \varepsilon_{j}(k)=d_{j}\right\}\right|$ is $g^{\frac{n}{2}-|A|}$.

Theorem 2 holds with $c(g)$ given by

g	2	3	4	5	10	16	2^{32}	2^{64}
$c(g) \cdot 10^{2}$	0.5	0.9	1.1	1.3	1.6	1.8	3.6	4

Lemma (S.)

Let m such that $\frac{n}{4}-m \rightarrow+\infty$ as $n \rightarrow+\infty$. Choose

$$
A=\{0,2,4, \ldots, 2(m-1), n-1\} .
$$

Let s such that $s \equiv 1 \bmod 8$ and $s \equiv 0 \bmod 5^{2 m-1}$ and let $d \in\{0, \ldots, 9\}$. Choose

$$
d_{2 i}=\varepsilon_{2 i}(s) \text { for } i=0, \ldots, m-1, \quad d_{n-1}=d
$$

Then we have

$$
\left|\mathcal{S} \cap\left\{k<10^{n}: \forall j \in A, \varepsilon_{j}(k)=d_{j}\right\}\right|=\frac{C(d)}{2^{|A|}} 10^{\frac{n}{2}-|A|}(1+o(1))
$$

where $C(d)>0$ depends only on d.
So the order of magnitude may be smaller than $10^{\frac{n}{2}-|A|}$.
Idea: at the positions $1,3, \ldots, 2 m-3$, the digits of k have to be the digits of s.

- $\mathrm{e}(x)=\exp (2 i \pi x), x \in \mathbb{R}$.
- $\mathcal{S}=\left\{\ell^{2}, \ell \geqslant 0\right\}$ the set of squares.
- $\mathcal{D}(n, A, \boldsymbol{d})=\left\{k<g^{n}: \forall j \in A, \varepsilon_{j}(k)=d_{j}\right\}$.
- $N=g^{n}$.

We want to estimate

$$
\sum_{N_{0} \leqslant k<N_{1}} \mathbf{1}_{\mathcal{S}}(k) \mathbf{1}_{\mathcal{D}(n, A, d)}(k)
$$

where $N_{0}=d_{n-1} g^{n-1}$ and $N_{1}=\left(d_{n-1}+1\right) g^{n-1}$.

Use the circle method:

$$
\sum_{N_{0} \leqslant k<N_{1}} \mathbf{1}_{\mathcal{S}}(k) \mathbf{1}_{\mathcal{D}(n, A, d)}(k)=\int_{0}^{1} S(\alpha) \overline{R(\alpha)} d \alpha
$$

where

$$
\underbrace{S(\alpha)=\sum_{N_{0} \leqslant k<N_{1}} \mathbf{1}_{\mathcal{S}}(k) \mathrm{e}(k \alpha)}_{\begin{array}{c}
\text { can be large only when } \alpha \text { is close to } \\
\text { a rational with small denominator }
\end{array}} \quad \text { and } \quad \underbrace{R(\alpha)=\sum_{N_{0} \leqslant k<N_{1}} \mathbf{1}_{\mathcal{D}(n, A, \boldsymbol{d})}(k) \mathrm{e}(k \alpha)}_{\text {depends on the digital conditions }} .
$$ i.e. α is in a major arc

- integral over major arcs \rightarrow main term (+ error term)
- integral over minor arcs \rightarrow error term

$$
F_{n}(\alpha)=\frac{1}{g^{n-|A|}} \sum_{k<g^{n}} \mathbf{1}_{\mathcal{D}(n, A, \boldsymbol{d})}(k) \mathrm{e}(k \alpha)=\frac{1}{g^{n-|A|}} R(\alpha)
$$

By writing k in base g, we obtain:

$$
\left|F_{n}(\alpha)\right|=\prod_{\substack{0 \leqslant j \leqslant n-1 \\ j \notin A}} \frac{\Phi_{g}\left(g^{j} \alpha\right)}{g} \quad \text { where } \Phi_{g}(t)=\left|\sum_{v=0}^{g-1} \mathrm{e}(v t)\right|=\left|\frac{\sin \pi g t}{\sin \pi t}\right|
$$

For $g=2$,

$$
\left|F_{n}(\alpha)\right|=\prod_{\substack{0 \leqslant j \leqslant n-1 \\ j \notin A}}\left|\cos \pi 2^{j} \alpha\right|
$$

We need very strong upper bounds for $\left\|F_{n}\right\|_{1}$ and some (weighted) averages of $\left|F_{n}(a / q)\right|$.

$$
\int_{\mathfrak{m}}|S(\alpha) \overline{R(\alpha)}| d \alpha=g^{n-|A|} \int_{\mathfrak{m}}\left|S(\alpha) \overline{F_{n}(\alpha)}\right| d \alpha \leqslant g^{n-|A|}\left\|F_{n}\right\|_{1} \sup _{\alpha \in \mathfrak{m}}|S(\alpha)|
$$

- Use the strong upper bound:

$$
\left\|F_{n}\right\|_{1} \ll N^{\xi-1} \log N
$$

where ξ is explicit and $\xi \rightarrow 0$ as $|A| / n \rightarrow 0$.

- Use a classical estimate on Weyl sums to bound $|S(\alpha)|$ over the minor arcs:

$$
\sup _{\alpha \in \mathfrak{m}}|S(\alpha)|=\sup _{\alpha \in \mathfrak{m}}\left|\sum_{\sqrt{N_{0}} \leqslant \ell<\sqrt{N_{1}}} \mathrm{e}\left(\ell^{2} \alpha\right)\right| \ll \frac{\sqrt{N}}{\sqrt{B_{1}}} \quad \text { (trivial: } \sqrt{N} \text {) }
$$

where B_{1} is a small power of N.

Up to an admissible error, the contribution of all major arcs around a / q (q fixed) is

$$
\mathcal{C}(q):=\sum_{N_{0} \leqslant k<N_{1}} \frac{\mathbf{1}_{\mathcal{D}(n, A, d)}(k)}{2 \sqrt{k}} H(q, k)
$$

where

$$
H(q, k)=\frac{1}{q} \sum_{\substack{1 \leqslant a \leqslant q \\(a, q)=1}} G(q, a) \mathrm{e}\left(\frac{-k a}{q}\right) \quad \text { and } \quad G(q, a)=\sum_{u=1}^{q} \mathrm{e}\left(\frac{a u^{2}}{q}\right)
$$

- $q \mapsto H(q, k)$ is multiplicative, simple formulas for $H\left(p^{\nu}, k\right)$.
- Write $q=s q^{\prime}$ where $(p|s \Rightarrow p| g)$ and $\left(q^{\prime}, g\right)=1$.
- Distinguish two cases depending on s and q^{\prime}.
- In one case, $\mathcal{C}(q)$ is large \rightarrow main term.
- In the other case, $\mathcal{C}(q)$ is small \rightarrow error term (use a strong bound for the Fourier transform of $\mathbf{1}_{\mathcal{D}(n, A, d)}$).

Taking c sufficiently small, we get

$$
\sum_{k<g^{n}} \mathbf{1}_{\mathcal{S}}(k) \mathbf{1}_{\mathcal{D}(n, A, \boldsymbol{d})}(k)=\mathfrak{S}(g, n, A, \boldsymbol{d})\left(1+O_{g}\left(n^{-\delta}\right)\right)
$$

for some $\delta>0$, where

$$
\mathfrak{S}(g, n, A, \boldsymbol{d})=\sum_{\substack{k<g^{n} \\ \forall j \in A, \varepsilon_{j}(k)=d_{j}}} \frac{\eta(g)}{2 \sqrt{k}}, \quad \eta(g)= \begin{cases}2^{\omega(g)}, & g \text { odd }, \\ 2^{\omega(g)+1}, & g \text { even } .\end{cases}
$$

The main term comes from the major arcs around a / q with

- $q \in\{1, p\}$ if g is a prime $p \geqslant 3$,
- $q \in\{1,4,8\}$ if $g=2$,
- $q \in\{1,4,5,8,20,40\}$ if $g=10$.
- In any base $g \geqslant 2$, we obtain an asymptotic formula for the number of primes and squares with a positive proportion of preassigned digits.
- We give explicit values for the proportion of digits this method allows us to preassign.
- In any base $g \geqslant 2$, we obtain an asymptotic formula for the number of primes and squares with a positive proportion of preassigned digits.
- We give explicit values for the proportion of digits this method allows us to preassign.

> Thank you for your attention!

