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The multiplicative structure of random integers

Question
Choose n ∈ [1, x ] uniformly at random. What is the distribution of its divisors?

Problem
Divisibility by different divisors could have dependencies due to common prime factors.

Easier question
What is the distribution of the set of prime factors {p|n} of a randomly chosen n?



Warm-up: scale calibration

Prime factors

En6x

[ ∑
p|n, p∈[y ,z]

1
]

=
∑

p∈[y ,z]

Pn6x
(
p|n
)
∼
∑

p∈[y ,z]

1
p
∼ log log z − log log y

Divisors

En6x

[ ∑
d |n, d∈[y ,z]

1
]
∼

∑
d∈[y ,z]

1
d
∼ log z − log y



The distribution of the prime factors

Prime factors form a Poisson Process
Let I1, . . . , Ik be disjoint subintervals of [1, x ]. Then

Pn6x

(
#{p|n, p ∈ Ij} = mj ∀j

)
≈

k∏
j=1

e−λj
λ

mj
j

mj !

with λj =
∑
p∈Ij

1
p
∼ log log bj − log log aj if Ij = [aj ,bj ].

Prime factors form a Brownian motion when normalized

ρN : [0,1]→ R, ρN(t) :=
#
{

p|n : log log p 6 t log log x
}
− t log log x

√
t log log x

Then ρN converges in distribution to the Brownian motion in [0,1].



A cautionary tale about divisors

Theorem (Tenenbaum 1980)
If N is any positive density set of integers, then there is no weak limit for the distributions

Fn(u) :=
#{d |n : d 6 nu}

#{d |n}
as n→∞ over elements of N

Reason: integers with a divisor in a given short interval are sparse

Pn6x

(
∃d |n, nu 6 d 6 nu+ε

)
� εc(log(1/ε))−3/2 (Ford 2008)

with c = 1− 1+log log 2
log 2 ≈ 0.08607> 0.

Deeper reason
Small irregularities in distribution of large prime factors cause divisors to cluster (and thus
to avoid a given target interval)



The DDT theorem

If Fn(u) = #{d |n, d 6 nu}/#{d |n}, then

En6x

[
Fn(u)

]
=

2
π

arcsin
√

u + O
(

1√
log x

)

Various proofs:
I Deshouillers–Dress–Tenenbaum (1979)
I Sun Kai Leung (2022+)
I Hirth (1997)
I Haddad-K. (2023+) talk by Tony Haddad on Thursday



Measuring the concentration/clustering of divisors

∆(n) := max
u∈R

#{d |n : eu < d 6 eu+1}

Typical size of ∆? Average size? Other statistics?

Hooley’s “new technique” (1979)∑
n6x

∆(n)� x(log x)4/π−1 (4/π − 1 ≈ 0.273)

Compare to trivial bound ∑
n6x

∆(n) 6
∑
n6x

#{d |n} ∼ x log x

I savings applications to counting solutions of Diophantine equations & inequalities
(Hooley, Brüdern, La Bretèche–Tenenbaum, Sofos, Lartaux,. . . )



The typical size of ∆

Erdős’s conjecture (1948): ∆(n) > 1 for almost all n

Lower bounds: ∆(n) > (log log n)c+o(1) a.s. with. . .
I Maier–Tenenbaum (1984): c = − log 2/ log(1− 1/ log 3) ≈ 0.28754
I MT (2009): c = log 2/ log(1−1/ log 27

1−1/ log 3 ) ≈ 0.33827
I Ford–Green–K. (2023): c = η ≈ 0.35332 (η has a precise theoretical dfn)

Upper bounds: ∆(n) 6 (log log n)C+o(1) a.s. with. . .
I Maier–Tenenbaum (1985): C = 1
I Maier–Tenenbaum (2009): C = log 2
I La Bretèche–Tenenbaum (2022+): C = log 2

log 2+1/ log 2−1 ≈ 0.6102

Conjecture (Ford–Green–K.): ∆(n) = (log log n)η+o(1) for a.a. n



The average size of ∆

δ(x) :=
1
x

∑
n6x

∆(n)

Upper bounds
I Hooley (1979): δ(x)� (log x)4/π−1

I Hall–Tenenbaum (1986): δ(x)�ε exp
(
(
√

2 + ε)
√

log log x log log log x
)

I La Bretèche–Tenenbaum (2022+): δ(x)�ε exp
(
(
√

2 log 2 + ε)
√

log log x
)

I K.–Tao (2023+): δ(x)� (log log x)11/4

Lower bounds
I Hall–Tenenbaum (1984): δ(x)� log log x



The Maier–Tenenbaum method with an FGK twist

Goal: show that ∆(n) is large for a typical n

Strategy
I Fix an integer k > 2 (MT take k = 2);
I Consider appropriate checkpoints y0 < y1 < y2 < · · · < yJ (they depend on k );
I Let nj be the part of n composed of all its primes factors in (yj−1, yj ];
I ∀j = 1, . . . , J, find k distinct dj,1, . . . ,dj,k |nj s.t. log max

i
dj,i < log min

i
dj,i + 1.

Tensor trick. . .
I n has at least kJ distinct divisors D1, . . . ,DkJ s.t. log max Dm < log min Dm + J;
I Thus ∆(n) > kJ/J by the pigeonhole principle.



Finding two divisors close together

Question: when does nj have two divisors d ,d ′ s.t. 0 < | log(d ′/d)| < 1?

Heuristics
I The set R(nj) := {d ′/d : (d ,d ′) = 1, dd ′|nj} has ≈ 3ω(nj ) elements;
I The set {log(d ′/d) : d ′/d ∈ R(nj)} is roughly well-distributed in [− log nj , log nj ];
I Then the needed pair (d ,d ′) ought to exist if 3ω(nj ) > log nj .
I Typically, 3ω(nj ) ≈ (log yj/ log yj−1)log 3 and log nj ≈ log yj ;
I So, the pair (d ,d ′) ought to exist when log yj > (log yj−1)1/(1−1/ log 3).

 ∆(n) > (log log n)
− log 2

log(1−1/ log 3) a.s.



Finding k divisors close together

Strategy
I Consider Lk (nj) :=

⋃
{(log(d1/dk ), . . . , log(dk−1/dk )) + [0,1]k−1 : d1, . . . ,dk |n};

I Ensure Lk (nj) is “as large as it can be”
I OK if log yj > (log yj−1)Ck with Ck sufficiently large.

Main result (Ford–Green–K.)
We have C2r / (2/ρ)r , where ρ = 0.28121 . . . is the unique solution in [0,1/3] of

1
1− ρ/2

= lim
j→∞

log aj

2j−2 ,

where the sequence aj is defined by

a1 = 2, a2 = 2 + 2ρ, aj = a2
j−1 + aρj−1 − a2ρ

j−2 (j ≥ 3).



The average value of ∆

Theorem (K.–Tao) ∑
n6x

∆(n)� x(log log x)11/4

Logarithmic weak L1−o(1) estimate

Plog
n6x

(
∆(n) > λ log log x

)
:=

1
log x

∑
n6x

∆(n)>λ log log x

1
n
� (log λ)3/4

λ
.

Logarithmic weak L1+ε estimate

Fix ε > 0 and assume that λ > (log x)log 4−1+ε. There is a constant c > 0 s.t.

Plog
n6x

(
∆(n) > λ log log x

)
�ε λ

−1−cε2
.



Ideas of proof: first approximation for ∆

I Let τ(a) := #{d |a} and ∆(a; u) := #{d |a : eu < d 6 eu+1}. Then

τ(a) =

∫
R

∆(a; u)du =

∫ log a

−1
∆(a; u)du 6 ∆(a) · (1 + log a).

I Let n6y be the y -smooth/friable part of n. Then

∆(n) > max
26y6x

∆(n6y ) > max
26y6x

τ(n6y )

1 + log n6y
≈ max

26y6x

τ(n6y )

log y

I Fix A large and let E =
{

n 6 x : max
26y6x

τ(n6y )

log y
> A

}
. Then

Plog
6x
(
E
)
� A−1

Remark: E dominated by n’s s.t. #{p|n6y} ∼ 2 log log y when log log y ∼ log A
log 4−1 .



Ideas of proof: bootstrapping to high moments

I N1 := {n 6 x} \ E =⇒ Plog
6x

(
N1

)
= 1−O

(
1
A

)
.

I ∆(n) ≈ µq(n)
1
q with q = log log x , µq(n) :=

1
τ(n)

∫
R

∆(n; u)qdu.

I
∑

n∈N1

µ2(n)

n
/ log x Markov

=⇒ Plog
n6x

(
n ∈ N1, µ2(n) 6 A︸ ︷︷ ︸

=:N2

)
= 1−O

(
1
A

)

I Iterating. . .∑
n∈Nj−1

µj(n)

n
/ (j − 2)!Aj−2 log x Markov

=⇒ Plog
n6x

(
n ∈ Nj−1,

µj(n) 6 j!Aj−1︸ ︷︷ ︸
=:Nj

)
= 1−O

(
1

j2A

)



Ideas of proof: the inductive step

Let p - m. Then ∆(pm; u) = ∆(m; u) + ∆(m; u − log p)

. . . and thus

µj(pm) = µj(m) +
∑

a+b=j
16a6j−1

(
j
a

)∫
R

∆(m; u)a∆(m; u − log p)b

2τ(m)
du

6 µj(m) +
∑

a+b=j
16a6j/2

(
j
a

)∫
R

∆(m; u)a∆(m; u − log p)b

τ(m)
du

. µj(m) + O
(
τ(m)

log p

∑
a+b=j

16a6j/2

(
j
a

)
µa(m)µb(m)

)



Thank you for your attention


