Exposé court

93 A Generalization of H-fold sumset of set of integers

Pandey, Ram Krishna (Department of Mathematics, Indian Institute of Technology Roorkee, India)
Let A be a nonempty finite set of integers and h be a positive integer. The h-fold sumset, denoted by $h A$, is the set of integers that can be written as the sum of h elements of A and the restricted h-fold sumset, denoted by $h^{\wedge} A$, is the set of integers that can be written as the sum of h pairwise distinct elements of A. Several generalizations of these sumsets have been introduced in the literature. For a finite set H of positive integers, Bajnok introduced the sumset $H A$ and the resticted sumset $H^{\wedge} A$, where $H A$ is the union of the sumsets $h A$ for $h \in H$ and the restricted sumset $H^{\wedge} A$ is the union of the sumsets $h^{\wedge} A$ for $h \in H$. Recently, Bhanja and Pandey considered a generalization of $H A$ and $H^{\wedge} A$, the generalized H-fold sumset, denoted by $H^{(r)} A$, defined by

$$
H^{(r)} A:=\bigcup_{h \in H} h^{(r)} A,
$$

where $h^{(r)} A$ is the set of integers that can be written as sum of h elements of A in which each summand is repeated at most r times. Therefore, $H A$ and $H^{\wedge} A$ are particular cases of $H^{(r)} A$ for $r=h$ and $r=1$, respectively. In this talk, we present the optimal lower bound for the cardinality of $H^{(r)} A$, i.e., for $\left|H^{(r)} A\right|$ (called Direct Problem) and the structure of the underlying sets A and H when $\left|H^{(r)} A\right|$ is equal to the optimal lower bound in the cases A contains only positive integers and A contains only nonnegative integers (called Inverse Problem). Furthermore, the sumset $H^{(r)} A$ becomes more important as it also generalizes subset sums and subsequence sums, so we get several results of subsequence sums and subset sums as special cases on choosing particular sets H.
(This is a joint work with Mohan.)

