Exposé court

92 On congruence classes of orders of reductions of elliptic curves

Pajaziti, Antigona (University of Luxembourg)

Let *E* be an elliptic curve defined over \mathbb{Q} and $\widetilde{E}_p(\mathbb{F}_p)$ denote the reduction of *E* modulo a prime *p* of good reduction for *E*. Given an integer $m \ge 2$ and any *a* modulo *m*, we consider how often the congruence $|\widetilde{E}_p(\mathbb{F}_p)| \equiv a \mod m$ holds. We then exhibit elliptic curves over $\mathbb{Q}(t)$ with trivial torsion for which the orders of reductions of every smooth fiber modulo primes of positive density at least 1/2 are divisible by a fixed small integer. We show that the greatest common divisor of the integers $|\widetilde{E}_p(\mathbb{F}_p)|$ over all rational primes *p* cannot exceed 4. We also show that if the torsion of *E* grows over a quadratic field *K*, then one may explicitly compute $|\widetilde{E}_p(\mathbb{F}_p)|$ modulo $|E(K)_{tors}|$. More precisely, we show that there exists an integer $N \ge 2$ such that $|\widetilde{E}_p(\mathbb{F}_p)|$ is determined modulo $|E(K)_{tors}|$ according to the arithmetic progression modulo *N* in which *p* lies. It follows that given any *a* modulo $|E(K)_{tors}|$ occurs. This is joint work with Assoc. Prof. Mohammad Sadek.