Exposé court

92 On congruence classes of orders of reductions of elliptic curves
Pajaziti, Antigona (University of Luxembourg)
Let E be an elliptic curve defined over \mathbb{Q} and $\widetilde{E}_{p}\left(\mathbb{F}_{p}\right)$ denote the reduction of E modulo a prime p of good reduction for E. Given an integer $m \geq 2$ and any a modulo m, we consider how often the congruence $\left|\widetilde{E}_{p}\left(\mathbb{F}_{p}\right)\right| \equiv a \bmod m$ holds. We then exhibit elliptic curves over $\mathbb{Q}(t)$ with trivial torsion for which the orders of reductions of every smooth fiber modulo primes of positive density at least $1 / 2$ are divisible by a fixed small integer. We show that the greatest common divisor of the integers $\left|\widetilde{E}_{p}\left(\mathbb{F}_{p}\right)\right|$ over all rational primes p cannot exceed 4 . We also show that if the torsion of E grows over a quadratic field K, then one may explicitly compute $\left|\widetilde{E}_{p}\left(\mathbb{F}_{p}\right)\right|$ modulo $\left|E(K)_{\text {tors }}\right|$. More precisely, we show that there exists an integer $N \geq 2$ such that $\left|\widetilde{E}_{p}\left(\mathbb{F}_{p}\right)\right|$ is determined modulo $\left|E(K)_{\text {tors }}\right|$ according to the arithmetic progression modulo N in which p lies. It follows that given any a modulo $\left|E(K)_{\text {tors }}\right|$, we can estimate the density of primes p such that the congruence $\left|\widetilde{E}_{p}\left(\mathbb{F}_{p}\right)\right| \equiv a \bmod \left|E(K)_{\text {tors }}\right|$ occurs. This is joint work with Assoc. Prof. Mohammad Sadek.

