Exposé court

81 Some degree problems in number fields

Maciulevičius, Lukas (Institute of Mathematics, Vilnius University)
We say that a triplet (a, b, c) of positive integers is product-feasible if there exist algebraic numbers α, β and γ of degrees (over \mathbb{Q}) a, b and c, respectively, such that $\alpha \beta \gamma=1$. An analogous notion has been introduced for number fields, too. Namely, a triplet $(a, b, c) \in \mathbb{N}^{3}$ is said to be compositum-feasible if there exist number fields K and L of degrees a and b (over \mathbb{Q}), respectively, such that the degree of their compositum $K L$ is c. We extend the investigation of compositum-feasible and product-feasible triplets started by Drungilas, Dubickas and Smyth. More precisely, for all positive integer triplets (a, b, c) with $a \leq b \leq c$ and $b \in\{8,9\}$, we decide whether it is compositum-feasible. Moreover, we determine all but one product-feasible triplets $(a, b, c) \in \mathbb{N}^{3}$ satisfying $a \leq b \leq c$ and $b \leq 7$.

