Exposé court

79 On a congruence arising from permutation polynomials

Luca, Florian (Wits)
We present an algorithm which given an odd positive integer n finds a solution to the congruence

$$
-1 \equiv \prod_{i=1}^{r}\left(2^{a_{i}}+1\right) \quad\left(\bmod 2^{n}-1\right)
$$

Whenever such a solution exists, the inverse function in $\mathbb{F}_{2^{n}}$, the finite field with 2^{n} elements, can be represented as a composition of quadratics. The algorithm produced one such solution for every odd positive integer $n \leq 100$. Along the way we recall old facts about Mersenne numbers and conjecture new ones. We also use a Jacobi symbol formula due to Rotkiewicz. In addition, we show that the positive integers n such that the congruence $n-1 \equiv 2^{a} \cdot 3^{b}\left(\bmod 2^{n}-1\right)$ holds with some integers a, b form a subset of asymptotic density zero and give an explicit bound on their counting function.

