Exposé court

72 Transcendence of infinite products involving binary linear recurrences

Kurosawa, Takeshi (Tokyo University of Science)

For an algebraic number α , we denote by $|\alpha|$ the maximum of the absolute values of its conjugates and by den(α) the least positive integer such that den(α) α is an algebraic integer, and define $||\alpha|| = \max\{|\alpha|, den(\alpha)\}$.

Let $\{R_n\}_{n\geq 0}$ be a binary linear recurrence sequence with some conditions. We discuss the transcendence of the infinite product

$$\prod_{k=1}^{\infty} \left(1 + \frac{a_k}{R_{r^k} + b_k} \right),$$

where $r \ge 2$ is an integer and a_k and b_k are sequences of algebraic numbers with

$$\log \max(||a_k||, ||b_k||) = o(r^k).$$

We also give new examples of algebraic cases such as

$$\prod_{k=1}^{\infty} \left(1 + \frac{2}{\sqrt{5}F_{3^k} - 1} \right) = \frac{1 + \sqrt{5}}{2},$$

where $\{F_n\}_{n\geq 0}$ is the Fibonacci sequence.

This is joint work with Daniel Duverney (Baggio School for Engineering).