Exposé court

72 Transcendence of infinite products involving binary linear recurrences

Kurosawa, Takeshi (Tokyo University of Science)
For an algebraic number α, we denote by $\overline{|\alpha|}$ the maximum of the absolute values of its conjugates and by $\operatorname{den}(\alpha)$ the least positive integer such that $\operatorname{den}(\alpha) \alpha$ is an algebraic integer, and define $\|\alpha\|=$ $\max \{\overline{|\alpha|}, \operatorname{den}(\alpha)\}$.

Let $\left\{R_{n}\right\}_{n \geq 0}$ be a binary linear recurrence sequence with some conditions. We discuss the transcendence of the infinite product

$$
\prod_{k=1}^{\infty}\left(1+\frac{a_{k}}{R_{r^{k}}+b_{k}}\right)
$$

where $r \geq 2$ is an integer and a_{k} and b_{k} are sequences of algebraic numbers with

$$
\log \max \left(\left\|a_{k}\right\|,\left\|b_{k}\right\|\right)=o\left(r^{k}\right)
$$

We also give new examples of algebraic cases such as

$$
\prod_{k=1}^{\infty}\left(1+\frac{2}{\sqrt{5} F_{3^{k}}-1}\right)=\frac{1+\sqrt{5}}{2},
$$

where $\left\{F_{n}\right\}_{n \geq 0}$ is the Fibonacci sequence.
This is joint work with Daniel Duverney (Baggio School for Engineering).

