Exposé court

67 Quintic number fields defined by $x^{5}+a x+b$
Kaur, Sumandeep (Panjab university, Chandigarh)
Let $K=\mathbb{Q}(\theta)$ be an algebraic number field with θ a root of an irreducible quintic polynomial of the type $x^{5}+a x+b \in \mathbb{Z}[x]$. Let A_{K} stand for the ring of algebraic integers of K. If ind θ denotes the index of the subgroup $\mathbb{Z}[\theta]$ in A_{K} and $i(K)$ stand for the index of the field K defined by

$$
i(K)=\operatorname{gcd}\left\{\operatorname{ind} \alpha \mid K=\mathbb{Q}(\alpha), \alpha \in A_{K}\right\} .
$$

A prime number p dividing $i(K)$ is called a prime common index divisor of K. In this talk, for every rational prime p, we provide necessary and sufficient conditions on a, b so that p is a common index divisor of K. In particular, we give sufficient conditions on a, b for which K is non-monogenic.

Bibliography

[1] A. Jakhar, S. Kaur, and S. Kumar. Common index divisor of the number fields defined by $x^{5}+a x+b$. Proceedings of the Edinburgh Mathematical Society, 65(4):1447-1461, 2022.

