Exposé court

64 Ranks of quadratic twists of Jacobians of generalized Mordell curves

Jędrzejak, Tomasz (University of Szczecin)

Consider a two-parameter family of hyperelliptic curves $C_{q,b}: y^2 = x^q - b^q$ defined over \mathbb{Q} , and their Jacobians $J_{q,b}$ where q is an odd prime and without loss of generality b is a non-zero squarefree integer. The curve $C_{q,b}$ is a quadratic twist by b of $C_{q,1}$ (a generalized Mordell curve of degree q). First, we obtain a few upper bounds for the ranks e.g., if $q \equiv 1 \pmod{4}$ and any prime divisor of 2b not equal to q is a primitive root modulo q then rank $J_{q,b}(\mathbb{Q}) \leq (q-1)/2$. Then we focus on q = 5 and get the best possible bound (by 1) or even the exact value of rank (0). In particular, we found infinitely many b with any number of prime factors such that rank $J_{5,b}(\mathbb{Q}) = 0$. We deduce as conclusions the complete list (or the bounds for the number) of rational points on $C_{5,b}$ in such cases. Finally, we found for any given q infinitely many non-isomorphic curves $C_{q,b}$ such that rank $J_{q,b}(\mathbb{Q}) \geq 1$.