Exposé court

64 Ranks of quadratic twists of Jacobians of generalized Mordell curves
Jędrzejak, Tomasz (University of Szczecin)
Consider a two-parameter family of hyperelliptic curves $C_{q, b}: y^{2}=x^{q}-b^{q}$ defined over \mathbb{Q}, and their Jacobians $J_{q, b}$ where q is an odd prime and without loss of generality b is a non-zero squarefree integer. The curve $C_{q, b}$ is a quadratic twist by b of $C_{q, 1}$ (a generalized Mordell curve of degree q). First, we obtain a few upper bounds for the ranks e.g., if $q \equiv 1(\bmod 4)$ and any prime divisor of $2 b$ not equal to q is a primitive root modulo q then $\operatorname{rank} J_{q, b}(\mathbb{Q}) \leq(q-1) / 2$. Then we focus on $q=5$ and get the best possible bound (by 1) or even the exact value of rank (0). In particular, we found infinitely many b with any number of prime factors such that $\operatorname{rank} J_{5, b}(\mathbb{Q})=0$. We deduce as conclusions the complete list (or the bounds for the number) of rational points on $C_{5, b}$ in such cases. Finally, we found for any given q infinitely many non-isomorphic curves $C_{q, b}$ such that $\operatorname{rank} J_{q, b}(\mathbb{Q}) \geq 1$.

