Exposé court

59 On a conjecture of Levesque and Waldschmidt

Hilgart, Tobias (University of Salzburg, Austria)
One of the first parametrised Thue equations,

$$
\left|X^{3}-(n-1) X^{2} Y-(n+2) X Y^{2}-Y^{3}\right|=1,
$$

over the integers was solved by E . Thomas in 1990. If we interpret this as a norm-form equation, we can write this as

$$
\left|N_{K / \mathbb{Q}}\left(X-\lambda_{0} Y\right)\right|=\left|\left(X-\lambda_{0} Y\right)\left(X-\lambda_{1} Y\right)\left(X-\lambda_{2} Y\right)\right|=1
$$

if $\lambda_{0}, \lambda_{1}, \lambda_{2}$ are the roots of the defining irreducible polynomial, and K the corresponding number field.
Levesque and Waldschmidt twisted this norm-form equation by an exponential parameter s and looked, among other things, at the equation $\left|N_{K / Q}\left(X-\lambda_{0}^{s} Y\right)\right|=1$. They solved this effectively and conjectured that introducing a second exponential parameter t and looking at $\left|N_{K / \mathbb{Q}}\left(X-\lambda_{0}^{s} \lambda_{1}^{t} Y\right)\right|=1$ does not change the effective solvability.

We want to partially confirm this, given that

$$
\min (|2 s-t|,|2 t-s|,|s+t|)>\varepsilon \cdot \max (|s|,|t|),
$$

i.e. the two exponents do not almost cancel in specific cases.

