Exposé court

49 Second best approximations and the Lagrange spectrum Gayfulin, Dmitry (TU Graz)

Given an irrational number α consider its irrationality measure function

$$\psi_{\alpha}(t) = \min_{1 \le q \le t, q \in \mathbb{Z}} \|q\alpha\|.$$

The set of all values of

$$\lambda(\alpha) = \left(\limsup_{t \to \infty} t \psi_{\alpha}(t)\right)^{-1},$$

where α runs through the set $\mathbb{R} \setminus \mathbb{Q}$ is called the Lagrange spectrum \mathbb{L} . Denote by $\mathcal{Q} = \{q_1, q_2, ..., q_n, ...\}$ the set of denominators of the convergents to α . One can consider another irrationality measure function

$$\psi_{\alpha}^{[2]}(t) = \min_{1 \le q \le t, q \in \mathbb{Z}, q \notin \mathcal{Q}} \|q\alpha\|$$

connected with the properties of so-called second best approximations. Or, in other words, approximations by rational numbers, whose denominators are not the denominators of the convergents to α . Replacing the function ψ_{α} in the definition of \mathbb{L} by $\psi_{\alpha}^{[2]}$, one can get a set \mathbb{L}_2 which is called the "second" Lagrange spectrum. In my talk I give the complete structure of discrete part of \mathbb{L}_2 .