Exposé court

49 Second best approximations and the Lagrange spectrum
Gayfulin, Dmitry (TU Graz)
Given an irrational number α consider its irrationality measure function

$$
\psi_{\alpha}(t)=\min _{1 \leq q \leq t, q \in \mathbb{Z}}\|q \alpha\| .
$$

The set of all values of

$$
\lambda(\alpha)=\left(\limsup _{t \rightarrow \infty} t \psi_{\alpha}(t)\right)^{-1},
$$

where α runs through the set $\mathbb{R} \backslash \mathbb{Q}$ is called the Lagrange spectrum \mathbb{L}. Denote by $\mathscr{Q}=\left\{q_{1}, q_{2}, \ldots, q_{n}, \ldots\right\}$ the set of denominators of the convergents to α. One can consider another irrationality measure function

$$
\psi_{\alpha}^{[2]}(t)=\min _{1 \leq q \leq t, q \in \mathbb{Z}, q \notin \mathscr{Q}}\|q \alpha\|
$$

connected with the properties of so-called second best approximations. Or, in other words, approximations by rational numbers, whose denominators are not the denominators of the convergents to α. Replacing the function ψ_{α} in the definition of \mathbb{L} by $\psi_{\alpha}^{[2]}$, one can get a set \mathbb{L}_{2} which is called the "second" Lagrange spectrum. In my talk I give the complete structure of discrete part of \mathbb{L}_{2}.

