## Exposé court

## 30 Existence of primitive pairs with two prescribed traces over finite fields

Choudhary, Aakash (Department of Mathematics, IIT Delhi)
Let $\mathbb{F}_{p}$ represent a field of finite order $p$, where $p$ is a prime power. The multiplicative group of $\mathbb{F}_{p}$ is cyclic, and its generator is referred to as a primitive element in $\mathbb{F}_{p}$. For any rational function $f(x) \in \mathbb{F}_{p}(x)$ and $\epsilon \in \mathbb{F}_{p}$, we call the pair $(\epsilon, f(\epsilon))$, a primitive pair if both $\epsilon$ and $f(\epsilon)$ are primitive elements in $\mathbb{F}_{p}$. Let $\mathbb{F}_{p^{t}}$ be an extension of $\mathbb{F}_{p}$ of degree $t$, for $\epsilon \in \mathbb{F}_{p^{t}}$, the trace of $\epsilon$ over $\mathbb{F}_{p}$ denoted by $\operatorname{Tr}_{\mathbb{F}_{p^{t}} / \mathbb{F}_{p}}(\epsilon)$, is defined as $\operatorname{Tr}_{\mathbb{F}_{p^{t}} / \mathbb{F}_{p}}(\epsilon)=\epsilon+\epsilon^{p}+\epsilon^{p^{2}}+\cdots+\epsilon^{p^{t-1}}$.

In this talk, for the extension $F=\mathbb{F}_{p^{t}}$ with $t \geq 7$, and for $f=f_{1} / f_{2}$, a rational function in $F$ such that $f_{1}, f_{2}$ are distinct irreducible polynomials with $\operatorname{deg}\left(f_{1}\right)+\operatorname{deg}\left(f_{2}\right)=n$ in $F[x]$, we will present a sufficient condition on ( $p, t$ ) which guarantees primitive pairing $\left(\epsilon, f(\epsilon)\right.$ ) exists in $F$ such that $T r_{\mathbb{F}_{p^{t}} / \mathbb{F}_{p}}(\epsilon)=a$ and $T r_{\mathbb{F}_{p^{t}}} \mathbb{F}_{p}(f(\epsilon))=b$ for any prescribed $a, b \in \mathbb{F}_{p}$. Further, we demonstrate for any positive integer $n$, such a pair definitely exists for large $t$. For $n=2$, we verified that such a pair exists for all $(p, t)$ except for finitely many values of $p$. This is a joint work with Prof. R.K. Sharma.

