Exposé court

25 On differences of perfect powers and prime powers

Cazorla-García, Pedro José (University of Manchester)
In 2004, Mihăilescu proved that the only consecutive perfect powers are 8 and 9 . Despite many attempts to generalise this conjecture to perfect powers with arbitrary difference D, not much more is known today.

Given a squarefree integer $1 \leq C_{1} \leq 20$ and a prime $2 \leq q<25$, we will present a methodology that allows us to resolve the following Diophantine equation

$$
C_{1} x^{2}+q^{\alpha}=y^{n},
$$

therefore determining which integers with squarefree part C_{1} are the difference of a perfect power and a q-power.

This methodology combines the modular method popularised after the proof of Fermat's Last Theorem with an improved Thue-Mahler solver and new estimates on lower bounds on linear forms in three logarithms.

