Exposé court

24 An extension of the Euclid-Euler theorem to certain α-perfect numbers
Cardoso, Gabriel (CIDMA, University of Aveiro)
In a posthumously published work, Euler proved that all even perfect numbers are of the form $2^{p-1}\left(2^{p}-1\right)$, where $2^{p}-1$ is a prime number. In this talk, we extend Euler's method for certain α-perfect numbers for which Euler's result can be generalized. In particular, we use Euler's method to prove that if N is a 3-perfect number divisible by 6 ; then either $2 \| N$ or $3 \| N$. As well, we prove that if N is a $\frac{5}{2}$-perfect number divisible by 5 , then $2^{4}\left\|N, 5^{2}\right\| N$ and $31^{2} \mid N$. Finally, for $p \in\{17,257,65537\}$, we prove that there are no $\frac{2 p}{p-1}$-perfect numbers divisible by p. This is joint work with Paulo J. Almeida.

