Exposé court

154 On products of prime powers in linear recurrence sequences
Ziegler, Volker (University of Salzburg)
In this talk we consider the Diophantine equation $U_{n}=p^{x} q^{y}$, where $U=\left(U_{n}\right)_{n \geq 0}$ is a linear recurrence sequence, p and q are distinct prime numbers and $x, y \geq 0$ are non-negative integers not both zero. We show that under some technical assumptions the Diophantine equation $U_{n}=p^{x} q^{y}$ has at most two solutions (n, x, y) provided that $p, q \notin S$, where S is a finite, effectively computable set of primes, depending only on U.

