Exposé court

141 Series representations and asymptotically finite representations for the numbers $\zeta(2 m+1)$
Weba, Michael (Goethe University Frankfurt)
Consider the problem of finding representations for the numbers $\zeta(2 m+1)$ where ζ denotes the Riemann zeta function and m is a prescribed positive integer. In the literature, special emphasis has been laid on series representations involving the numbers $\zeta(2 n), n \geq 1$. In the specific case $m=1$, a classical result due to Euler is given by

$$
\begin{equation*}
\zeta(3)=\frac{\pi^{2}}{7}\left(1-2 \sum_{n=1}^{\infty} \frac{\zeta(2 n)}{(n+1)(2 n+1) 4^{n}}\right) . \tag{1}
\end{equation*}
$$

Recently, Lupu and Orr established the formula

$$
\begin{equation*}
\zeta(3)=\frac{4 \pi^{2}}{35}\left(\frac{3}{2}-\ln \frac{\pi}{2}+\sum_{n=1}^{\infty} \frac{\zeta(2 n)}{n(n+1)(2 n+1) 16^{n}}\right) . \tag{2}
\end{equation*}
$$

This talk presents a parameterized family of series representations for the numbers $\zeta(2 m+1)$. Based on Clausen functions of higher order, several conventional results are improved and generalized; in particular, the rate of convergence can considerably be improved. Regarding $m=1$, for instance, one obtains

$$
\begin{equation*}
\zeta(3)=\frac{\pi^{2}}{12}\left(\frac{3}{2}-\ln \frac{\pi}{3}+\sum_{n=1}^{\infty} \frac{\zeta(2 n)}{n(n+1)(2 n+1) 36^{n}}\right), \tag{3}
\end{equation*}
$$

i.e., the power 16^{n} in the infinite series (2) can be replaced be 36^{n}.

The parameterized family is also applicable to represent the values $\beta(2 m)$ of the Dirichlet beta function and to derive asymptotically finite representations for both $\zeta(2 m+1)$ and $\beta(2 m)$.

