Exposé court

140 Friable numbers are orthogonal to nilsequences

Wang, Mengdi (KTH Stockholm)
Call an integer $\left[y^{\prime}, y\right]$-friable if all its prime factors are in the interval $\left[y^{\prime}, y\right]$. In this talk, we will discuss the history of counting solutions to linear equations with friable number variables. Suppose that $K^{\prime} \geq 1$ is a large integer and $y^{\prime}=\log ^{K^{\prime}} N$. In joint work with Lilian Matthiesen, we show that the system of finite complexity linear equations always has a solution when the set of $\left[y^{\prime}, y\right]$-friable numbers is relatively dense. As part of the proof, we also prove that $\left[y^{\prime}, y\right]$-friable numbers are orthogonal to nilsequences (generalized polynomial phase functions) as long as $\log ^{K} N \leq y \leq N$ and K / K^{\prime} is sufficiently large.

