Exposé court

14 Cycle identities in the affine grassmannian and applications to Breuil-Mézard for crystalline representations

Bartlett, Robin (University of Münster)

The Breuil-Mézard conjecture is a combinatorial shadow of the currently hypothetical p-adic Langlands correspondence. It describes the geometry, at the level of cycles, of special fibres of moduli spaces of n-dimensional potentially crystalline in terms of the $\bmod p$ representation theory of GL_{n}.

In this talk I will give an overview of results from my recent paper arXiv:2305.06455) which establish new results towards this conjecture, as well as generalisations in which GL_{n} is replaced by a split reductive group G. This is done by relating the geometry of moduli of crystalline representations with sufficiently small Hodge-Tate weights to certain degenerations of products of flag varieties in the affine grassmannian for G, and then describing these degenerations in terms of the representation theory of the dual group \widehat{G}.

