Exposé court

138 On sums of two Fibonacci numbers that are powers of integers with sparse Zeckendorf representation
Vukusic, Ingrid (University of Salzburg)
In 2018, Luca and Patel [2] conjectured that the largest perfect power representable as the sum of two Fibonacci numbers is $38642=F_{36}+F_{12}$. In other words, they conjectured that the equation

$$
y^{a}=F_{n}+F_{m}
$$

has no solutions with $a \geq 2$ and $y^{a}>38642$. While this is still an open problem, there exist several partial results. For example, recently Kebli, Kihel, Larone and Luca [1] proved an explicit upper bound for y^{a}, which depends on the size of y.

In this talk, we find an explicit upper bound for y^{a}, which only depends on the Hamming weight of y with respect to the Zeckendorf representation. This is joint work with Volker Ziegler.

Bibliography

[1] S. Kebli, O. Kihel, J. Larone, and F. Luca. On the nonnegative integer solutions to the equation $F_{n} \pm F_{m}=y^{a}$. J. Number Theory, 220:107-127, 2021. doi:10.1016/j.jnt.2020.08.004
[2] F. Luca and V. Patel. On perfect powers that are sums of two Fibonacci numbers. J. Number Theory, 189:90-96, 2018. doi:10.1016/j.jnt.2018.02.003

