Exposé court

137 Curves with few bad primes over cyclotomic \mathbb{Z}_{ℓ} -extensions Visser, Robin (University of Warwick)

Let *K* be a number field, and *S* a finite set of non-archimedean places of *K*, and write \mathcal{O}_{S}^{\times} for the group of *S*-units of *K*. A famous theorem of Siegel asserts that the *S*-unit equation $\varepsilon + \delta = 1$, with $\varepsilon, \delta \in \mathcal{O}_{S}^{\times}$, has only finitely many solutions. A famous theorem of Shafarevich asserts that there are only finitely many isomorphism classes of elliptic curves over *K* with good reduction outside *S*. Now let ℓ be a prime, and instead of a number field, let $K = \mathbb{Q}_{\infty,\ell}$ which denotes the \mathbb{Z}_{ℓ} -cyclotomic extension of \mathbb{Q} . We show that the *S*-unit equation $\varepsilon + \delta = 1$, with $\varepsilon, \delta \in \mathcal{O}_{S}^{\times}$, has infinitely many solutions for $\ell \in \{2, 3, 5, 7\}$, where *S* consists only of the totally ramified prime above ℓ . Moreover, for every prime ℓ , we construct infinitely many elliptic or hyperelliptic curves defined over *K* with good reduction away from 2 and ℓ . For certain primes ℓ we show that the Jacobians of these curves in fact belong to infinitely many distinct isogeny classes. This talk is based on joint work with Samir Siksek.