Exposé court

136 Sums of arithmetic functions running on factorials

Verreault, William (Université Laval)
Given an arithmetic function $f: \mathbb{N} \rightarrow \mathbb{R}$, it is customary to investigate the behavior of the corresponding sum $\sum_{n \leq N} f(n)$ for large N. Here, for various classical arithmetic functions f, including the number of distinct prime factors function $\omega(n)$, Euler totient's function $\phi(n)$, the number of divisors function $d(n)$, the sum of the divisors function $\sigma(n)$, as well as the middle divisors functions $\rho_{1}(n)$ and $\rho_{2}(n)$, we investigate the behavior of $f(n!)$ and their corresponding sums $\sum_{n \leq N} f(n!)$. Finally, if λ stands for the Liouville function, according to the Chowla conjecture, $\sum_{n \leq N} \lambda(n) \lambda(n+1)=o(N)$ as $N \rightarrow \infty$; here, we show that the analogue of the Chowla conjecture for factorial arguments is true as we prove that, as $N \rightarrow \infty$, we have $\sum_{n \leq N} \lambda(n!) \lambda((n+1)!)=o(N)$.

