Exposé court

118 On the spaces of spherical polynomials and generalized theta-series for quadratic forms of any number of variables
Shavgulidze, Ketevan (Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia)
Let

$$
Q(X)=Q\left(x_{1}, x_{2}, \ldots, x_{r}\right)=\sum_{1 \leq i \leq j \leq r} b_{i j} x_{i} x_{j}
$$

be an integer positive definite quadratic form of r variables and let $A=\left(a_{i j}\right)$ be the symmetric $r \times r$ matrix of the quadratic form $Q(X)$, where $a_{i i}=2 b_{i i}$ and $a_{i j}=a_{j i}=b_{i j}$, for $i<j$ and $a_{i j}^{*}$ is the element of the inverse matrix A^{-1}.

A homogeneous polynomial $P(X)=P\left(x_{1}, \cdots, x_{r}\right)$ of degree v with complex coefficients, satisfying the condition

$$
\sum_{1 \leq i, j \leq r} a_{i j}^{*}\left(\frac{\partial^{2} P}{\partial x_{i} \partial x_{j}}\right)=0
$$

is called a spherical polynomial of order v with respect to $Q(X)$. Let $P(v, Q)$ denote the vector space of spherical polynomials $P(X)$ of even order v with respect to $Q(X)$.

Let

$$
\vartheta(\tau, P, Q)=\sum_{n \in \mathbb{Z}^{r}} P(n) z^{Q(n)}, \quad z=e^{2 \pi i \tau}, \quad \tau \in \mathbb{C}, \quad \operatorname{Im} \tau>0
$$

be the corresponding generalized r-fold theta-series and $T(v, Q)$ denote the vector space of generalized multiple theta-series, i.e.,

$$
T(v, Q)=\{\vartheta(\tau, P, Q): P \in \mathscr{P}(v, Q)\} .
$$

Gooding [1] calculated the dimension of the vector space $T(v, Q)$ for reduced binary quadratic forms Q. In [2] the upper bounds for the dimension of the space $T(v, Q)$ for some quadratic forms of r variables are established.

In this talk, some positive diagonal and non-diagonal quadratic forms of any number of variables are considered; the spaces of spherical polynomials and corresponding generalized theta series are studied; and finally the upper bounds of the dimensions (in some cases, the dimensions) of these spaces are obtained.

Bibliography

[1] F. Gooding, Jr. Modular forms arising from spherical polynomials and positive definite quadratic forms. J. Number Theory, 9(1):36-47, 1977. doi:10.1016/0022-314X(77)90047-6.
[2] K. Shavgulidze. On the space of generalized theta-series for certain quadratic forms in any number of variables. Math. Slovaca, 69(1):87-98, 2019. doi:10.1515/ms-2017-0205

