Exposé court

117 The existence of primitive pair over finite fields

Sharma, Jyotsna (Department of Mathematics, IIT Delhi)
Let \mathbb{F}_{q} be a finite field of order q and let $f(x)=f_{1}(x) / f_{2}(x) \in \mathbb{F}_{q}(x)$ be a rational function of degree sum n, that is, $n=n_{1}+n_{2}$ where $n_{1}=\operatorname{deg}\left(f_{1}(x)\right)$ and $n_{2}=\operatorname{deg}\left(f_{2}(x)\right)$. We say a rational function $f(x)$ is exceptional, if $f(x)$ is of the form $f(x)=c x^{i}(g(x))^{d}$, where i is any integer, $d>1$ divides $q-1, c \in \mathbb{F}_{q}^{*}$ and $g(x) \in \mathbb{F}_{q}(x)$ such that both numerator and denominator of $g(x)$ are co-prime to x. A generator of \mathbb{F}_{q}^{*} is referred as a primitive element of \mathbb{F}_{q}. For an $\left(n_{1}, n_{2}\right)$-rational function $f(x) \in \mathbb{F}_{q}(x)$ and $\alpha \in \mathbb{F}_{q}$ we call $(\alpha, f(\alpha))$, a primitive pair if both α and $f(\alpha)$ are primitive elements in \mathbb{F}_{q}. In this talk, we will focus on the improvement of the sufficient condition proposed by Cohen et.al. for the existence of primitive pair ($\alpha, f(\alpha)$) over a finite field \mathbb{F}_{q}, where f is a (odd or even, non-exceptional) rational function over \mathbb{F}_{q} of degree sum n for every prime power q with $q \equiv 3(\bmod 4)$). This is a joint work with R.Sarma and S.Laishram.

