Exposé court

116 Stability of certain higher degree polynomials

Sharma, Himanshu (Indian institute of technology, Delhi)
Let K be a field and let $f(z) \in K[z]$ be a polynomial of degree d. Then, for $n \in \mathbb{N} \cup\{0\}$, the n-th iterate of $f(z)$ is defined inductively as follows

$$
f^{0}(z)=z, f^{n}(z)=f\left(f^{n-1}(z)\right) .
$$

A polynomial $f(z) \in K[z]$ is stable over K if $f^{n}(z)$ is irreducible over K for each $n \in \mathbb{N}$. If the number of irreducible factors of all the iterates of $f(z)$ is bounded above by a constant, then we say that $f(z)$ is eventually stable. An important question in the field of arithmetic dynamics is to study the stability or eventual stability of polynomials over a field. In this talk, we discuss the stability of $f(z)=z^{d}+\frac{1}{c}$ for $d \geq 3, c \in \mathbb{Z} \backslash\{0\}$. We show that for an infinite family of $d \geq 3$, the irreducibility of $f(z)$ implies stability of $f(z)$; for the remaining values of d, explicit-abc conjecture implies that $f(z)$ is stable whenever it is irreducible. Moreover, for $d=3$, if $f(z)$ is reducible, then we show that the number of irreducible factors of $f^{n}(z)$ is exactly 2 , for each $n \in \mathbb{N}$ and for $|c| \leq 10^{12}$. This is a joint work with Prof. Ritumoni Sarma and Prof. Shanta Laishram.

