Exposé court

112 Multiplicative complements

Sándor, Csaba (Budapest University of Technology and Economics)

The set of nonnegative integers is denoted by \mathbb{N} . The counting function of a set $A \subseteq \mathbb{N}$ is defined as $A(x) = |A \cap \{0, 1, ..., x\}|$ for every $x \in \mathbb{N}$. Let $A, B \subseteq \mathbb{N}$. The sets A and B are said to be additive complements if every nonnegative integers n can be written as n = a + b, $a \in A$, $b \in B$. Clearly, if $A, B \subseteq \mathbb{N}$ are additive complements, then $A(x)B(x) \ge x + 1$ for every $x \in \mathbb{N}$, therefore $\liminf_{x \to \infty} \frac{A(x)B(x)}{x} \ge 1$. In 1964, answering a question of Hanani, Danzer proved that this bound is sharp, that is there exists infinite additive complements $A, B \subseteq \mathbb{N}$ such that $\lim_{x \to \infty} \frac{A(x)B(x)}{x} = 1$. Similarly, the sets A and B are said to be multiplicative complements if every nonnegative in-

Similarly, the sets *A* and *B* are said to be multiplicative complements if every nonnegative integers *n* can be written as n = ab, $a \in A$, $b \in B$. We show that, in contrast to the additive complements, $\lim_{x \to \infty} \frac{A(x)B(x)}{x} = \infty$ for every infinite multiplicative complements *A* and *B*. In this talk we present some further tight density bounds on multiplicative complements.

This is joint work with Anett Kocsis, Dávid Matolcsi and György Tőtős.