Exposé court

112 Multiplicative complements

Sándor, Csaba (Budapest University of Technology and Economics)
The set of nonnegative integers is denoted by \mathbb{N}. The counting function of a set $A \subseteq \mathbb{N}$ is defined as $A(x)=|A \cap\{0,1, \ldots, x\}|$ for every $x \in \mathbb{N}$. Let $A, B \subseteq \mathbb{N}$. The sets A and B are said to be additive complements if every nonnegative integers n can be written as $n=a+b, a \in A, b \in B$. Clearly, if $A, B \subseteq \mathbb{N}$ are additive complements, then $A(x) B(x) \geq x+1$ for every $x \in \mathbb{N}$, therefore $\liminf _{x \rightarrow \infty} \frac{A(x) B(x)}{x} \geq 1$. In 1964, answering a question of Hanani, Danzer proved that this bound is sharp, that is there exists infinite additive complements $A, B \subseteq \mathbb{N}$ such that $\lim _{x \rightarrow \infty} \frac{A(x) B(x)}{x}=1$.

Similarly, the sets A and B are said to be multiplicative complements if every nonnegative integers n can be written as $n=a b, a \in A, b \in B$. We show that, in contrast to the additive complements, $\lim _{x \rightarrow \infty} \frac{A(x) B(x)}{x}=\infty$ for every infinite multiplicative complements A and B. In this talk we present some further tight density bounds on multiplicative complements.

This is joint work with Anett Kocsis, Dávid Matolcsi and György Tőtős.

