Exposé court

100 On bounds for $B_{2}[g]$ sequences and the Erdős-Turán Conjecture
Pliego, Javier (KTH Royal Institute of Technology)
We say that $A \subset \mathbb{N}$ is an asymptotic basis of order 2 if for every sufficiently large natural number n, we have

$$
n=a_{1}+a_{2}, \quad a_{1} \leq a_{2}, \quad a_{1}, a_{2} \in A
$$

and denote by $r_{A}(n)$ the number of such solutions. An old conjecture of Erdős and Turán claims that there is no asymptotic basis A and no fixed $g \in \mathbb{N}$ with the property that $1 \leq r_{A}(n) \leq g$ for sufficiently large n. We first show after suitably weakening the preceding requirements in the conjecture that the corresponding statement does not hold. We also provide for $g \geq 2$ and some sequence $A \subset \mathbb{N}$ with the property that $r_{A}(m) \leq g$ new lower bounds for the counting function $|A \cap[1, x]|$.

