Exposé court

100 On bounds for *B*₂[*g*] **sequences and the Erdős-Turán Conjecture** *Pliego, Javier (KTH Royal Institute of Technology)*

We say that $A \subset \mathbb{N}$ is an asymptotic basis of order 2 if for every sufficiently large natural number n, we have

$$n = a_1 + a_2,$$
 $a_1 \le a_2,$ $a_1, a_2 \in A,$

and denote by $r_A(n)$ the number of such solutions. An old conjecture of Erdős and Turán claims that there is no asymptotic basis A and no fixed $g \in \mathbb{N}$ with the property that $1 \le r_A(n) \le g$ for sufficiently large n. We first show after suitably weakening the preceding requirements in the conjecture that the corresponding statement does not hold. We also provide for $g \ge 2$ and some sequence $A \subset \mathbb{N}$ with the property that $r_A(m) \le g$ new lower bounds for the counting function $|A \cap [1, x]|$.