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The Lieb-Robinson bound asserts the existence of a maximal propagation speed for the quantum
dynamics of lattice spin systems. Such general bounds are not available for most bosonic lattice
gases due to their unbounded local interactions. Here we establish for the first time a general
ballistic upper bound on macroscopic particle transport in the paradigmatic Bose-Hubbard model.
The bound is the first to cover a broad class of initial states with positive density including Mott
states, which resolves a longstanding open problem. It applies to Bose-Hubbard type models on
any lattice with not too long-ranged hopping. The proof is rigorous and rests on controlling the
time evolution of a new kind of adiabatic spacetime localization observable via iterative differential
inequalities.

A central tenet of relativistic theory is the existence
of the light cone, i.e., an absolute upper bound on the
speed of propagation. It is a remarkable fact that many
non-relativistic condensed-matter systems similarly dis-
play an effective “light” cone which provides a system-
dependent upper bound on the maximal speed of quan-
tum propagation. In contrast to its relativistic counter-
part, this effective light cone leaks exponentially small
errors as is typically unavoidable in quantum dynam-
ics. This deep fact was discovered by Lieb and Robinson
[1] for quantum spin systems on lattices. The resulting
Lieb-Robinson bound showed that the ultraviolet cutoff
imposed by the lattice provides a maximal speed of prop-
agation on the many-body dynamics. The interest in
Lieb-Robinson bounds rapidly surged in the early 2000s
when it became clear that they are among the very few ef-
fective and general tools that are available for analyzing
quantum many-body systems. Accordingly, they have
played a decisive role in contexts as diverse as quantum
information science [2, 3], condensed-matter theory [4–9]
and high-energy physics [10–12] to name a few.

A variety of improvements of the original Lieb-
Robinson bound have been achieved over the past 10
years [8, 13–24] including, e.g., extensions to long-range
spin interactions and fermionic lattice gases. For a more
complete discussion, see the survey papers [25–27].

Despite these celebrated successes, a nagging limita-
tion of the Lieb-Robinson bounds has persisted over the
years—the standard proofs are fundamentally limited to
bounded interactions as enjoyed by quantum spin sys-
tems. Certain oscillator systems with unbounded inter-
actions have been addressed by different methods [21].
However, for general unbounded interactions, the stan-
dard arguments only yield an unsatisfactory bound on
the maximal speed which is proportional to the total par-
ticle number N , a trivial bound in the thermodynamic
limit.

This limitation largely leaves out the wide field of
bosonic quantum lattice gases since these naturally come
with unbounded interactions, for example the paradig-

matic Bose-Hubbard (BH) model [28]. Experiments with
ultracold gases in optical lattices and numerical simula-
tions have found an effective light cone for the BH model
after a quench [29–34]. On the theoretical side, a fully
satisfactory understanding of this fact is lacking. It is
known that the problem is subtle because superballistic
transport can occur in certain related examples [35].

A small number of theoretical results have established
a maximal propagation speed for bosonic lattice gases
for special initial states. A first maximal speed bound
in the BH model was given in [36] for initial states that
have no particles outside of a fixed region. This condi-
tion excludes states of positive local density, e.g., Mott
states (9). Very recently, a number of groups have made
progress on this problem through novel techniques: The
N -scaling of the velocity was improved to

√
N [37]; an

almost-linear light cone was derived for special initial
states that are local perturbations of a stationary state
satisfying certain exponential constraints on the local
particle density [38]; a linear light cone was derived for
commutators tested against the state e−µN [39]; and [36]
was extended to propagation through vacuum [40].

In this Letter, we show for the first time the finiteness
of the speed of macroscopic particle transport in the BH
model for general initial states. We obtain an explicit
bound (4) on the maximal speed that is independent of
the particle number and easily computable from the hop-
ping parameters of the Hamiltonian. In particular, our
result is the first to provide a thermodynamically stable
ballistic particle propagation bound on the prototypical
Mott states (9) which resolves a longstanding open prob-
lem. See Theorem 1 below for the formal statement. Our
result is a new kind of macroscopic-type Lieb-Robinson
bound for particle transport. It remains to be seen if the
method can be adapted to propagation of other physical
characteristics, e.g., entanglement.

Our main idea is to control the time evolution by
means of a new class of observables which we call adi-
abatic spacetime localization observables (ASTLO). The
construction is inspired by the method of propagation ob-
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servables developed in [41–47] and thereby connects these
developments to the study of many-body lattice gases for
the first time.

Let us explain the conceptual idea that makes our
ASTLOs an effective tool. Monotonic quantities, such as
entropy, have long played a central role in studying dy-
namics. The main limiting factors for using these quan-
tities is that they are global and there exist only few of
them.

ASTLOs widely expand this framework. They are
monotonic up to self-similar terms and small error terms
as summarized in (19) below. The self-similar terms can
be made much smaller because self-similarity allows for
iterative bootstrapping. In effect, this makes the expec-
tation values of ASTLOs approximately monotonic (i.e.,
monotonic up to small error terms), which leads to our
space-time estimates. We are able to flexibly design AST-
LOs that capture the key dynamical information about
the localization of particles in space-time precisely be-
cause we have relaxed the monotonicity condition. We
believe that this insight can be used to design and utilize
analogs of ASTLOs for many other problems in quantum
dynamics.

These techniques are fully analytical, rigorous, and ro-
bust. Accordingly, the proof applies to a wide variety of
BH type models with rather long-ranged hopping and on
general lattices.

SETTING AND MAIN RESULT

We consider a finite connected subset Λ of a lattice L ⊂
Rd. For example, L = Zd and Λ is a discrete box. We
shall prove bounds that are independent of the number
of sites in Λ and which therefore extend to the infinite-
volume limit.

We consider a system of bosons on Λ described by the
generalized Bose-Hubbard model Hamiltonian

HΛ = −
∑
x,y∈Λ

JΛ
xyb
†
xby +

∑
x∈Λ

Vx(nx)− µ
∑
x∈Λ

nx. (1)

acting on the bosonic Fock space F .
We assume that JΛ

x,y = JΛ
y,x and we let Vx :

{0, 1, 2, . . . } → R be an arbitrary local potential. We
allow for long-ranged hopping in the BH Hamiltonian.
The hopping range is quantified by an integer parameter
p and the quantity

κ
(p)
J = max

x∈Λ

∑
y∈Λ

|JΛ
xy||x− y|p (2)

where | · | denotes the Euclidean distance. Our bounds

will involve the constant κ
(p)
J for some p ≥ 2 and to have

a well-defined infinite-volume limit, we assume that κ
(p)
J

is upper-bounded independently of the system size. This
is our main assumption on the hopping elements Jxy.

FIG. 1. As shown in Theorem 1, the transport of 1% of the
particles from X to Y takes time proportional to dXY . A
macroscopic cloud of particles moves at most at speed vmax.

Suppose that Λ is a box in Zd and we have the decay
bound |JΛ

xy| . (|x−y|+1)−α for some exponent α ≥ d+3.

Then we can take p = α − d − 1 as κ
(α−d−1)
J is upper-

bounded independently of the system size [48, Lemma
14]. As another example, the standard BH Hamiltonian
involves nearest-neighbor hopping and quadratic on-site
interaction [28, eq. (65)], i.e.,

JΛ
x,y = Jδx∼Λy, Vx(nx) = V (nx) =

U

2
nx(nx − 1).

(3)
where x ∼Λ y means x and y are nearest neighbors in

Λ. In this case, κ
(p)
J = κ

(1)
J = 2dJ assuming the lattice

embedding is such that nearest neighbors have Euclidean
distance 1.

We will show that the maximal propagation speed is
given by

vmax ≡ κ(1)
J = max

x∈Λ

∑
y∈Λ

|JΛ
xy||x− y|. (4)

Our main result controls the macroscopic change of
local particle numbers outside of an effective light cone
with slope determined by vmax. To formulate it precisely,
we define for a given subset S ⊂ Λ, the local particle
numbers

NS =
∑
x∈S

nx, N̄S =
NS
NΛ

. (5)

We recall that the total particle number NΛ =∑
x∈Λ nx is conserved by HΛ. For c ∈ R and S ⊂ Λ,

we write PN̄S<c, PN̄Sc≥c, etc., for the associated spectral
projectors of N̄S , where Sc = Λ \ S.

Given a set S ⊂ Λ, we write Rmin(S) for the radius
of the smallest Euclidean ball B so that S ⊆ B. We
write 〈A〉ψ = 〈ψ,Aψ〉 for the expectation value of an
observable A in state ψ. Given two subsets of the lattice
X,Y ⊂ Λ, we write dXY for their Euclidean distance.
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Theorem 1 (Main result). Consider the Hamiltonian
HΛ given by (1) with the hopping matrix JΛ

xy satisfying

κ
(p)
J < ∞ for some p ≥ 2. Fix numbers v > vmax and

0 ≤ η < ξ ≤ 1.
Let X and Y be disjoint subsets of Λ and let φ be any

normalized state. Consider the time-evolved state

ψt = e−itHPN̄Xc≤ηφ. (6)

Then we have the decay estimate

〈PN̄Y ≥ξ〉ψt
≤ C

κ
(p)
J ,ξ−η d

1−p
XY , (7)

whenever dXY ≥ vt+ 2Rmin(X).

To interpret the result, see Figure 1 and consider an
initial state φ so that PN̄Xc≤ηφ = φ, meaning the fraction
of particles outside of a ball X is at most η (say, η =
0.6 and so at least 60% of all particles are outside of
X). Then (7) shows that the time it takes to raise the
fraction of particles inside Y to ξ > η (say, to 61% of all
particles) is at least proportional to the distance dXY .
In short, moving (ξ − η)N particles from X to Y takes
time proportional to dXY . This proves that macroscopic
many-body transport is at most ballistic.

A few remarks on Theorem 1 are in order. (i) The
notation C

κ
(p)
J ,ξ−η means that the constant depends on

the values of κ
(p)
J and ξ− η. It also depends on v− vmax,

but importantly neither on t nor dXY . (ii) The left-hand
side of (7) vanishes at t = 0. We prove that it remains
small as long as one stays outside of an effective light
cone

dXY ≥ vt+ 2Rmin(X) (8)

(see (7)). For finite-range hopping, the decay outside
of the effective light cone is faster than any polynomial.
(iii) The maximal speed vmax from (4) is independent
of particle number and of the observables X and Y . It
only depends on model parameters similarly to the Lieb-
Robinson velocity. (iv) The result applies to a broad
class of initial states including ones that can have positive
local particle density. This allows, for the first time, to
consider the important class of Mott states

φ =
⊗
x∈Λ

(a†x)νx |0〉, νx ∈ {0, 1, 2, . . .}. (9)

(A common choice is νx ≡ ν with ν − 1 < µ
U < ν which

gives a Mott insulating ground state of (3) in the limit
U � J .) (v) The term 2Rmin(X) in the condition fol-
lowing (8) plays no role when X is a fixed bounded set.
Moreover, if d0Y = dXY + Rmin(X) (e.g., if X has sym-
metry) then (8) can be relaxed to dXY ≥ vt even if X
grows with system size. The constant 2 can be replaced
by any number > 1. (vi) It is an open queston if Theorem
1 can be extended to include the case p = 1.

We mention that a well-known experimental setup
which encapsulates the zero-temperature phase diagram
of the Bose-Hubbard model places the bosons in a large
radial trap generated by a radially decreasing local chem-
ical potential. In this setup, the ground state is com-
prised of concentric annuli which alternate between Mott
insulating phases (of different densities) and superfluid
phases [28, Figure 13]. Now consider two such Mott
phases separated by a superfluid annulus of width w such
that the Mott phase on the smaller annulus contains at
least (1−η)N particles and the Mott phase on the larger
annulus contains at most ξN for some η < ξ. If we turn
off the trap at time t = 0, then our result predicts that it
will require a time proportional to w/vmax to equilibrate
the particle densities between the two Mott phases.

ASTLOS: DEFINITION AND BASIC
PROPERTIES

The overarching idea behind our approach is to
construct special adiabatic spacetime localization ob-
servables (ASTLO) (see (11) below) which are quasi-
monotonic along quantum trajectories. An important in-
gredient to make ASTLOs work is to use smooth, slowly
varying (adiabatic) cutoff functions instead of sharp ones
because this makes the time derivative comparatively
small.

Given v > vmax, let ε ∈ (0, 1
2 ) be small enough such

that v′ = (1 − ε)v > vmax still. We define the smeared
out light cone indicator as

χt(|x|) = χ

(
|x| −Rmin(X)− v′t

εdXY

)
, (10)

where χ is a smoothed out indicator function of the semi-
interval [0,∞); see Figure S1 in [48]. (A precise definition
will be given below.) By translation, we may assume that
X ⊂ Λ is contained in BRmin(X), the Euclidean ball of
radius Rmin(X) centered at 0.

We consider s = εdXY as the large adiabatic parame-
ter that makes χt(x) slowly varying. The associated adi-
abatic spacetime localization operator (ASTLO) is then
the Fock space operator At given by the (normalized)
second quantization of χt, i.e.,

At =
1

NΛ

∑
x∈Λ

χt(|x|)nx. (11)

Physically, the first-order ASTLO At can be thought of
as a smeared-out localized relative number operator. It
measures how many particles are at least distance v′t
away from the ball BRmin(X), but it only fully counts the
particles whose distance from the light cone is at least
of order εdXY . Conversely, the particles whose distance
from the light cone is positive but � εdXY contribute
almost nothing to At.
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The ASTLOs At are useful because, in addition to de-
creasing quasi-monotonically along quantum trajectories,
they satisfy the following two somewhat competing prop-
erties: (I) They are closely connected to the more sharply
varying local particle numbers NXc and NY . (II) Their
adiabatic nature leads to a slow time evolution (small
commutators).

Let us explain point (I) further. We begin by noting
that local particle number operators and ASTLOs are
sums of nx’s and thus commute. Then x ∈ X ⊂ BRmin(X)

implies χ0(|x|) = 0 and so we have the operator inequal-
ity

N̄Xc ≥ A0. (12)

Since X contains the origin, we have for any y ∈ Y that
|y| ≥ dXY . The assumption dXY ≥ vt + 2Rmin(X) and
our choice of ε then imply that χt(|y|) = 1. Hence, we
obtain the second operator inequality

N̄Y ≤ At (13)

which clarifies point (I) above.

SKETCH OF PROOF OF THEOREM 1

To treat positive densities, we introduce an augmented
ASTLO by taking a monotonic function of the opera-
tor At via the spectral theorem. Let f be a monotonic
smooth cutoff function that goes from 0 to 1 between η
and ξ. To be precise, f belongs to the following class
of cutoff functions Cη,ξ. In words, these are smooth (in-
finitely differentiable) and non-negative functions which
interpolate smoothly between 0 and 1 on the interval
[η, ξ] and are identically zero to its left and identically
1 to its right. Formally, with f (1) ≡ f (1) denoting the
first derivative,

Cη,ξ =
{
f ∈ C∞(R) : f, f ′ ≥ 0,

√
f ′ ∈ C∞(R), f = 0 on

(−∞, η), f = 1 on (ξ,∞), supp f ′ ⊂ (η, ξ)
}
.

We emphasize that the class of cutoff functions is inde-
pendent of the adiabatic parameter s = εdXY and of time
t. Now we define the approximate spectral projector for
the ASTLO via the spectral theorem as

Φ(t) = f(At) =
∑

λ∈specAt

f(λ)Pλ(At).

with Pλ(At) the projector onto the λ-eigenspace of At.
The fact that f ∈ Cη,ξ implies that Φ(t) is an approxi-

mate spectral projector in the sense that

PN̄Xc≤ηΦ(0) = 0, PN̄Y ≥ξ = PN̄Y ≥ξΦ(t). (14)

We denote 〈A〉t = 〈A〉ψt
. The above relations (14) give

〈Φ(0)〉0 = 0, 〈PN̄Y ≥ξ〉t ≤ 〈Φ(t)〉t. (15)

As anticipated, we see that the task reduces to control-
ling the dynamical growth of the function t 7→ 〈Φ(t)〉t
governed by the differential equation

d

dt
〈Φ(t)〉t =〈DΦ(t)〉t, (16)

where DΦ(t) =
∂

∂t
Φ(t) + i[H,Φ(t)]. (17)

DΦ(t) is called the Heisenberg derivative of Φ(t).
Reverting from Φ(t) to f(At) and introducing the no-

tation

χ′t(|x|) = χ′
(
|x| −Rmin(X)− v′t

s

)
, (18)

we can now formulate the key technical result.

Theorem 2 (Bound on the Heisenberg derivative). Let
f ∈ Cη,ξ and χ ∈ C1/2,1. Then, there exists a constant

C > 0 and cutoff functions f̃ ∈ Cη,ξ and χ̃ ∈ C1/2,1 such
that for all t and all sufficiently large s,

Df(At) ≤−
v′ − vmax

s
f ′(At)A′t +

C

s2
f̃ ′(Ãt)Ã′t +

C

sp
.

(19)
Here A′t, Ãt and Ã′t are mutually commuting, positive op-
erators defined in the natural way: namely, by replacing
χt by respectively χ′t, χ̃t and χ̃′t in (11), while replacing
εdXY by s.

The proof of Theorem 2 is lengthy and deferred to [48].
A key ingredient in the proof is the bound

‖[J, |x|]‖ ≤ κ1 ≡ vmax (20)

(uniformly in Λ) where Jf(x) =
∑
y Jxyfy is an operator

on the one-particle space `2(Λ). The bound (20) follows
from Lemma 5 in the SM and the Schur test; it is where
formula (4) for vmax arises in our argument.

Proof of Theorem 1. The key idea is to iterate (19). We
fix f ∈ Cη,ξ and χ ∈ C1/2,1. We use s = εdXY , take
the expectation of (19) and integrate over time. Using
(16), 〈Φ(t)〉t ≥ 0 and, by (15), 〈Φ(0)〉0 = 0, as well as
v′ − vmax = εv > 0 and t ≤ s

εv , we obtain∫ t

0

〈f ′(Ar)A′r〉rdr ≤ Cs−1

∫ t

0

〈f̃ ′(Ãr)Ã′r〉rdr + Cts1−p.

Since this holds for any f ∈ Cη,ξ, we can iterate. It follows

that there exist f̃ ∈ Cη,ξ and χ̃ ∈ C1/2,1 so that∫ t

0

〈f ′(Ar)A′r〉rdr ≤Cs1−p
∫ t

0

〈f̃ ′(Ãr)Ã′r〉rdr + Cts1−p

≤Cts1−p (21)

where the second estimate uses that ‖f̃ ′(Ãr)‖ ≤ ‖f̃ ′‖∞ ≤
C by the functional calculus and that 〈Ã′r〉r ≤ C
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which in turn follows from the Cauchy-Schwarz inequal-
ity 〈b†xby〉r ≤ 〈nx〉r + 〈ny〉r.

Integrating the expectation of (19) over time and using

〈Φ(t)〉t = 〈Φ(r)〉r +
∫ t
r
〈DΦ(r)〉rdr and (21), we obtain,

for any t ≥ r ≥ 0,

〈Φ(t)〉t ≤ 〈Φ(r)〉r + C(t− r)s−p, (22)

showing the essential monotonicity of 〈Φ(t)〉t under the
evolution. Setting here r = 0 and using (15) gives the
desired bound 〈PN̄Y ≥ξ〉t ≤ Cts

−p.

CONCLUSIONS

We have resolved a longstanding open problem in
the area of quantum lattice gases by providing the first
derivation of a maximal speed for macroscopic particle
transport in the Bose-Hubbard model. Our result is
a new kind of macroscopic-type Lieb-Robinson bound
for particle transport. It complements other recent re-
sults [37–40] which hold for special initial states and are
otherwise closer to the original formulation of the Lieb-
Robinson bound.

Our result could be used to control the temporal rate
of change of the expected local particle fraction NU

N inside
a region U for suitable initial states. This would open the
door to a finer investigation of the dynamical behavior of
the local particle fraction.

The central physical idea underpinning our proof is
to engineer the ASTLOs, adiabatic and quasi-monotonic
spacetime observables whose support dynamically tracks
and controls the surplus of particles outside the effective
light cone. The analytical method that we use is quite ro-
bust. For example, it applies without significant change
to a wide variety of BH type models with different hop-
pings and different lattice structures.

Regarding broader extensions, we note that our AST-
LOs here are specifically designed to track particle trans-
port and thereby naturally give rise to the commutator
[J, x]. To control propagation of other physical quan-
tities, e.g. entanglement, one would use adapted observ-
ables which have to satisfy the appropriate analog of (20)
uniformly in Λ. This change would also affect the value
of the maximal speed bound (but not its existence).

ACKNOWLEDGMENTS

The authors thank Tomotaka Kuwahara for useful
comments on a draft version of the manuscript. They
also thank Jens Eisert for informing them of related work
currently under completion [49]. The research of IMS is
supported in part by NSERC Grant No. NA7901.

∗ jeremy.faupin@univ-lorraine.fr
† marius.lemm@uni-tuebingen.de
‡ im.sigal@utoronto.ca

[1] E.H. Lieb, and D.W. Robinson, The finite group velocity
of quantum spin systems, In Statistical mechanics, 425-
431. Springer, Berlin, 1972

[2] M.B. Hastings, An area law for one-dimensional quan-
tum systems, J. Stat. Mech.: Theor. Exper. 2007 (2007),
P08024

[3] Z. Landau, U. Vazirani, and T. Vidick, A polynomial time
algorithm for the ground state of one-dimensional gapped
local Hamiltonians, Nature Physics 11 (2015), no. 7, 566-
569

[4] S. Bachmann, W. De Roeck, and M. Fraas, Adiabatic
Theorem for Quantum Spin Systems, Phys. Rev. Lett.
119, 060201 (2017).

[5] S. Bachmann, S. Michalakis, B. Nachtergaele, and
R. Sims, Automorphic equivalence within gapped phases
of quantum lattice systems, Comm. Math. Phys. 309
(2012), no. 3, 835 – 871

[6] S. Bravyi, M.B. Hastings, S. Michalakis, Topological
quantum order: Stability under local perturbations, J.
Math. Phys. 51 (2010), 093512

[7] S. Bravyi, M.B. Hastings, and F. Verstraete, Lieb-
Robinson bounds and the generation of correlations and
topological quantum order, Phys. Rev. Lett. 97 (2006),
no. 5 (2006), 050401

[8] M.B. Hastings, Lieb-Schultz-Mattis in higher dimensions
Phys. Rev. B 69 (2004),104431

[9] B. Nachtergaele and R. Sims, A Multi-Dimensional
Lieb-Schultz-Mattis Theorem, Comm. Math. Phys. 276
(2007), 437

[10] C.-F. Chen and A. Lucas, Finite Speed of Quantum
Scrambling with Long Range Interactions,, Phys. Rev.
Lett. 123 (2019), 250605

[11] T. Kuwahara and K. Saito, Absence of Fast Scrambling in
Thermodynamically Stable Long-Range Interacting Sys-
tems, Phys. Rev. Lett. 126 (2021), 030604

[12] D.A. Roberts and B. Swingle, Lieb-Robinson Bound and
the Butterfly Effect in Quantum Field Theories, Phys.
Rev. Lett. 117, 091602 (2016)

[13] D. Damanik, M. Lemm, M. Lukic, and W. Yessen, New
Anomalous Lieb-Robinson Bounds in Quasiperiodic XY
Chains Phys. Rev. Lett. 113 (2014), no. 12, 127202

[14] D. Damanik, M. Lemm, M. Lukic, and W. Yessen, On
anomalous Lieb–Robinson bounds for the Fibonacci XY
chain, J. Spectr. Theory 6 (2016), no. 3, 601-628

[15] D. V. Else, F. Machado, C. Nayak, and N. Y. Yao: Im-
proved Lieb-Robinson bound for many-body Hamiltonians
with power-law interactions Phys. Rev. A 101, 022333,
2020

[16] M. Foss-Feig, Z.-X. Gong, C.W. Clark, and A.V. Gor-
shkov, Nearly-linear light cones in long-range interacting
quantum systems Phys. Rev. Lett. 114 (2015), 157201

[17] M. Gebert, and M. Lemm, On polynomial Lieb–Robinson
bounds for the XY chain in a decaying random field, J.
Stat. Phys. 164 (2016), no. 3, 667-679.

[18] M. Gebert, B. Nachtergaele, J. Reschke, R. Sims, Lieb-
Robinson bounds and strongly continuous dynamics for a
class of many-body fermion systems in Rd, Ann. Henri
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Supplemental Material:
Maximal speed for macroscopic particle transport in the Bose-Hubbard model

This appendix provides the complete proof of Theorem 2. In the following, c, C > 0 stand for generic positive
constants whose value may change from line to line and which may implicitly depend on parameters such as ‖χ′‖∞
or on κ

(1)
J , . . . , κ

(p)
J defined in (2). Note that all κ

(q)
J <∞, q = 1, . . . , p, by an assumption of Theorem 2.
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FIG. S1. Example of a cutoff function χ ∈ C1/2,1.

Recall the definition of the set of cutoff functions, where we write f (1) ≡ f ′ for the first derivative from now on,

Cη,ξ =
{
f ∈ C∞(R) : f, f (1) ≥ 0,

√
f (1) ∈ C∞(R), f = 0 on (−∞, η), f = 1 on (ξ,∞), supp f (1) ⊂ (η, ξ)

}
. (S1)

An example of a cutoff function lying in C1/2,1 is shown in Figure S1. For χ ∈ C1/2,1, we write χt,s for (10) with
the variable s replacing εdXY , that is,

χt,s(|x|) = χ

(
|x| −Rmin(X)− v′t

s

)
, (S2)

and we define χ̃t,s and χ′t,s analogously; see eq. (18). We also consider the generalized ASTLO

At,s =
1

N
dΓ(χt,s) (S3)

Fix f ∈ Cη,ξ. We shall consider the time evolution of the observable

Φs(t) = f(At,s). (S4)

The operators A′t,s, Ãt,s and Ã′t,s are defined analogously as explained after Theorem 2.
In the remainder of this section, we prove Theorem 2 through various expansions in the small parameter s−1.

TOOLBOX AND DEFINITIONS

In this section, we prepare the proof of Theorem 2 by recalling some mathematical tools used in the rigorous
Schrödinger equation theory.

Commutator expansions with error estimates

We review relevant commutator expansions with error estimates. These results were first derived in [46] and then
improved in [47, 50, 51]. We denote adAH = [A,H] and write adkA for the k-fold iteration of this map.

We introduce the weighted norms ‖f‖m =
∫
R(1 + x2)m/2|f(x)|dx.
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Lemma 3. Let f ∈ C∞(R) be bounded, with
∑M+2
k=0 ‖f (k)‖k−M−1 < ∞, for some M ≥ 1. Let A be a bounded

self-adjoint operator and let B be a bounded operator. Then

[B, f(A)] =

M−1∑
k=1

(−1)k−1

k!
adkA(B)f (k)(A) + RemM , (S5)

where RemM (A, f) = (−1)M−1

∫
R2

(z −A)−1BM (H)(z −A)−ndf̃(z). (S6)

There exists a constant C > 0 such that we have the error estimate

‖RemM‖ ≤ C‖adMA (B)‖
M+2∑
k=0

‖f (k)‖k−M−1. (S7)

Here and in the following, we use the convention that for M = 1, the sum on the right-hand side of (S5) is omitted.

Proof of Lemma 3. We only sketch the proof and refer to [50] for the details. The proof of Lemma 3 relies on the
Helffer-Sjöstrand formula for a function f of a self-adjoint operator A and its derivatives, i.e.

f (k)(A) = k!

∫
R2

df̃(z)(z −A)−k−1, df̃(z) = − 1

2π
∂z̄ f̄(z)dxdy, (S8)

where z = x+ iy and f̃ is an almost analytic extension of f . We quote the following result from [50].

Lemma 4 (Lemma B.2 in [50]). Let M ≥ 0 and f ∈ CM+2(R) with∑M+1
k=0 ‖f (k)‖k−1 <∞. Then there exists an almost analytic extension f̃ : C→ C of f satisfying∫

R2

|df̃(z)||Im(z)|−M−1 ≤ C
M+2∑
k=0

‖f (k)‖k−M−1 (S9)

and (S8) holds for all self-adjoint operators A. The integral in (S8) converges in norm sense and is bounded uniformly
in A.

The almost analytic extension f̃ can be defined in an explicit manner, see e.g. [50, (B.5)].
Using (B.14)-(B.15) and the remark following (B.18) of [50], we have

[B, f(A)] =

M−1∑
k=1

(−1)k−1

k!
adkA(B)f (k)(H) + RemM . (S10)

We recall the convention that for M = 1, the sum on the right-hand side is omitted. Since the operator BM is
bounded, we can control the remainder via (S9), i.e.,

‖RemM‖ ≤ ‖adMA (B)‖
∫
R2

‖z −A‖−M−1|df̃(z)| (S11)

≤ ‖adMA (B)‖
∫
R2

|Imz|−M−1|df̃(z)| (S12)

≤ C‖adMA (B)‖
M+2∑
k=0

‖f (k)‖k−M−1, (S13)

as desired.

Basic properties of second quantization

We begin by introducing some standard notation. Let us consider a one-particle operator A : `2(Λ) → `2(Λ), i.e.,
a |Λ| × |Λ| matrix A acting as

Af(x) =
∑
y∈Λ

Axyfy, f ∈ `2(Λ).
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We write dΓ(A) for its lift to the Fock space defined by

dΓ(A) =
∑
x,y∈Λ

b†xAxyby. (S14)

We note that dΓ is a linear map.

For instance, we can express the hopping term in the Hamiltonian (1) as

T =
∑
x,y∈Λ

Jxyb
†
xby = dΓ(J), where we set Jf(x) =

∑
y

Jxyfy. (S15)

It is convenient to abuse notation and to identify a function F : Λ → C with the multiplication operator that acts
diagonally on f ∈ `2(Λ) via Ff(x) = F (x)f(x). Then

dΓ(F ) =
∑
x∈Λ

F (x)b†xbx =
∑
x∈Λ

F (x)nx. (S16)

For instance, we can rewrite Definitions (5) and (11) as

NU = dΓ(1U ), At = 1
NΛ

dΓ(χt)

The canonical commutation relations for bx and b†x imply the following standard relation.

[dΓ(A),dΓ(B)] = dΓ([A,B]). (S17)

In particular, for functions F,G : Λ→ C, we have that dΓ(F ) and dΓ(G) commute.

Another general property of the second quantization is that it is monotonic with respect to the partial order on
Hermitian operators. That is, for Hermitian |Λ| × |Λ| matrices A and B, we have

A ≤ B =⇒ dΓ(A) ≤ dΓ(B). (S18)

To verify (S18), we diagonalize B −A = Udiag(λ1, . . . , λ|Λ|)U
−1 and exchange the order of summation to obtain

dΓ(B)− dΓ(A) =
∑
j

λjC
†
jCj , with Cj =

∑
y

Uyjby.

The following special case of an iterated commutator will be useful.

Lemma 5. Let k ≥ 1 and F : Λ→ C. We have

adkdΓ(F )(H) = adkdΓ(F )(T ) = dΓ(adkF (J)) (S19)

where adkF (J) is the |Λ| × |Λ| matrix with the matrix entries(
adkF (J)

)
xy

= Jxy(F (x)− F (y))k, x, y ∈ Λ. (S20)

Proof. The first relation in (S19) follows from the fact that dΓ(F ) commutes with H − T since both are linear
combinations of the commuting opeators nx. The second relation in (S19) follows from the fact that T = dΓ(J) and
the identity (S17). Finally, (S20) holds by a straightforward induction.

In particular, Lemma 5 implies that the total particle number NΛ is conserved:

[HΛ, NΛ] = 0. (S21)
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FIG. S2. The derivative h = χ′ of the cutoff function χ shown in Figure S1. Note that h is an admissible function in A1/2,1.

Admissible functions

For an interval I ⊂ R, we write C∞c (I) for the class of smooth functions with compact support in I. For the proof
of Theorem 2 , we introduce the following useful function class.

Definition 6. Let ξ, η ∈ [0, 1] with η < ξ. We introduce the class of admissible functions

Aη,ξ =
{
h ∈ C∞c ((η, ξ)) : h ≥ 0,

√
h ∈ C∞(R)

}
.

The following lemma shows that the elements of Cη,ξ from (S1) can be seen as antiderivatives of admissible functions
up to a multiplicative constant.

Lemma 7. If h ∈ Aη,ξ, then there exists f ∈ Cη,ξ so that

h(r) = f (1)(r)

∫
R
h(r̃)dr̃

Proof. The lemma follows by setting

f(r) =

∫ r
−∞ h(r̃)dr̃∫
R h(r̃)dr̃

.

Evolution of the propagation observables

In this section, we calculate the Heisenberg derivative DΦs(t) defined in (17).
For the first term in DΦs(t), cf. (17), we have

∂

∂t
Φs(t) = −v

′

s
f ′(Ats)A′ts. (S22)

with

A′t,s =
1

N
dΓ(χ′t,s), where χ′t,s is defined in (18). (S23)

Indeed, to verify (S22), we note that At,s and A′t,s commute and are both diagonal in the basis of Mott states (9).
On a given Mott state, (S22) then holds by the chain rule.
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The main work is thus to consider the commutator i[H,Φs(t)] in (17). Central objects in the argument are the
multiple commutators:

Bk = adkAt,s
(iH), k ≥ 1.

We set u1 =
√
f (1) which by f ∈ Cη,ξ satisfies u1 ≥ 0 and u1 ∈ C∞c ((η, ξ)). Furthermore, for k = 2, we let

uk ∈ C∞c (R+) be s.t. f (k) ≺ uk, where we introduced the notation

g1 ≺ g2
def⇐⇒ g2 = 1 on supp g1. (S24)

With these definitions, we have

Lemma 8. Assume f ∈ Cη,ξ. Let ReA = i
2

(
A+A†

)
. Then we have

i[H,Φs(t)] = u1B1u1 + S +R, (S25)

S =

p−1∑
k=2

(−1)k−1

k!
uk Re

(
Bkf

(k)
)
uk

+

p−1∑
k=1

(−1)k−1

k!

p−k−1∑
j=1

Re
(
u

(j)
k (At,s)Bk+jgkuk

)
, (S26)

R = Re

(
Remp(At,s, f) +

p−1∑
k=1

(−1)k−1

k!
Remp−k(Bk, uk)†gkuk

)
, (S27)

where f (1) ≡ f (1) and Remp(A, f) is defined in (S6).

Proof of Lemma 8. The assumption f ∈ Cη,ξ implies f (1) ∈ C∞c (R+). Hence we can apply Lemma 3 to i[H,Φs(t)] =
i[H, f(At,s)] to obtain, for p ≥ 2

i[H,Φs(t)] =

p−1∑
k=1

(−1)k−1

k!
Bkf

(k)(At,s) + Remp(At,s, f).

Next, we symmetrize this expression up to another commutator.
Defining gk = f (k) for k ≥ 1, where f (1) ≡ f (1) and recalling f (k) ≺ uk, so that f (k) = f (k)u2

k, we write

f (k) = gku
2
k, k ≥ 1.

In the following, for the sake of readability, we often suppress the argument At,s from the notation. We have

Bkf
(k) = ukBkgkuk + [Bk, uk]gkuk, k ≥ 1.

The commutator [Bk, uk] ≡ [Bk, uk(At,s)] can be further expanded via the adjoint version of Lemma 3,

[Bk, uk] =

p−1−k∑
j=1

1

j!
u

(j)
k Bk+j + Remp−k(Bk, uk)†.

Combining these commutator expansions, we obtain

i[H,Φs(t)] = (I) + (II) + (III), (S28)

(I) =u1B1u1, (S29)

(II) =

p−1∑
k=2

(−1)k−1

k!
ukBkgkuk +

p−1∑
k=1

(−1)k−1

k!

p−k−1∑
j=1

1

j!
u

(j)
k Bk+jgkuk, (S30)

(III) =Remp(At,s, f) +

p−1∑
k=1

(−1)k−1

k!
Remp−k(Bk, uk)†gkuk. (S31)

Since i[H,Φs(t)] is self-adjoint, we have that i[H,Φs(t)] = (I) + Re
(
(II)
)

+ Re
(
(III)

)
, which gives (S25).
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PROOF OF THEOREM 2

In the next subsections, we consider the symmetrized expansion (S25) and estimate the three terms on the r.h.s. in
reverse order, starting with the norm bound on the remainder term R which is the easiest.

Controlling the remainder term R

We first show that the remainder term R in (S25) is small as s→∞.

Lemma 9. There exists a constant C > 0 such that

‖R‖ ≤ Cs−pκ(p)
J , s ≥ 1.

Proof of Lemma 9. By the remainder estimate (S7), we have

‖Remp(At,s, f)‖ ≤ ‖adpAt,s
(H)‖

p+2∑
k=0

‖f (k)‖k−p−1 ≤ C‖Bp‖.

Similarly, using that gk ≺ uk and that ‖gk(At,s)‖ ≤ ‖gk‖∞ by the functional calculus,

‖Remp−k(Bk, uk)†gkuk‖ ≤ ‖Remp−k(Bk, uk)‖‖gk‖∞

≤
p−k+2∑
l=0

‖u(l)
k ‖l−p+k−1‖Bp‖ ≤ C‖Bp‖, k ≥ 1.

We see that it remains to prove

‖Bp‖ ≤ s−pκ(p)
J . (S32)

We recall that At,s = N−1dΓ(χt,s) and use Lemma 5 with F = χt,s(| · |) to write

Bp = adpAt,s
(iH) =

1

N
idΓ(adpχt,s

(J))

= i
1

N

∑
x,y∈Λ

(χt,s(|x|)− χt,s(|y|))pJxyb†xby. (S33)

Denote B̃k = ik−1Bk = ikadkAt,s
(H). By applying the operator Cauchy-Schwarz inequality to the self-adjoint operators

ip(χt,s(|x|)− χt,s(|y|))pJxyb†xby and the symmetry Jyx = Jxy, we obtain

B̃p ≤
1

N

∑
x,y∈Λ

|χt,s(|x|)− χt,s(|y|)|p|Jxy|nx (S34)

Finally the mean-value theorem implies

|χt,s(|x|)− χt,s(|y|)| ≤ s−1||x| − |y||‖χ′t,s‖∞ ≤ s−1C|x− y|

and so B̃p ≤ s−pCκ(p)
J . This proves (S32) and hence Lemma 9.

Estimating the symmetrized subleading term S

The argument used to prove Lemma 9 can be refined if we replace the application of the mean-value theorem by
iterated Taylor expansion. This is precisely what is needed for the subleading term S in (S25).

We recall that we assume that χ belongs to the following space of cutoff functions

C1/2,1 =
{
χ ∈C∞(R+) : χ, χ′ ≥ 0,

√
χ′ ∈ C∞(R+), suppχ′ ⊂ ( 1

2 , 1),

χ(r) = 0 for r ≤ 1
2 , χ(r) = 1 for r ≥ 1

}
.

(S35)
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Proposition 10. There exist a constant C > 0 and functions χ̃ ∈ C1/2,1 , h ∈ Aη,ξ such that

S ≤ h(Ãt,s)Ã(1)
t,s + Cs−p, (S36)

where, recall, the operators Ãt,s and Ã′t,s are defined in Theorem 2.

In the remainder of this subsection, we prove Proposition 10 in three separate steps. We begin by setting up
convenient notation for Taylor expansions. Fix 1 ≤ k ≤ p. We can use Lemma 5 with F = χt,s to write

Bk = adkAt,s
(iH) = i

1

N
dΓ(adkχt,s

(J)) (S37)

Therefore the main object we aim to control is the iterated commutator

(adkχt,s
(J))xy = (χt,s(|x|)− χt,s(|y|))kJxy. (S38)

By Taylor’s theorem with Lagrange remainder, we have the option to expand for any L ≥ 0

χt,s(|x|)− χt,s(|y|) =

L−1∑
`=1

χ
(`)
t,s(|x|)
`!

(|x| − |y|)` +RL

=

L−1∑
`=1

s−`
(χ(`))t,s(|x|)

`!
(|x| − |y|)` +RL,

with the remainder bound |RL| ≤ s−L ‖χ
(L)‖∞
L! ||x| − |y||L ≤ s−LC|x− y|L. It is convenient to introduce the notation

χt,s(|x|)− χt,s(|y|) =

L∑
`=1

T (L)
` , (S39)

with T (L)
l =

{
s−`

(χ(`))t,s(|x|)
`! (|x| − |y|)`, for 1 ≤ ` ≤ L− 1

RL, for ` = L.

We note that all terms in the expansion satisfy a bound of the form

|T (L)
` | ≤ Cs−`|x− y|`, 1 ≤ ` ≤ L, (S40)

where the constant C only depends on ` and χt,s.

Step 1: Symmetrically preserving support information. We introduce localizing functions on the left and
right side of the Hermitian matrix ik(adkχt,s

(J)). This symmetric sandwiching is needed for proving an operator
inequality of the form (S36).

Lemma 11. There exist constants c, C > 0 and a function χ̃ ∈ C1/2,1 such that

ik(adkχt,s
(J)) = c

√
χ̃′t,si

k(adkχt,s
(J))

√
χ̃′t,s +R, (S41)

where R is a Hermitian matrix satisfying the norm bound

‖R‖ ≤ Cκ(p)
J s−p. (S42)

Proof of Lemma 11. Recall (S24). We choose ũ ∈ C∞c ( 1
2 , 2) with ũ ≥ 0, such that

χ(1), χ(2), . . . , χ(p) ≺ ũ. (S43)

Then we define χ̃ ∈ C1/2,1 by

χ̃(r) =
1

c

∫ r

−∞
ũ(r′)2dr′, c =

∫
R
ũ(ρ)2dρ. (S44)
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(Compare the proof of Lemma 7.) We have
√
cχ̃′ = ũ and hence also

√
cχ̃′t,s = ũt,s.

The matrix R can now be written as

R = ikadkχt,s
(J)− ikũt,sadkχt,s

(J)ũt,s.

We note that R is automatically Hermitian as the difference of two Hermitian matrices and so it suffices to prove the
norm bound (S42). For this, we consider a fixed (x, y)-matrix element Rxy which by (S38) reads

Rxy = ik(χt,s(|x|)− χt,s(|y|))k(1− ũt,s(|x|)ũt,s(|y|))Jxy.

We decompose

1− ũt,s(|x|)ũt,s(|y|) = 1− ũt,s(|x|) + ũt,s(|x|)(ũt,s(|x|)− ũt,s(|y|)).

We first consider the term 1− ũt,s(|x|) and employ a Taylor expansion of order L = p− k + 1 to obtain

(1− ũt,s(|x|))(χt,s(|x|)− χt,s(|y|))k

=(1− ũt,s(|x|))

(
p−k+1∑
`=1

T (p−k+1)
`

)
(χt,s(|x|)− χt,s(|y|))k−1

=(1− ũt,s(|x|))Rp−k+1(χt,s(|x|)− χt,s(|y|))k−1

where we used (1− ũ)χ(`) = 0 for all 1 ≤ ` ≤ p.
By (S40), we can bound the absolute value of this expression by

Cs−p|x− y|−p.

Taylor expanding around the point y instead yields the same bound, albeit with a potentially different constant C,
on the second term ũt,s(|x|)(ũt,s(|x|)− ũt,s(|y|)).

By the Schur test and the fact that R is Hermitian, we obtain the norm bound

‖R‖ ≤ sup
x∈Λ

∑
y∈Λ

|Rxy| ≤ Cs−p sup
x

∑
y∈Λ

|x− y|−p|Jxy| = Cs−pκ
(p)
J (S45)

and Lemma 11 is proved.

Step 2: Bound on the iterated commutator. In this step, we prove

Lemma 12. There exist constants c, C > 0 and a function χ̃ ∈ C1/2,1 such that for every 1 ≤ k ≤ p, the iterated
commutators are bounded as

±B̃k ≡ ±ikadkAt,s
(H) ≤ s−kcÃ(1)

t,s + Cs−p. (S46)

where, recall, the operator Ã′t,s is defined in Theorem 2 and is given by (cf. (18))

Ã(1)
t,s =

1

N
dΓ(χ̃′t,s), χ̃′t,s(|x|) = χ̃′

(
|x| −Rmin(X)− vt

s

)
. (S47)

Proof of Lemma 12. We observe that it suffices to prove the operator inequalities

±ikadkχt,s
(J) ≤ s−kcχ̃′t,s + Cs−p. (S48)

Indeed, assuming (S48), the monotonicity and linearity of second quantization dΓ(·), see (S18), give

±B̃k =
1

N
dΓ(±ikadkχt,s

(J)) ≤ s−k c
N

dΓ(χ̃′t,s) +
C

N
s−pdΓ(1)

≤ s−kcÃ(1)
t,s + Cs−p.

the last step used that dΓ(1) = N .
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We shall prove the following norm bound

‖adkχt,s
(J)‖ ≤ Cs−k. (S49)

This will imply the modified claim (S48). Indeed, together Lemma 11 and (S49) give

±ik(adkχt,s
(J)) =c

√
χ̃′t,si

k(±adkχt,s
(J))

√
χ̃′t,s +R

≤c‖adkχt,s
(J)‖χ̃′t,s + ‖R‖

≤cχ̃′t,s + Cs−pκ
(p)
J

up to a change of the constant c > 0.
We now prove (S49). We shall use (S39) but need to be careful when expanding (χt,s(x) − χt,s(y))k because we

can only control overall polynomial powers up to order |x − y|p through κ
(p)
J . Therefore, we iteratively expand only

as far as necessary to get the desired error s−p.
The iterative Taylor expansion reads

(χt,s(x)− χt,s(y))k =

p−k+1∑
`1=1

T (p−k+1)
`1

p−k+2−`1∑
`2=1

T p−k+2−`1)
`2

×
p−k+3−`1−`2∑

`3=1

T (p−k+2−`1−`2)
`3

. . .

p−`1−...−`k−1∑
`k=1

T (p−`1−...−`k−1)
`k

,

where T (L)
` are defined after (S39) and with the usual convention that empty sums equal zero. As can be seen

from the last term, the orders of the Taylor expansions are chosen so that any admissible tuple (`1, . . . , `k) satisfies
k ≤ `1 + . . .+ `k ≤ p.

The estimate (S40) implies

T (p−k+1)
`1

T (p−k+2−`1)
`2

. . . T (p−`1−...−`k−1)
`k

≤ Cs−`1−...−`k |x− y|`1+...+`k .

By the Schur test,

‖adkχt,s
(J)‖ ≤C sup

x∈Λ

∑
y∈Λ

|Jxy|
∑

`1,...,`k

s−`1−...−`k |x− y|`1+...+`k

≤C
p∑
p=k

s−pκ
(p)
J ≤ Cs

−k,

where
∑
`1,...,`k

=
∑p−k
`1=1

∑p−k+1−`1
`2=1

∑p−k+2−`1−`2
`3=1 . . .

∑p+1−`1−...−`k−1

`k=1 , which yields (S49) and hence Lemma 12.

Step 3: Addressing asymmetry and concluding Proposition 10
While Lemma 12 goes in the right direction, it is not so obvious how to use it to obtain an operator inequality for

S because in (S26), Bk does not appear in the symmetric form C†BkC.
In our specific situation, the asymmetry can be addressed by combining the following two technical observations.

(i) Any operator inequality A ≤ B with B > 0 can be rephrased as the norm bound ‖B−1/2AB−1/2‖ ≤ 1 and
in our situation the target observable Ã′t,s = N−1dΓ(χ̃′t,s) ≥ 0 is positive semidefinite and can thus be made
positive definite by a limiting procedure.

(ii) The target observable Ã′t,s commutes with the source of the asymmetry, gk = gk(At,s) and the latter is uniformly
bounded by the functional calculus, ‖gk(At,s)‖ ≤ ‖gk‖∞ ≤ c.

The details are as follows.

Proof of Proposition 10. Recall (S24). Fix 1 ≤ k ≤ p and find v ∈ C∞c ((η, ξ)) with v ≥ 0 so that{
u

(j)
k

}
2≤k≤p−1
0≤j≤p−1

≺ v.
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We claim that

S ≤ cÃ(1)
t,s + Cs−p. (S50)

This will be sufficient to conclude the lemma. Indeed, it implies

S = v(At,s)Sv(At,s) ≤ v(At,s)(cÃ(1)
t,s + Cs−p)v(At,s)

≤ c h(At,s)Ã(1)
t,s + Cs−p.

where we defined the admissible function h = v2 ∈ Aη,ξ.
It remains to prove the claim (S50). A generic term contributing to S is of the form

Re
(
w1(At,s)Bkw2(At,s)

)
,

where w1, w2 are real-valued functions. (For example, w1 = uk and and w2 = gkuk gives uk(Bkgk + gkB
†
k)uk.) In the

following, we shall again suppress the argument At,s from the notation.
Let ε > 0. We claim that

Re
(
w1Bkw2

)
≤ 1

2
cs−k(Ã′k + ε) + Cs−p (S51)

with the constant C > 0 as in Lemma 12 and c > 0 to be determined. This implies (S50) by sending ε→ 0.
We would like to derive (S51) via Lemma 12. As mentioned before, the main challenge is to address the asymmetry

due to w1 6= w2.
We will derive (S51) from

Re
(
w1Bkw2

)
≤ 1

2
cs−k(Ã′k + ε) + Cs−pw1w2 (S52)

by using that ‖w1(At,s)‖‖w2(At,s)‖ ≤ ‖w1‖∞‖w2‖∞ ≤ c thanks to the functional calculus.

Since Ã′k + ε > 0 and w1w2 = w2w1, the claim (S52) is equivalent to the norm bound∥∥DRe
(
w1(Bk − Cs−p)w2

)
D
∥∥ ≤ 2cs−k, (S53)

where D = 1√
Ã′t,s+ε

. To estimate the left-hand side we use the commutativity

[D,wj(At,s)] = 0, j = 1, 2, (S54)

by the functional calculus and [Ã′t,s,At,s] = N−1dΓ([χ̃′t,s, χt,s]) = 0. This allows us to pull out the norms of w1 and

w2. Using this, the estimate ‖w1(At,s)‖‖w2(At,s)‖ ≤ ‖w1‖∞‖w2‖∞ ≤ c and the relation ‖A†‖ = ‖A‖, we obtain∥∥DRe
(
w1(Bk − Cs−p)w2

)
D
∥∥

≤
∥∥D(Bk − Cs−p)D

∥∥‖w1(At,s)‖‖w2(At,s)‖
≤c
∥∥D(Bk − Cs−p)D

∥∥.
Since k ≤ p, the triangle inequality and Lemma 12 give, up to changing the constant c, the inequality∥∥D(Bk − Cs−p)D

∥∥ ≤ cs−k
which proves (S53) and therefore (S52).

Estimating the main term iu1B1u1

We can estimate the leading term term iu1B1u1 in a more refined way compared to S by using that the first

derivative has a sign, χ′ ≥ 0. This fact allows to reproduce A(1)
t,s exactly at lowest order (in favor of the Ã(1)

t,s that
appeared above for higher orders) as asserted in Theorem 2 .
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Lemma 13. Let χ̃ ∈ C1/2,1 be given by Lemma 11. There exists a constant C > 0 such that

(I) ≤ κ(1)
J s−1A(1)

t,s + Cs−2Ã(1)
t,s + Cs−p, p ≥ 3. (S55)

Proof of Lemma 13. Since u1 = u†1 appears symmetrically and dΓ(·) is monotonic, it suffices to prove the operator
inequality

iadχt,s(J) ≤ κ(1)
J s−1χ′t,s + Cs−2χ̃′t,s + Cs−p (S56)

By applying Lemma 11 with k = 1, there exist constants c, C > 0 and χ̃ ∈ C1/2,1 such that

iadχt,s(J) = c
√
χ̃′t,siadχt,s(J)

√
χ̃′t,s +R (S57)

where the remainder R is Hermitian with norm controlled by ‖R‖ ≤ Cs−p (see (S45)) and can thus be ignored in the
following. Moreover, the construction in the proof of Lemma 11 satisfies the relation

cχ̃′t,s = 1, on suppχ,

as can be seen from (S43) and (S44).
Combining this with (S57), we see that (S56) is implied by the operator inequality

iadχt,s(J) ≤ κ(1)
J s−1χ′t,s + Cs−2 (S58)

Similarly to Step 3 in the proof of Proposition 10, we rephrase the claimed operator inequality (S58) as the following
norm bound, ∥∥M ′iadχt,s(J)M ′

∥∥ ≤ 1, where M ′ = 1
/√

κ
(1)
J s−1χ′t,s + Cs−2. (S59)

We shall prove (S59) via the Schur test. We first consider the matrix elements

|i(adχt,s(J))xy| = |χt,s(|x|)− χt,s(|y|)||Jxy|.

We consider a mixture of the Taylor expansions around x and around y. This can in fact be extended to any order;
see [40, Lemma 2.2].

Without loss of generality, assume |x| ≥ |y|. By monotonicity, we have χt,s(|x|) ≥ χt,s(|y|) and by (S39)

|χt,s(|x|)− χt,s(|y|)| = χt,s(|x|)− χt,s(|y|) = χ′t,s(|x|)
|x| − |y|

s
+R

(2)
2

≤ χ′t,s(|x|)
|x− y|
s

+ Cs−2|x− y|2.

Since χ ∈ C1/2,1, we have u =
√
χ′ ∈ C∞(R) and so

χ′t,s(|x|) ≤ ut,s(|x|)ut,s(|y|) + Cs−1|x− y|

We have shown that for |x| ≥ |y|,

|χt,s(|x|)− χt,s(|y|)| ≤ s−1
√
χ′t,s(|x|)χ′t,s(|y|)|x− y|+ Cs−2|x− y|2.

The same estimate holds if |x| ≥ |y| by interchanging the roles of x and y in the above argument.
Hence, we can bound the matrix elements appearing in (S59) by∣∣∣(M ′iadχt,s

(J)M ′
)
xy

∣∣∣
≤M ′

(√
χ′t,s(|x|)χ′t,s(|y|)

|x− y|
s

+ Cs−2|x− y|3
)
|Jxy|M ′

≤|Jxy|
|x− y|
c

+ |Jxy||x− y|3.

Applying the Schur test and recalling the Definition (2) of κ
(p)
J proves (S59) and thus Lemma 13.
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Conclusion of the proof of Theorem 2

Proof. We apply estimates of R,S and u1iB1u1 given in Lemma 9, Propositions 10 and Lemma 13 to the r.h.s. of the
expansion (S25) to obtain

DΦs(t) ≤
κ

(1)
J − v′

s
f (1)(At,s)A(1)

t,s + Cs−2h(At,s)Ã′t,s + Cs−M (S60)

By Lemma 7, there exists f̃ ∈ Cη,ξ such that

h = Cf̃ (1).

Recall (S24). We can find χ̂ ∈ Cη,ξ satisfying

χ, χ̃ ≺ χ̂

and so, by monotonicity of f̃ ,

Cf̃ (1)(At,s)Ã(1)
t,s ≤ Cf̃ (1)(Ât,s)Â(1)

t,s

Finally, we rename χ̂ as χ̃ again to avoid confusion with the Fourier transform. This proves Theorem 2 .

SYSTEM SIZE-INDEPENDENT UPPER BOUNDS ON κ
(p)
J

Suppose that Λ is a box in Zd of sidelength L, i.e.,

Λ ≡ ΛL = {y = (y1, . . . , yd) : 0 ≤ yj ≤ L− 1} .

Recall the definition

κ
(p)
J (L) = max

x∈ΛL

∑
y∈ΛL

|JΛ
xy||x− y|p

where we have made the L-dependence of κ
(p)
J (L) explicit in the notation.

Lemma 14. Suppose that |JΛ
xy| ≤ C(|x− y|+ 1)−α for α ≥ d+ 2. Then, there exists a constant cd > 0 such that

κ
(α−d−1)
J (L) ≤ cd, for all L ≥ 1. (S61)

Since the boxes are parametrized by their sidelength L, this proves that κ
(α−d−1)
J (L) is upper-bounded independently

of system size under the decay assumption |JΛ
xy| ≤ C(1 + |x− y|)−α for α ≥ d+ 2, as was asserted in the main text.

Proof. By the decay assumption, we have

κ
(α−d−1)
J (L) = max

x∈ΛL

∑
y∈ΛL

|JΛ
xy||x− y|α−d−1 ≤ C max

x∈ΛL

∑
y∈ΛL

(|x− y|+ 1)−α|x− y|α−d−1 ≤ C
∑
y∈Zd

(|y|+ 1)−α|y|α−d−1.

In the last step, we extended the sum to all of Zd at which point it becomes independent of x and L.
The last sum is easily seen to be finite by power counting. To make this precise, we use that |y|α−d−1 ≤ (|y|+1)α−d−1

and use a standard integral comparison,∑
y∈Zd

(|y|+ 1)−α|y|α−d−1 ≤
∑
y∈Zd

(|y|+ 1)−d−1 ≤ C
∫
Rd

(|y|+ 1)−d−1 <∞.

Since this finite upper bound is independent of L, Lemma 14 is proved.
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REMARK ON PARAMETER DEPENDENCIES

It is in principle possible to obtain the dependence of implicit constants on the parameters η, ξ in Theorems 1 and
2. This could be used, to widen the scope of our result to situations of mesoscopic particle transport, i.e., propagation
of a total of ∝ Nδ particles with 0 < δ < 1.

For this, one simply takes η = η0N
δ−1 and ξ = ξ0N

δ−1. In that case, the distance dXY in (7) will be accompanied
by a factor Nδ−1. This means that the final estimate is useful on sufficiently large scales compared to the total particle
number.

While we do not track the precise dependence of the constants η, ξ for the sake of simplicity, we explain here how
this can be done in principle. The key observation is that ξ, η can be removed from the function classes Aη,ξ and Cη,ξ
by an affine change of variables

a(r) = (2ξ − 2η)r + 2η − ξ

which sends [ 1
2 , 1]→ [η, ξ]. We have

Aη,ξ =

{
h ∈ C∞(R) : h(r) = h1(a(r)) with h1 ∈ A 1

2 ,1

}
,

Cη,ξ =

{
f ∈ C∞(R) : f(r) = f1(a(r)) with f1 ∈ C 1

2 ,1

}
In particular, for h ∈ Aη,ξ it holds that

|h(k)(r)| = 2k(ξ − η)k|h(k)
1 (a(r))|

where h1 ∈ A 1
2 ,1

does not explicitly depend on η, ξ. An analogous statement holds for f ∈ Cη,ξ. We see that each

derivative is naturally accompanied by a factor ξ− η in addition to the factor s−1 that arose for each derivative taken
in the proof of Theorem 2 given in the preceding sections.
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