
SPECTRAL DECOMPOSITION OF SOME NON-SELF-ADJOINT OPERATORS

JÉRÉMY FAUPIN AND NICOLAS FRANTZ

Abstract. We consider non-self-adjoint operators in Hilbert spaces of the form H = H0 +CWC,
where H0 is self-adjoint,W is bounded and C is bounded and relatively compact with respect to H0.
We suppose that C is a metric operator and that C(H0− z)−1C is uniformly bounded in z ∈ C \R.
We define the spectral singularities of H as the points of the essential spectrum λ ∈ σess(H) such
that C(H± iε)−1CW does not have a limit as ε→ 0+. We prove that the spectral singularities of H
are in one-to-one correspondence with the eigenvalues, associated to resonant states, of an extension
of H to a larger Hilbert space. Next, we show that the asymptotically disappearing states for H,
i.e. the set of vectors ϕ such that e±itHϕ → 0 as t → ∞, coincide with the generalized eigenstates
of H corresponding to eigenvalues λ ∈ C, ∓Im(λ) > 0. Finally, we define the absolutely continuous
spectral subspace of H and show that it satisfies Hac(H) = Hp(H∗)⊥, where Hp(H∗) stands for the
point spectrum of H∗. We thus obtain a direct sum decomposition of the Hilbert spaces in terms of
spectral subspaces of H. One of the main ingredients of our proofs is a spectral resolution formula
for a bounded operator r(H) regularizing the identity at spectral singularities. Our results apply to
Schrödinger operators with complex potentials.
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1. Introduction

We are interested in this paper in the evolution of a quantum system governed by the time-
dependent Schrödinger equation

i∂tϕ = Hϕ, (1.1)

with a non-self-adjoint operator H.
Non-self-adjoint ‘Hamiltonians’ in Quantum Mechanics are considered in various contexts, see

[4, 46] and references therein. We mention here two frameworks that are especially relevant for our
study.

As effective or phenomenological operators, non-self-adjoint operators are used to describe non-
conservative phenomena. A celebrated example is the optical model in nuclear physics describing
both the elastic and inelastic scattering of a neutron – or a proton – at a nucleus. It was introduced
by Feshbach, Porter and Weisskopf [31] as an empirical model allowing, in particular, for the de-
scription of the formation of a compound nucleus [7]. In this model, the unnormalized state of the
neutron at a positive time t is given by the solution ϕt = e−itHϕ to (1.1), with H = −∆ + V (x)
a dissipative Schrödinger operator in L2(Rd), Im(V (x)) ≤ 0. Part of the energy of the neutron
may be transferred to the nucleus, possibly leading to the absorption, or capture, of the neutron
by the nucleus. Mathematically, this is reflected in the dissipative nature of the equation since, in
particular, given a normalized initial state ϕ ∈ L2(Rd), we have that ‖e−itHϕ‖L2 ≤ 1 for all t ≥ 0.
The probability of absorption

pabs(ϕ) := 1− lim
t→∞

∥∥e−itHϕ∥∥2

L2

does not vanish in general.
The nuclear optical model leads to predictions that correspond to experimental scattering data to a

high precision. Theoretical justifications of the model have been given in [27–29] (see also [4, 30, 39]).
The idea of the justification consists in projecting out, in the Schrödinger equation associated to the
total system nucleus – neutron, the degrees of freedom corresponding to the nucleus. This can be
performed using Schur’s complement formula and leads to a Schrödinger equation for the neutron
which is non-linear in energy. The effective, non-self-adjoint Hamiltonian for the neutron is then
obtained by averaging over energy.
PT -symmetric operators constitute another widely used class of non-self-adjoint operators in

Quantum Mechanics. It was observed by Bender and Boettcher [5] that a large class of ‘PT -
invariant Hamiltonians’ have real spectra and can therefore be quantum mechanically relevant in
many situations. For Schrödinger operators, H = −∆+V (x) on L2(Rd), with V a complex potential,
PT -symmetry means that

[H,PT ] = 0,

where P is the parity operator, (Pϕ)(x) = ϕ(−x), and T the time-reversal operator, (T ϕ)(x) =

ϕ(x). In recent years, PT -symmetric operators have attracted lots of attention, from theoretical
studies showing that PT -invariant operators have real spectra under suitable conditions [17, 45, 47,
49, 55, 63], to experimental studies revealing PT -symmetry-like structures, in particular in optics
[51, 59, 61]. See [21] for more references and more recent developments, [49] for results on the
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pseudo-spectra of PT -symmetric operators, and [8, 9, 69] for the study of PT -symmetric operators
having continuous spectra.

In this paper, we consider an abstract class of non-self-adjoint operators in a complex Hilbert space
H, of the form H = H0 + V . We suppose that H0 is a self-adjoint operator with purely absolutely
continuous spectrum and that V is a relatively compact perturbation of H0. In particular, the
essential spectra of H and H0 coincide. We suppose furthermore that V admits a factorization as
V = CWC, with W bounded and C a strictly positive operator such that

sup
z∈C\R

∥∥C(H0 − z)−1C
∥∥
L(H)

<∞.

Such factorizations go back to the seminal work of Kato [42], see also [50].
We are interested in a spectral decomposition of the non-self-adjoint operator H, in relation with

the long-time behavior of the solutions to (1.1). Note that H being a bounded perturbation of H0,
the operator −iH generates a strongly continuous group {e−itH}t∈R and hence, for any ϕ ∈ H, (1.1)
admits a global solution R 3 t 7→ e−itHϕ ∈ H.

Roughly speaking, our main contributions can be summarized as follows. First, defining the
spaces of asymptotically disappearing states as

H±ads(H) :=
{
ϕ ∈ H, lim

t→±∞

∥∥e−itHϕ∥∥H = 0
}
,

we will show that H±ads(H) coincide with the vector space spanned by all eigenvectors, or general-
ized eigenvectors, corresponding to eigenvalues λ of H such that ∓Im(λ) ≥ 0. Next, defining the
absolutely continuous spectral subspace Hac(H) of H as the closure of{

ϕ ∈ H, ∃ cϕ > 0,∀ψ ∈ H,
∫
R

∣∣〈e−itHϕ,ψ〉H∣∣2 dt ≤ cϕ ‖ψ‖2H
}
,

we will prove that Hac(H) = Hp(H∗)⊥, where H∗ stands for the adjoint of H and Hp(H∗) is
the point spectral subspace of H∗, i.e. the vector space spanned by all eigenstates or generalized
eigenstates of H∗. These characterizations of H±ads(H) and Hac(H) in turn imply a J-orthogonal
decomposition of the Hilbert space (for some conjugation operator J) given by

H = Hac(H)⊕H+
ads(H)⊕H−ads(H)⊕Hb(H), (1.2)

where Hb(H) is the space of ‘bound states’, i.e. the closure of the vector space spanned by all
generalized eigenvectors of H corresponding to real eigenvalues. Hence we obtain a decomposition
of the Hilbert space into ‘scattering states’ (corresponding to elements of Hac(H)), asymptotically
disappearing states and bound states. This generalizes the well-known spectral decomposition for
self-adjoint operators without singular continuous spectrum (in the case of self-adjoint operators H,
of course, we have H±ads(H) = {0}).

To prove these results, we will require that H only have finitely many eigenvalues (counting
algebraic multiplicities) and finitely many spectral singularities. As in previous works concerning
dissipative operators in Hilbert spaces [24–26], the notion of spectral singularities plays a central
role in this paper. In our context, we will define a spectral singularity as a point λ of the essential
spectrum of H such that one of the two limits

lim
ε→0+

C(H − λ± iε)−1CW

does not exist in the norm topology of L(H). We will prove that λ is a spectral singularity of H if
and only if it is an eigenvalue of an extension H ′ of H to a larger Hilbert space H′C , corresponding
to an eigenstate (a ‘resonant ’ state) belonging to a suitable subspace of H′C (the space H′C will be
defined as the anti-dual of Ran(C), equipped with a suitable norm).
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Our results concerning the spaces of asymptotically disappearing states H±ads(H) generalize previ-
ous results for dissipative operators recently obtained in [25]. Our proof is more direct, in particular
it does not rely on the scattering theory for the pair (H,H0), which was a crucial element of the
proof in [25]. Our results showing that Hac(H) = Hp(H∗)⊥ seem to be new. It is worth mentioning
that, contrary to previous results on absolutely continuous spectral subspaces for non-self-adjoint
operators (see [13] for dissipative operators and [44, 56] and references therein for a more general
context), we do not use the theory of dilations of contractive semigroups.

The abstract theory developed in this paper applies to Schrödinger operators H = −∆ + V (x)
on L2(Rd), under suitable decay assumptions on the complex potential V . In this case, spectral
singularities correspond to real resonances. Some of our results on spectral singularities may thus
be seen as abstract versions of corresponding well-known properties in the theory of resonances for
Schrödinger operators [20]. On the other hand, the characterizations of the subspaces H±ads(H) and
Hac(H), as well as the spectral decomposition formula (1.2), seem to give new results also in the
context of Schrödinger operators.

Before stating our results in more precise terms in Section 3, we begin with describing in details
the abstract setting studied in this paper in Section 2.

Notation. In what follows, given two Hilbert spaces H1, H2, the notation L(H1,H2) stands for
the set of bounded operators from H1 to H2. If H1 = H2, we set L(H1) := L(H1,H1).

If E is a Banach space and E′ its anti-dual, we denote by

〈u,Φ〉E;E′ := Φ(u), Φ ∈ E′, u ∈ E,

the usual duality bracket.
The domain of an operator A on a Hilbert space H is denoted by D(A). The spectrum and

resolvent set of A are denoted by σ(A) and ρ(A), respectively. For z ∈ ρ(A), we let

RA(z) := (A− z)−1

be the resolvent of A. In the case where A is the unperturbed operator H0, we will also use the
shorthand R0 := RH0 .

We let C± := {z ∈ C, ±Im(z) > 0} and C̄± := {z ∈ C, ±Im(z) ≥ 0}. The complex open disc
centered at λ and of radius r is denoted by

D̊(λ, r) := {z ∈ C, |z − λ| < r}.

2. Abstract setting

2.1. The model. Let (H, 〈. , .〉H) be a complex separable Hilbert space. On H, we consider the
operator

H := H0 + V, (2.1)
where H0 is self-adjoint and semi-bounded from below and V ∈ L(H) is a bounded operator. In
particular, H is a closed operator with domain D(H) = D(H0) and its adjoint is given by

H∗ = H0 + V ∗, D(H∗) = D(H0).

Without loss of generality, we suppose that H0 ≥ 0. Since H is a perturbation of the self-adjoint
operatorH0 by the bounded operator V , −iH is the generator of a strongly continuous one-parameter
group

{
e−itH

}
t∈R satisfying ∥∥e−itH∥∥L(H)

≤ e|t|‖V ‖L(H) , t ∈ R,

(see e.g [15] or [22]).
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Figure 1. Spectrum of H. The essential spectrum of H, represented by thick lines, coincides
with that of H0 and is contained in [0,∞). Eigenvalues of H are represented by crosses. The
discrete spectrum of H consists of isolated eigenvalues of finite algebraic multiplicities which may
accumulate at any point of the essential spectrum. The point spectrum of H may also contain
eigenvalues embedded in the essential spectrum.

We assume that there exists a metric operator C ∈ L(H) such that C is relatively compact with
respect to H0 and V is of the form

V = CWC, (2.2)
with W ∈ L(H). We recall that a metric operator is a strictly positive operator, i.e. C ≥ 0 and
Ker(C) = {0}, see e.g. [3].

2.2. Spectral subspaces, spectral projections. Recall that σ(H) stands for the spectrum of H
and ρ(H) = C \ σ(H) its resolvent set. As usual, the point spectrum of H is defined as the set of
all eigenvalues of H,

σp(H) :=
{
λ ∈ C, Ker(H − λ) 6= {0}

}
.

The discrete spectrum of H, σdisc(H), is the set of all isolated eigenvalues λ with finite algebraic
multiplicities mλ(H), where

mλ(H) := dim
( ∞⋃
k=1

Ker
(
(H − λ)k

))
.

Under our assumptions, since V is a relatively compact perturbation of H0, the essential spectrum
σess(H) := σ(H)\σdisc(H) coincides with the essential spectrum of H0 and the discrete spectrum
σdisc(H) is at most countable and can only accumulate at points of σess(H). See Figure 1. We define
in addition the set of all eigenvalues embedded in the essential spectrum of H:

σemb(H) := σp(H) ∩ σess(H).

2.2.1. Eigenspaces corresponding to isolated eigenvalues. For λ ∈ σdisc(H), we denote by

Πλ(H) :=
1

2πi

∫
γ

(z Id−H)−1 dz (2.3)

the usual Riesz projection, where γ is a circle oriented counterclockwise and centered at λ, of
sufficiently small radius (so that λ is the only point of the spectrum of H contained in the interior of
γ). The algebraic multiplicity of λ satisfies mλ(H) = dim Ran(Πλ(H)). Since the restriction of H to
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Ran(Πλ(H)) may have a nontrivial Jordan form, Ran(Πλ(H)) is in general spanned by generalized
eigenvectors of H associated to λ, i.e., by vectors u ∈ D(Hk) such that (H − λ)ku = 0 for some
1 ≤ k ≤ mλ(H). We set

Hdisc(H) := Span {u ∈ Ran(Πλ(H)), λ ∈ σdisc(H)}cl ,

where Acl stands for the closure of a subset A ⊂ H. We will sometimes assume that the discrete
spectrum of H is finite. The spectral projection Πdisc(H) onto Hdisc(H) is then defined by

Πdisc(H) :=
∑

λ∈σdisc(H)

Πλ(H). (2.4)

We will also consider the following three subspaces of Hdisc(H):

H+
disc(H) := Span {u ∈ Ran (Πλ(H)) , λ ∈ σdisc(H), Im(λ) < 0}cl , (2.5)

H0
disc(H) := Span {u ∈ Ran (Πλ(H)) , λ ∈ σdisc(H), Im(λ) = 0}cl , (2.6)

H−disc(H) := Span {u ∈ Ran (Πλ(H)) , λ ∈ σdisc(H), Im(λ) > 0}cl . (2.7)

Observe that H+
disc(H) is the closure of the vector space spanned by all generalized eigenvectors

corresponding to eigenvalues with negative imaginary part, and likewise for H−disc(H). The reason
for these conventions will be understood later (see Theorem 3.2). Clearly, if σdisc(H) is finite, we
have the following direct sum decomposition:

Hdisc(H) = H−disc(H)⊕H0
disc(H)⊕H+

disc(H).

The corresponding spectral projections Π]
disc(H), where ] stands for +, − or 0, are defined as in

(2.4).

2.2.2. Eigenspaces corresponding to embedded eigenvalues. Suppose now that λ is an eigenvalue of
H embedded in its essential spectrum. The Riesz projection corresponding to λ is then ill-defined,
but, under some further conditions, one can define the spectral projection Πλ(H) as follows.

In the following (see Hypothesis 4 below), we will suppose the existence of a conjugation operator
J ∈ L(H) satisfying

J2 = Id, JD(H0) ⊂ D(H0) and ∀u ∈ D(H0), JHu = H∗Ju. (2.8)

In particular, J establishes a one-to-one correspondence between Ker((H−λ)k) and Ker((H∗− λ̄)k)
for all k ∈ N and hence

mλ(H) = mλ̄(H∗).

To shorten notation, let mλ = mλ(H) = mλ̄(H∗). In order to study the absolutely continuous
spectral subspace of H (see (2.13)–(2.14)), we will suppose that for each embedded eigenvalue
λ ∈ σess(H), mλ is finite and the symmetric bilinear form

Ker((H − λ)mλ) 3 (u, v) 7→ 〈Ju, v〉H is non-degenerate. (2.9)

This implies that there exists a basis (ϕk)1≤k≤mλ
of Ker((H − λ)mλ) such that

〈Jϕi, ϕj〉H = δij , 1 ≤ i, j ≤ mλ.

We can then define the spectral projection Πλ(H) onto the generalized eigenspace corresponding to
λ as

Πλ(H)u =

mλ∑
k=1

〈Jϕk , u〉H ϕk, u ∈ H. (2.10)

It is not difficult to observe that Πλ(H) is a projection commuting with H, such that Πλ(H) ∈ L(H)
and Πλ(H)∗ = Πλ(H∗) (see Proposition 2.1 below for a more precise statement). Note however that
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if (2.9) does not hold, it is not clear how to define such a projection. In fact, in the simplest case
where mλ = 1, one easily verifies that the condition 〈Jϕ, ϕ〉 6= 0 for any ϕ ∈ Ker(H − λ) \ {0} is
necessary to have the existence of a projection onto Ker(H − λ) commuting with H.

The closure of the vector space spanned by all generalized eigenstates corresponding to embedded
eigenvalues of H will be denoted by

Hemb(H) := Span {u ∈ Ran(Πλ(H)), λ ∈ σemb(H)}cl .

If σemb(H) is composed of finitely many eigenvalues with finite algebraic multiplicities and such that
(2.9) holds, we will also use the notation

Πemb(H) :=
∑

λ∈σemb(H)

Πλ(H).

2.2.3. Point spectral subspace. With the definitions of the spectral projections Πλ(H) given in Sec-
tions 2.2.1 and 2.2.2, we have the following proposition, which covers both cases of isolated and
embedded eigenvalues.

Proposition 2.1. Suppose that there exists a conjugation operator J such that (2.8) holds. Let λ
be an eigenvalue of H with finite algebraic multiplicity mλ. If λ ∈ σess(H), suppose in addition that
(2.9) holds. Then Πλ(H) ∈ L(H), Πλ(H) is a projection which preserves D(H) and commutes with
H. Its range and adjoint are given respectively by

Ran(Πλ(H)) = Ker((H − λ)mλ), Πλ(H)∗ = Πλ(H∗).

We have
(HΠλ(H))∗ = H∗Πλ(H∗),

and if λ, λ′ are two distinct eigenvalues of H, then

Πλ(H)Πλ′(H) = 0.

In the case of isolated eigenvalues, Proposition 2.1 follows from the definition (2.3) of the Riesz
projection Πλ(H) (see e.g. [58, Theorem XII.5]). In the general case, it suffices to observe that
the restriction of H to Hp(H) has a discrete spectrum (since Hp(H) is finite dimensional) and that
the Riesz projections associated to its eigenvalues are given by the restrictions of (2.3) or (2.10) to
Hp(H).

We will assume below that H only has a finite number of eigenvalues with finite algebraic multi-
plicities. Under this simplifying assumption, we set

Πp(H) :=
∑

λ∈σp(H)

Πλ(H),

and observe that
Πp(H)∗ =

∑
λ∈σp(H)

Πλ(H∗) =: Πp(H∗).

The point spectral subspace of H is then defined by

Hp(H) := Ran(Πp(H)),

and likewise for H∗. It satisfies

Hp(H) = Hdisc(H)⊕Hemb(H).
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We also observe that under our assumptions, the point spectral subspace corresponding to eigenval-
ues with positive/negative imaginary parts identifies to the corresponding discrete spectral subspace:

H+
p (H) := Span {u ∈ Ran (Πλ(H)) , λ ∈ σp(H), Im(λ) < 0}cl = H+

disc(H), (2.11)

H−p (H) := Span {u ∈ Ran (Πλ(H)) , λ ∈ σp(H), Im(λ) > 0}cl = H−disc(H). (2.12)

2.2.4. Subspaces of asymptotically disappearing states. We define the subspaces of asymptotically
disappearing states as

H±ads(H) :=

{
u ∈ H, lim

t→±∞

∥∥e−itHu∥∥H = 0

}cl

.

Note that H+
ads(H) and H−ads(H) are closed. Using that for a generalized eigenvector ϕ ∈ H±p (H),

the norm ‖e−itHϕ‖H decays exponentially as t→ ±∞, it is not difficult to verify that

H±p (H) ⊂ H±ads(H),

(see Proposition 5.6). In Theorem 3.2 below, we will give conditions under which this inclusion
becomes an equality.

2.2.5. Absolutely continuous spectral subspace. Let

M(H) :=

{
u ∈ H, ∃cu > 0,∀v ∈ H,

∫
R

∣∣〈e−itHu, v〉H∣∣2 dt ≤ cu ‖v‖2H
}
. (2.13)

We define the absolutely continuous spectral subspace of H, Hac(H), as the closure ofM(H) in H,

Hac(H) :=M(H)cl. (2.14)

Note that ifH is self-adjoint, thenM(H) is closed and coincides with the usual absolutely continuous
spectral subspace of H.

Such a definition of an absolutely continuous spectral subspace for non-self-adjoint operators goes
back to [12], where dissipative operators, Im(V ) ≤ 0, are considered, and the integral in (2.13) is
taken over [0,∞) instead of R. For self-adjoint operators, our definition and that of [12] coincide; this
is however not the case for non-self-adjoint operators. See Section 3.4 for a discussion comparing our
results and those of [12, 13] for the absolutely continuous spectral subspace of dissipative operators.
Note also that other definitions of an absolutely continuous spectral subspace for non-dissipative
perturbations of a self-adjoint operator have been considered in the literature, using the theory of
dilations. See [44, 56] and references therein.

Our definition of Hac(H) is motivated by the following fact: it is not difficult to see that if v is a
generalized eigenvector of H∗, then t 7→

〈
e−itHu, v

〉
H cannot belong to L2(R) unless 〈u, v〉 = 0 (see

Section 5.5). In other words
Hac(H) ⊂ Hp(H∗)⊥.

Theorem 3.3 will show that, under suitable assumptions, Hac(H) = Hp(H∗)⊥. This generalizes
the equality Hac(H) = Hp(H)⊥ which holds for self-adjoint operators without singular continuous
spectrum.

2.3. Extension of the Hilbert space. In this section, we construct an extension of the Hilbert
space H containing the ‘outgoing and incoming resonant states’ that will be introduced below (see
Definition 2.3). To this end we consider a Gelfand triple defined in terms of the metric operator C
appearing in the definition (2.1)–(2.2) of H.
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2.3.1. Gelfand triple. Recall that C is supposed to be relatively compact with respect to H0. Let

HC := Ran(C).

Since C is self-adjoint and injective, its inverse C−1 is a self-adjoint unbounded operator with dense
domaine D(C−1) := HC . We equip HC with the scalar product

〈u, v〉HC :=
〈
C−1u,C−1v

〉
H , u, v ∈ HC .

It is not difficult to verify that the identity operator from HC to H is a continuous embedding,
HC ↪→ H.

Let H′C be the anti-dual of HC (the set of anti-linear continuous maps from (HC , ‖ · ‖H) to C).
Setting

〈u, v〉C := 〈Cu,Cv〉H , u, v ∈ H,
one verifies that H′C identifies with the completion of H for the norm ‖.‖C associated to 〈·, ·〉C . Thus
we obtain the Gelfand triple

HC ↪→ H ↪→ H′C .
Now, given A ∈ L(HC) a bounded operator in HC , the anti-dual of A, denoted by A′ ∈ L(H′C),

is defined by
〈u,A′Ψ〉HC ,H′C := 〈A∗u,Ψ〉HC ,H′C , Ψ ∈ H′C , u ∈ HC . (2.15)

Since the restriction of C to HC belongs to L(HC), we can consider its anti-dual defined by (2.15);
we still use the symbol C ′ to denote the anti-dual of C|HC . It is not difficult to show that, for all
Ψ ∈ H′C , C ′Ψ extends to an anti-linear continuous form on H which identifies to an element of H via
the (anti-linear version of) the Riesz representation theorem. The map C ′ : H′C → H then extends
to a bounded operator C ′ ∈ L(H′C ,H) satisfying∥∥C ′∥∥L(H′C ,H)

≤ 1.

Moreover, C ′ is an extension of C and for all Ψ ∈ H′C , there exists a sequence (vn)n∈N ⊂ H such
that ∥∥C ′Ψ− Cvn∥∥H → 0, n→∞.
Note that the anti-dual of C−1 ∈ L(HC ,H), denoted by (C−1)′ ∈ L(H,H′C), satisfies C ′−1 = (C−1)′.
Note also that H′C is equipped with the scalar product

〈Ψ ,Φ〉HC′ :=
〈
C ′Ψ , C ′Φ

〉
H , Ψ,Φ ∈ H′C ,

which is an extension of 〈· , ·〉C to H′C .

2.3.2. Extension of H. Our next concern is to define the anti-dual of the operator

H = H0 + V = H0 + CWC.

First, we observe that since V = CWC belongs to L(H′C ,HC), its anti-dual V ′ ∈ L(H′C ,HC) is
well-defined and given by

V ′ = CWC ′.

Now, in order for the anti-dual of the unbounded operator H0 to be well-defined, we will assume
(see Hypothesis 5 below) that

D(H0|HC ) := {u ∈ D(H0) ∩HC , H0u ∈ HC}
is dense in HC for the topology of HC . The anti-dual H ′0 of H0 is then defined by

D(H ′0) :=
{

Ψ ∈ H′C , ∃α > 0, ∀u ∈ D(H0|HC ), |〈H0u,Ψ〉HC ,H′C | ≤ α ‖u‖HC
}
,
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and
〈u,H ′0Ψ〉HC ,H′C := 〈H0u,Ψ〉HC ,H′C , Ψ ∈ D(H ′0), u ∈ D(H0|HC ).

In the same way, we can define

D(H|HC ) := {u ∈ D(H0) ∩HC , Hu ∈ HC} ,
〈u,H ′Ψ〉HC ,H′C := 〈H∗u,Ψ〉HC ,H′C , Ψ ∈ D(H ′), u ∈ D(H|HC ).

Then it is not difficult to see that D(H0|HC ) = D(H|HC ), D(H ′0) = D(H ′), and

H ′ = H ′0 + V ′ = H ′0 + CWC ′.

Clearly, H ′ is an extension of H since for all u ∈ D(H0), we have

∀v ∈ D(H0|HC ), |〈u,H0v〉H| ≤ ‖H0u‖H ‖C‖H ‖v‖HC ,

which implies that u ∈ D(H ′0) and that H ′u = Hu, using the anti-linear version of the Riesz
representation theorem.

2.3.3. The resolvent of H0. One of our main hypotheses (see Hypothesis 1) will imply that the limits

CR0(λ± i0+)C := lim
ε→0+

CR0(λ± iε)C (2.16)

exist for a.e. λ ∈ σess(H0), for the topology of L(H). In other words, the family of operators
(R0(λ± iε))ε>0 converges in L(HC ,H′C) as ε→ 0+ and its limit is denoted by

R0(λ± i0+) ∈ L(HC ,H′C).

2.4. Regular spectral points and spectral singularities. In this section we define the notions
of regular spectral points and spectral singularities that we consider in this paper.

Definition 2.2 (Regular spectral point and spectral singularity). Let λ ∈ σess(H).
(i) We say that λ is an outgoing/incoming regular spectral point of H if λ is not an accumulation

point of eigenvalues located in λ± i (0,∞) and if the limit

CRH(λ± i0+)CW := lim
ε→0+

CRH(λ± iε)CW (2.17)

exists in the norm topology of L(H). If λ is not an outgoing/incoming regular spectral point,
we say that λ is an outgoing/incoming spectral singularity of H.

(ii) We say that λ is a regular spectral point of H if it is both an incoming and an outgoing
regular spectral point of H. If λ is not a regular spectral point, we say that λ is a spectral
singularity of H.

Our definition of a spectral singularity is related to that of [62] and to the notion of spectral
projections for non-self-adjoint operators [18], which will also be an important tool in our paper.
See (3.17) for the definition of the spectral projection 1I(H) corresponding to a spectral interval I ⊂
σess(H) without spectral singularities. In [62], a spectral singularity corresponds to an exceptional
point λ0 outside of which the ‘spectral resolution’ I 7→ 1I(H) is countably additive and uniformly
bounded. In our context, this is a weaker requirement than that of Definition 2.2, see Section 5.1.

Definition 2.2 generalizes the definition of spectral singularities considered in the context of dis-
sipative operators in [24–26]. As we explain below (see Section 3.3), for Schrödinger operators,
H = −∆ + V (x) on L2(Rd) with V a complex, decaying potential, spectral singularities correspond
to real resonances. Clearly, in our abstract setting, Definition 2.2 depends on the choice of the de-
composition V = CWC. For Schrödinger operators, however, C is usually chosen as a multiplication
operator C = 〈x〉−σ/2 for σ larger than some critical exponent σ0 > 0. It is then natural to consider
the intersection over all σ > σ0 to define a resonance. See Section 3.3 for more details.
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Various characterizations of the notions introduced in Definition 2.2 will be given in Section 4.
Note in particular that, under the assumption that the limits (2.16) exist, the operator W could
have been put to the left of CRH(λ± i0+)C in (2.17), i.e. the limits in (2.17) exist if and only if the
limits WCRH(λ± iε)C, ε→ 0+ exist. Moreover, under the same assumption, we will show that λ
is an outgoing/incoming regular spectral point of H if and only if Id +R0(λ± i0+)V ′ is invertible in
L(H′C). (Here it should be recalled that V ′ ∈ L(H′C ,HC) and, assuming that the limits (2.16) exist,
that R0(λ ± i0+) ∈ L(HC ,H′C)). Hence spectral singularities are naturally associated to resonant
states defined as follows.

Definition 2.3 (Incoming/outgoing resonant states). Let λ ∈ σess(H) be a spectral singularity of
H. The space H′+C (λ) ⊂ H′C of outgoing resonant states corresponding to λ is defined by

H′+C (λ) := Ker
(
Id +R0(λ+ i0+)V ′

)
.

The space H′−C (λ) ⊂ H′C of incoming resonant states is defined by

H′−C (λ) := Ker
(
Id +R0(λ− i0+)V ′

)
.

As kernels of bounded operators, the vector spaces H′±C (λ) are closed. We will prove that eigen-
vectors associated to embedded eigenvalues of H belong to H′±C (λ).

Note that in the case of complex Schrödinger operators, H = −∆ + V (x) on L2(Rd), λ is usually
called an outgoing/incoming resonance if the quotient vector space

Ker
(

(Id +R0(λ± i0+)V ′)|H′C
)
/Ker

(
(Id +R0(λ± i0+)V ′)|H

)
6= {0},

where (Id +R0(λ± i0+)V ′)|H′C stands for the restriction of (Id +R0(λ± i0+)V ′) to H′C , and likewise
for (Id +R0(λ ± i0+)V ′)|H. An outgoing/incoming resonant state then corresponds to an element
of Ker((Id +R0(λ± i0+)V ′)|H′C ) which does not belong to H. See Section 3.3 for more details.

3. Assumptions and main results

3.1. Hypotheses. In this section we detail our main abstract hypothesis. In Section 3.3 we will
show that they are satisfied in the case of complex Schrödinger operators, under suitable assumptions
on the potential.

In our first hypothesis, we require that H0 satisfies a limiting absorption principe (with weight
C) at any point of the essential spectrum.

Hypothesis 1 (Limiting absorption principle for H0). We have

sup
z∈C±

∥∥CR0(z)C
∥∥
L(H)

<∞. (3.1)

Note that (3.1) implies (see e.g. [11, Proposition 4.1]) that the spectrum of H0 is purely absolutely
continuous, i.e. that σpp(H0) = ∅, σac(H0) = σ(H0), σsc(H0) = ∅, where σpp(H0), σac(H0), σsc(H0)
stand for the usual pure point, absolutely continuous and singular continuous spectra of the self-
adjoint operator H0.

By Fatou’s Theorem, (3.1) yields that the limits CR0(λ±i0+)C exist for almost every λ ∈ σess(H),
in the norm topology of L(H), and that the map R 3 λ 7→ CR0(λ ± i0+)C ∈ L(H) is bounded
(observe that CR0(λ± i0+)C = CR0(λ)C if λ ∈ R \ σess(H)).

Note also that Hypothesis 1 implies (see [42] or [58, Theorem XIII.25 and its corollary]) that C
is relatively smooth with respect to H0 in the sense of Kato, i.e. that there exists a constant c0 such
that

∀u ∈ H,
∫
R

∥∥Ce−itH0u
∥∥2

H dt ≤ c2
0 ‖u‖

2
H . (3.2)
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Recall that (3.2) is equivalent to

∀u ∈ H,
∫
R

(∥∥CR0(λ− i0+)u
∥∥2

H +
∥∥CR0(λ+ i0+)u

∥∥2

H

)
dλ ≤ 2πc2

0 ‖u‖
2
H , (3.3)

where λ 7→ CR0(λ± i0+)u denotes the limit of λ 7→ CR0(λ± iε)u in L2(R;H) as ε→ 0+.
Next we will assume that the point spectral subspace of H is finite.

Hypothesis 2 (Eigenvalues of H). H has only a finite number of eigenvalues with finite algebraic
multiplicity.

Hypothesis 2 prevents the essential spectrum of H from having an accumulation point of eigenval-
ues. It does not exclude, however, the presence of eigenvalues embedded in the essential spectrum
of H.

Our next hypothesis concerns the spectral singularities of H. We will assume that H has finitely
many spectral singularities with a ‘finite order’, in the sense that the map z 7→ CRH(z)CW blows
up at most polynomially as z approaches any spectral singularity λ ∈ σess(H). We will also allow
for singularities ‘at infinity’, in the sense that z 7→ CRH(z)C may blow up polynomially as z tends
to ∞ (z close to the real axis).

Hypothesis 3 (Spectral singularities for H). H only has a finite number of spectral singularities
{λ1, . . . λn} ⊂ σess(H) and there exist ε0 > 0 and integers ν1, . . . , νn, ν∞ ≥ 0 such that

sup
Re(z)∈σess(H),±Im(z)∈(0,ε0)

1

|z − z0|ν∞
( n∏
j=1

|z − λj |νj
|z − z0|νj

)∥∥CRH(z)CW
∥∥
L(H)

<∞, (3.4)

where z0 is an arbitrary complex number such that z0 ∈ ρ(H), z0 ∈ C \ R.

The factors |z−λj |νj ‘regularize’ the singularities of z 7→ CRH(z)CW as z approaches λj . Divided
them by |z− z0|νj produces bounded terms. The factor |z− z0|−ν∞ regularizes a possible singularity
at ∞.

Observe that since λ1, . . . , λn are the only spectral singularities of H, for all λ ∈ σess(H) \
{λ1, . . . , λn}, the limits CRH(λ± i0+)CW exist in the norm topology of L(H). The condition (3.4)
then implies that the maps

σess(H) \ {λ1, . . . , λn} 3 λ 7→
1

|λ− z0|ν∞
( n∏
j=1

|λ− λj |νj
|λ− z0|νj

)
CRH(λ± i0+)C ∈ L(H) (3.5)

are bounded. Since, as we will show below (see Proposition 4.6), embedded eigenvalues are special
spectral singularities, Hypothesis 3 is also a condition on embedded eigenvalues.

As mentioned above, to study the absolutely continuous spectral subspace of H, we require the
existence of a conjugation operator J satisfying, in particular, JH = H∗J .

Hypothesis 4 (Conjugation operator). There exists an anti-linear continuous map J : H → H such
that

(i) J2 = Id,
(ii) ∀u, v ∈ H, 〈Ju, Jv〉H = 〈v , u〉H,
(iii) JD(H0) ⊂ D(H0) and ∀u ∈ D(H0), JH0u = H0Ju.
(iv) JC = CJ and JW = W ∗J .

Moreover, for all embedded eigenvalues λ ∈ σess(H), the symmetric bilinear form

Ker
(
(H − λ)mλ

)
3 (u, v) 7→ 〈Ju, v〉 is non-degenerate. (3.6)
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Here it should be recalled (see Section 2.2) that the main purpose of (3.6) is to allow us to define
suitable spectral projections for embedded eigenvalues.

Our last technical hypothesis is required in order for the anti-dual operators H ′0, H ′ to be well-
defined, see Section 2.3 for more details.

Hypothesis 5. The domain of the restriction of H0 to HC , defined as

D(H0|HC ) := {u ∈ D(H0) ∩HC , H0u ∈ HC} ,
is dense in HC for the topology of HC .

3.2. Main results. Now we can state our main results. First, we characterize the outgoing (respec-
tively incoming) spectral singularities of H as eigenvalues of H ′ associated to eigenvectors belonging
to the space of outgoing resonant states H′+C (λ) (respectively H′−C (λ)).

Theorem 3.1. Suppose that Hypothesis 5 holds. Let λ ∈ σess(H) and suppose that the limits

CR0(λ± i0+)C := lim
ε→0+

CR0(λ± iε)C

exist in the norm topology of L(H). The following conditions are equivalent:
(i) λ is an outgoing/incoming spectral singularity of H,
(ii) λ is an eigenvalue of H ′ associated to an eigenvector Ψ ∈ H′±C (λ).

Theorem 3.1 shows that λ is a spectral singularity of H if and only if the equation H ′Ψ = λΨ has
a solution Ψ in H′±C (λ) (recall that H ′ is an extension of H, acting in the Hilbert space H′C which
contains the original Hilbert space H). For non-self-adjoint Schrödinger operators, this corresponds
to λ being a real resonance of H = −∆ + V (x) if and only if the equation (−∆ + V (x))Ψ = λΨ has
a distributional solution such that Ψ belongs to suitable weighted L2-spaces. See Section 3.3 for a
more detailed discussion.

Theorem 3.1 also has various consequences that we will detail in Section 4. Here we mention
the following two consequences. We will show that the eigenvalues of H embedded in the essential
spectrum are special spectral singularities, see Proposition 4.6. Moreover, in the particular case
where H is dissipative, we will prove that H cannot have outgoing spectral singularities unless its
self-adjoint part, Re(H), already has some, see Section 4.6.

Our next result shows that the subspace H±ads(H) of asymptotically disappearing states at ±∞
(recall that H±ads(H) has been defined in Section 2.2) coincides with the vector space spanned by all
generalized eigenstates of H corresponding to eigenvalues λ of H such that ±Im(λ) < 0. In other
words, the only solutions to (1.1) that vanish at as t → ±∞ are linear combination of generalized
eigenstates corresponding to non-real eigenvalues.

Theorem 3.2. Suppose that Hypotheses 1-3 hold. Then

H±ads(H) = H±p (H). (3.7)

An analogous result was proven in [25] in the particular case of dissipative operators, answering
a question left as an open problem in [13]. The proof in [25] relies in an essential way on the
existence and properties of wave operators. Besides the fact that we are considering non-dissipative
operators, our proof here is more direct – we do not use scattering theory – and allows for more
general assumptions (compare Hypothesis 2.5 in [25] and Hypothesis 3 of the present paper, where
a singularity at infinity of the weighted resolvent is allowed). The core of our argument is a suitable
spectral decomposition formula, see Proposition 3.10 in the next subsection.

Next we will prove that the absolutely continuous spectral subspace of H defined in Section 2.2
coincides with the orthogonal complement of the point spectral subspace.
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Theorem 3.3. Suppose that Hypotheses 1-4 hold. Then

Hac(H) = Ran(Id−Πp(H)) = Hp(H∗)⊥.

As mentioned before, in the particular case where H is dissipative, Theorem 3.3 may be compared
with a result of [13]. The absolutely continuous spectral subspace for dissipative operators is defined
in [13] in the same way as in (2.13), but with the integral taken over [0,∞) instead of R. Using the
theory of dilations of dissipative operators, it is then proven in [13] that within such a definition,
the absolutely continuous spectral subspace coincides with the orthogonal complement of ‘bound
states’ (generalized eigenstates corresponding to real eigenvalues). In our context where H is not
necessarily dissipative, the argument of [13] fails and there is no reason to choose positive times over
negative times to define Hac(H).

Our definition of Hac(H) is also justified by the following two facts. First, Theorem 3.3 generalizes
the well-known identity Hac(H) = Hp(H)⊥ which holds for self-adjoint operators without singular
continuous spectrum. Another justification comes from dissipative scattering theory. Indeed, com-
bined with the results of [12, 13, 25, 52], Theorem 3.3 implies that, in the particular case where
H is dissipative, we have Ran(W−(H,H0))cl = Hac(H), where W−(H,H0) := s-lim e−itHeitH0 ,
t → ∞, is the usual wave operator. This again generalizes the well-known relation which holds in
the self-adjoint case.

We mention that ifH has no embedded eigenvalues, Hypothesis 4 can be dropped in the statement
of Theorem 3.3. This is also the case if H is supposed to be dissipative (see Proposition 5.10). In
the general case, it is however clear that some assumption should be added to treat the pathological
case where the map in (3.6) is degenerate. Indeed, considering the simplest case where mλ = 1, if
〈Jϕ, ϕ〉 = 0 for any ϕ ∈ Ker(H − λ), then one can check that Ker(H − λ) ⊂ Hp(H∗)⊥. Therefore,
since Hac(H) should not contain eigenstates of H, we do not expect that the equality Hac(H) =
Hp(H∗)⊥ holds. Another possibility to handle such pathological cases might be to suitably modify
the definition of Hac(H). We do not consider this possibility here.

To prove Theorem 3.3, we cannot rely on the theory of unitary dilations as in the dissipative case
studied in [13]. In the same way as for Theorem 3.2, our proof of Theorem 3.3 relies on the spectral
decomposition formula stated in Proposition 3.10.

The next remark gives the J-orthogonal spectral decomposition of the Hilbert space mentioned
in the introduction.

Remark 3.4. Combining Theorems 3.2 and 3.3, using in addition that J : Hp(H) → Hp(H∗) is
bijective and that the map Hp(H) 3 (u, v) 7→ 〈Ju, v〉 is non-degenerate, we obtain the following
J-orthogonal direct sum decompositions of the Hilbert space:

H = Hac(H)⊕Hp(H)

= Hac(H)⊕Hdisc(H)⊕Hemb(H)

= Hac(H)⊕H+
ads(H)⊕H−ads(H)⊕H0

disc(H)⊕Hemb(H),

the direct sum H0
disc(H) ⊕ Hemb(H) =: Hb(H) being the space of ‘bound states’, i.e. the closure

of the vector space spanned by all generalized eigenvectors of H corresponding to real eigenvalues
(either isolated or embedded).

3.3. Application to Schrödinger operators. We suppose in this section that

H = L2(Rd), H0 = −∆ and V is a complex-valued potential.

For simplicity, we suppose that d = 3. (The following arguments easily generalize to any dimension
d ≥ 3. In dimension d = 1 or d = 2, the situation is more subtle, due to the singularity of the
weighted resolvent of −∆ at 0).
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3.3.1. Spectral singularities for short-range complex potentials. We begin with showing that Theorem
3.1 can be applied to H = −∆ + V (x), under a short-range condition on V . It is well-known that
the limits

〈x〉−sR0(λ± i0+)〈x〉−s, λ > 0, (3.8)

exist in the norm topology of L(H), for any s > 1
2 , where 〈x〉 := (1 + x2)

1
2 . Hence, assuming that

V satisfies the short-range condition

x 7→ 〈x〉σV (x) ∈ L∞(R3), (3.9)

with σ > 1, we can choose C to be the multiplication operator by 〈x〉−σ/2. The Hilbert space HC
then identifies with the weighted L2-space

HC = L2
σ/2 :=

{
f : R3 → C, x 7→ 〈x〉

σ
2 f(x) ∈ L2(R3)

}
,

equipped with the usual norm, its dual being given by

H′C = L2
−σ/2 =

{
f : R3 → C, x 7→ 〈x〉−

σ
2 f(x) ∈ L2(R3)

}
.

Since the set of smooth functions with compact supports is contained in D(H0) ∩ HC , one eas-
ily deduces that Hypothesis 5 is satisfied. Applying Theorem 3.1, we thus obtain the following
proposition.

Proposition 3.5. Suppose that V is a complex-valued potential satisfying (3.9) with σ > 1. Let
C(x) = 〈x〉−σ/2. Then for all λ > 0, the following conditions are equivalent

(i) λ is an outgoing/incoming spectral singularity of H in the sense of Definition 2.2,
(ii) There exists Ψ ∈ H′±C (λ) ⊂ L2

−σ/2, Ψ 6= 0, such that

(−∆ + V (x)− λ)Ψ = 0. (3.10)

If Ψ in (ii) belongs to L2(R3), then λ is an eigenvalue of H. Otherwise, λ is usually called a real
resonance associated to a resonant state Ψ ∈ H′±C (λ) \ L2(R3). Such a resonant state satisfies the
outgoing/incoming Sommerfeld radiation condition

u(x) = |x|
1
2 e±iλ

1
2 |x|

(
a(

x

|x|
) + o(1)

)
, |x| → ∞,

with a ∈ L2(S2), a 6= 0. By Proposition 3.5, one can choose any σ > 1. A resonant state is thus a
distributional solution to (3.10) belonging to ∩σ>1L

2
−σ/2.

Note that if V is real-valued, Agmon’s fundamental work [2] shows that H = −∆ + V has no
spectral singularities in (0,∞). Likewise, if H is dissipative, a simple argument combined with [2]
proves that H cannot have outgoing spectral singularities in (0,∞) (see [66]). In general, however,
spectral singularities cannot be excluded (see again [66] for an example showing that, for any λ >
0, there exists a smooth, compactly supported potential V such that λ is an incoming spectral
singularity of H in the dissipative case).

At the threshold energy 0, the limiting absorption principle states that the limits

〈x〉−sR0(±i0+)〈x〉−s,
exist in the norm topology of L(H) for any s > 1. Note that, as we will argue in Section 4, the two
limits above in fact coincide with the limit

〈x〉−sR0(0)〈x〉−s := lim
z→0,z∈C\R+

〈x〉−sR0(z)〈x〉−s.

(Note also that the limit 〈x〉−sR0(0)〈x〉−s′ exists, more generally, provided that s, s′ > 1/2 and
s+ s′ > 2, see [41].) Assuming now that V satisfies the short-range condition (3.9) with σ > 2, we
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can choose C to be the multiplication operator by 〈x〉−σ/2 and proceed as before. Since, as we will
see in Section 4, 0 is an outgoing spectral singularity of H if and only if it is an incoming spectral
singularity of H, this gives the following proposition.

Proposition 3.6. Suppose that V is a complex-valued potential satisfying (3.9) with σ > 2. Let
C(x) = 〈x〉−σ/2. Then the following conditions are equivalent

(i) 0 is a spectral singularity of H in the sense of Definition 2.2,
(ii) There exists Ψ ∈ H′±C (λ) ⊂ L2

−σ/2 such that

(−∆ + V (x))Ψ = 0.

Anticipating results that we will prove in the abstract setting in the case where H is dissipative
(see Section 4.6), we also have the following proposition.

Proposition 3.7. Suppose that V is a complex-valued potential such that Im(V ) ≤ 0 and Im(V ) < 0

on a non-trivial open set. Suppose that (3.9) holds with σ > 1 and let C(x) = 〈x〉−σ/2. Then
H has no positive outgoing spectral singularities.

In particular, H has no positive embedded eigenvalues. Suppose that (3.9) holds with σ > 2. Then

0 is not a spectral singularity of H.

See Section 4.6 for a proof of Proposition 3.7. Note also that the results of Proposition 3.7 have
been established in [65, 66], using different arguments.

3.3.2. Asymptotically disappearing states for compactly supported complex potentials. We now show
that Theorems 3.2 and 3.3 can be applied to H = −∆ + V (x) under the condition that

V ∈ L∞c (R3) := {u ∈ L∞(R3), u is compactly supported}. (3.11)

Similarly as in (3.8), we have

sup
z∈C±

∥∥〈x〉−sR0(z)〈x〉−s
∥∥
L(H)

<∞,

for any s > 1/2. Hence, choosing C(x) = 〈x〉−s, Hypothesis 1 is satisfied.
Assuming (3.11), it is known that H has only finitely many eigenvalues with finite algebraic

multiplicities. See, e.g., [33] and references therein. In particular, Hypothesis 2 is satisfied.
To verify that Hypothesis 3 holds, we can rely on the theory of resonances, defined as poles of the

meromorphic extension of the weighted resolvent, see e.g. [20]. Assuming (3.11), the map

{z ∈ C, Im(z) > 0} 3 z 7→ (H − z2)−1 : L2(R3)→ L2(R3)

is meromorphic and extends to a meromorphic map

C 3 z 7→ R(z2) : L2
c(R3)→ L2

loc(R3), (3.12)

where L2
c(R3) := {u ∈ L2(R3), u is compactly supported} and L2

loc(R3) := {u : R3 → C, u ∈
L2(K) for all compact set K ⊂ R3}. Poles of the map in (3.12) are called resonances of H. One
then verifies that a real resonance ±λ0 of H, with λ0 ≥ 0, corresponds to an outgoing/incoming
spectral singularity λ2

0 in the sense of Definition 2.2. Moreover, H has only finitely many spectral
singularities {λ1, . . . , λn} and Hypothesis 3 is satisfied, with νj the multiplicity of the corresponding
resonances ±

√
λj , and ν∞ = 0. See e.g. [20] and references therein for an exposition of the theory

of resonances of Schrödinger operators, and [25, Section 6] for a more detailed comparison between
the notions of resonances and spectral singularities considered in this paper.

Applying Theorem 3.2, we obtain the following result.
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Proposition 3.8. Suppose that V is a complex-valued potential such that V ∈ L∞c (R3). Then

H±ads(H) = H±p (H).

To apply Theorem 3.3, we need to verify in addition that Hypothesis 4 holds. Clearly, we can
take the conjugation operator J as the complex conjugation. We then obtain

Proposition 3.9. Suppose that V is a complex-valued potential such that V ∈ L∞c (R3). Assume
that, for all embedded eigenvalues λ ∈ [0,∞), the symmetric bilinear form

Ker
(
(H − λ)mλ

)
3 (u, v) 7→

∫
R3

u(x)v(x)dx is non-degenerate. (3.13)

Then
Hac(H) = Hp(H∗)⊥. (3.14)

Obviously, if H has no embedded eigenvalues (in particular, if H is dissipative), Condition (3.13)
can be dropped. Otherwise, as explained before, (3.13) seems necessary for (3.14) to hold. We
mention that an assumption comparable to (3.14) has been used, for thresholds eigenvalues, in the
recent works [1, 67] to study the large-time behaviors of solutions to Schrödinger equations with a
complex potentials.

3.4. Organisation of the paper and ingredients of the proof. The proof of Theorem 3.1 (given
in Section 4.2) relies, in particular, on a ‘boundary value version’ of the Birmann-Schwinger principle
that we state and prove in Section 4.1, see Proposition 4.1. This proposition extends a related result
for dissipative operators proven in [26, Lemma 4.1]. Further results concerning spectral singularities
are proven in Section 4.

As mentioned in the previous section, the main ingredient in the proofs of Theorems 3.2 and 3.3
is a spectral decomposition formula suitably modified to take into account the spectral singularities
{λj}nj=1 of H. It can be stated as follows. Assuming Hypothesis 3, with ν1, . . . , νn, ν∞ defined by
this hypothesis, we set, for all z ∈ C \ {z0},

r(z) := (z − z0)−(ν1+···+νn+ν∞)
n∏
j=1

(z − λj)νj , (3.15)

where we recall that z0 ∈ ρ(H), z0 ∈ C \ R. We then write

r(H) = RH(z0)−(ν1+···+νn+ν∞)
n∏
j=1

(H − λj)νj ,

which defines a bounded operator in L(H). Note that if λj is an embedded eigenvalue of H, then for
any generalized eigenstate ϕj corresponding to λj , we have r(H)ϕj = 0 (provided that νj is large
enough). We will prove the following proposition.

Proposition 3.10. Suppose that Hypotheses 1, 2 and 3 hold. Then

r(H) = r(H)Πdisc(H) + w-lim
ε→0+

1

2πi

∫
σess(H)

r(λ)
(
RH(λ+ iε)−RH(λ− iε)

)
dλ. (3.16)

Proposition 3.10 generalizes the well-known resolution of the identity formula for self-adjoint op-
erators to a class of non self-adjoint operators with finitely many spectral singularities. In particular,
if H has no spectral singularities and ν∞ = 0 in Hypothesis 3, then we can take r = 1 and (3.16)
reduces to

Id = Πdisc(H) + w-lim
ε→0+

1

2πi

∫
σess(H)

(
RH(λ+ iε)−RH(λ− iε)

)
dλ,
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which corresponds to Stone’s formula in the particular case where H is self-adjoint.
Equation (3.16) is also related to the notion of spectral projections for non-self-adjoint operators

[18, 19, 62], defined by

1I(H) := w-lim
ε→0+

1

2iπ

∫
I

(
RH(λ+ iε)−RH(λ− iε)

)
dλ, (3.17)

where I ⊂ σess(H) is a closed interval without spectral singularities. We mention that such spectral
projections were used in a stationary approach to non-unitary scattering theory, for differential
operators in [53, 54], and in an abstract setting in [36, 37, 40].

We will recall in Section 5 that the spectral projections (3.17) are well-defined on intervals without
spectral singularities, and show that they induce a bounded Borel functional calculus. In intervals
containing spectral singularities, we will construct a ‘regularized’ functional calculus, which in turn
allows us to prove Proposition 3.10. Based on the latter, the proofs of Theorems 3.2 and 3.3 are
given in Sections 5.4 and 5.5, respectively.

Some extensions of results already appearing in the literature are collected in appendices.

4. Spectral singularities

In this section we prove various characterizations of our definition of spectral singularities (see
Definition 2.2). We will consider an arbitrary λ ∈ σess(H). Our main assumption will be that the
limits

CR0(λ± i0+)C := lim
ε→0+

CR0(λ± iε)C. (4.1)

exist in the norm topology of L(H).
We begin in Section 4.1 with a characterization of spectral singularities analogous to the Birmann-

Schwinger principle for eigenvalues. Next we prove Theorem 3.1 in Section 4.2. In Section 4.3, we
define the set of spectral singularities for the adjoint operator H∗ and show that it coincides with
the set of spectral singularities of H. Section 4.4 proves that eigenvalues embedded in the essential
spectrum of H can be seen as particular spectral singularities. In Section 4.5, assuming that (4.1) is
regular with respect to λ in a suitable sense, we show that the notion of spectral regularity introduced
in Definition 2.2 is a local property. We also consider the special case of spectral singularities located
at thresholds of the essential spectrum, and show that in this case outgoing and incoming spectral
singularities coincide. Finally, Section 4.6 is devoted to the particular case where H is a dissipative
operator.

4.1. Birmann-Schwinger principle for spectral singularities. Assuming that H0 satisfies a
limiting absorption principle at λ, as stated in (4.1), we have the following characterizations of the
definition of a regular spectral point. Item (ii) can be seen as a ‘boundary value’ version of the
Birmann-Schwinger principle (see e.g. [6, 35, 38] and references therein). The proof of the next
proposition is a quite straightforward extension to that of [26, Lemma 4.1], where the result is
proven for dissipative operators. It is therefore deferred to Appendix A.

Proposition 4.1. Let λ ∈ σess(H) and suppose that the limits (4.1) exist in the norm topology of
L(H). Then the following conditions are equivalent:

(i) λ is an outgoing/incoming regular spectral point of H,
(ii) Id +CR0(λ± i0+)CW is invertible in L(H),
(iii) Id +R0(λ± i0+)V ′ is invertible L(H′C).

Proof. See Appendix A. �
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It should be noted that, since C is relatively compact with respect to H0, the operator CR0(λ±
iε)CW is compact in L(H), for all ε > 0. Hence CR0(λ± i0+)CW is also compact in L(H). By the
Fredholm alternative, (ii) is then equivalent to Ker(Id +CR0(λ± i0+)CW ) = {0}. Likewise, (iii) is
equivalent to Ker(Id +R0(λ± i0+)V ′) = {0} since R0(λ± i0+)V ′ is compact in L(H′C).

4.2. Proof of Theorem 3.1. Now we turn to the proof of Theorem 3.1, which characterizes out-
going/incoming spectral singularities as eigenvalues of the extended operator H ′ corresponding to
eigenvectors belonging to the space H±C(λ) of outgoing/incoming resonant states.

Before proving Theorem 3.1, we need two preliminary lemmas. The first one is the following
well-known estimate of the operator norm ‖R0(λ± iε)C‖, assuming that the limits (4.1) exist.

Lemma 4.2. Let λ ∈ σess(H) and suppose that the limits (4.1) exist in the norm topology of L(H).
There exists c0 > 0 such that

∀ε > 0, ‖R0 (λ± iε)C‖L(H) ≤ c0ε
− 1

2 . (4.2)

Proof. See Appendix A. �

Next we show that, under our assumptions, R0(λ± i0+) are right inverses of H ′0 − λ.

Lemma 4.3. Suppose that Hypothesis 5 holds. Let λ ∈ σess(H) and suppose that the limits (4.1)
exist in the norm topology of L(H). Then for all v ∈ HC , R0(λ± i0+)v ∈ D(H ′0) and

(H ′0 − λ)R0(λ± i0+)v = v. (4.3)

Proof. Let v = Cϕ ∈ HC . Since R0(λ ± iε) converges to R0(λ ± i0+) in L(HC ,H′C), we have, for
all u ∈ D(H0|HC ),〈

(H0 − λ)u,R0(λ± i0+)v
〉
HC ;H′C

= lim
ε→0+

〈(H0 − λ)u,R0(λ± iε)Cϕ〉H
= 〈u,Cϕ〉H ± lim

ε→0+
iε 〈u,R0(λ± iε)Cϕ〉H .

It follows from (4.2) that
‖R0(λ± iε)C‖H = O

(
ε−

1
2
)
, ε→ 0+.

Thus we obtain that, for all u ∈ D(H|HC ),〈
(H0 − λ)u,R0(λ± i0+)v

〉
HC ;H′C

= 〈u, v〉H .

Since | 〈u, v〉H | ≤ ‖u‖HC‖v‖H′C , this shows that R0(λ± i0+)v ∈ D(H ′0) and that (4.3) holds. �

Now we are ready to prove Theorem 3.1

Proof of Theorem 3.1. (i)⇒(ii) Suppose for instance that λ is an outgoing spectral singularity. By
Proposition 4.1, Id +R0(λ+ i0+)V ′ is not invertible in L(H′C). Since R0(λ+ i0+)V ′ is compact in
L(H′C), it follows from the Fredholm alternative that there exists Ψ ∈ H′C , Ψ 6= 0, such that

−R0(λ+ i0+)V ′Ψ = Ψ. (4.4)

By Lemma 4.3, this implies that Ψ ∈ D(H ′0) = D(H ′) and that

− V ′Ψ = (H ′0 − λ)Ψ. (4.5)

Since H ′ = H ′0 + V ′, this proves (ii).
(ii)⇒(i) Suppose now that λ is an eigenvalue of H ′ associated to an eigenvector Ψ ∈ H′+C (λ),

Ψ 6= 0. Then
(H ′ − λ)Ψ = 0 with Ψ = −R0(λ+ i0+)V ′Ψ.
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In particular,
(Id +R0(λ+ i0+)V ′)Ψ = 0,

and hence Id +R0(λ+ i0+)V ′ is not invertible in L(H′C). By Proposition 4.1, this proves (i). �

4.3. Spectral singularities of the adjoint operator. Recall that the regular spectral points and
spectral singularities of H have been defined in Definition 2.2. The corresponding definition for the
adjoint operator H∗ is the following.

Definition 4.4 (Regular spectral point and spectral singularity for H∗). Let λ ∈ σess(H).
(i) We say that λ is an outgoing/incoming regular spectral point of H∗ if λ is not an accumulation

point of eigenvalues located in λ∓ i (0,∞) and if the limit

CRH∗(λ∓ i0+)CW ∗ := lim
ε→0+

CRH∗(λ∓ iε)CW ∗ (4.6)

exists in the norm topology of L(H). If λ is not an outgoing/incoming regular spectral point,
we say that λ is an outgoing/incoming spectral singularity of H∗.

(ii) We say that λ is a regular spectral point of H∗ if it is both an incoming and an outgoing
regular spectral point of H∗. If λ is not a regular spectral point, we say that λ is a spectral
singularity of H∗.

The following proposition shows that, under our assumptions, λ is an outgoing/incoming regular
spectral point of H if and only λ is an outgoing/incoming regular spectral point of H∗.

Proposition 4.5. Let λ ∈ σess(H) and suppose that the limits (4.1) exist in the norm topology of
L(H). Then the following conditions are equivalents:

(i) λ is a regular outgoing/incoming spectral point of H,
(ii) λ is not an accumulation point of eigenvalues located in λ± i(0,∞) and

lim
ε→0+

WCRH(λ± iε)C

exists in the norm topology of L(H),
(iii) λ is a regular outgoing/incoming spectral point of H∗.

Proof. Taking adjoints, it is clear that (ii)⇔ (iii). We prove that (i)⇒ (ii). Suppose for instance
that λ is an outgoing regular spectral point of H. By Proposition 4.1, Id +CR0(λ + i0+)CW is
invertible in L(H). We claim that Id +WCR0(λ+ i0+)C is invertible in L(H). Indeed, for all ε > 0,
a direct computation gives

Id =
(
Id−(W (Id +CR0(λ+ iε)CW )−1CR0(λ+ iε)C)

)
(Id−WCR0(λ+ iε)C) .

Letting ε→ 0+, we obtain that

Id =
(
Id−(W (Id +CR0(λ+ i0+)CW )−1CR0(λ+ i0+)C)

) (
Id +WCR0(λ+ i0+)C

)
.

Thus Id +WCR0(λ+ i0+)C is injective. SinceWCR0(λ+ i0+)C is compact, Fredholm’s alternative
implies that Id +WCR0(λ+ i0+)C is bijective in L(H). Now, writing

WCRH(λ+ iε)C = (Id +WCR0(λ+ iε)C)−1WCR0(λ+ iε)C,

for ε > 0 small enough and next letting ε→ 0+, we deduce that limε→0+ WCRH(λ+ iε)C exists in
L(H).

The proof of (i) ⇒ (ii) in the case of an incoming regular spectral point as well as the proof of
(ii)⇒ (i) are analogous. �
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4.4. Embedded eigenvalues. In this section, we prove that given our definition of spectral sin-
gularities (see Definition 2.2), an eigenvalue of H embedded in the essential spectrum is both an
incoming and an outgoing spectral singularity.

Proposition 4.6. Let λ ∈ σess(H) and suppose that the limits (4.1) exist in the norm topology of
L(H). If λ is an eigenvalue of H, then λ is both an outgoing and an incoming spectral singularity
of H.

Proof. Let λ be an eigenvalue of H. There exists u ∈ D(H), u 6= 0, such that (H−λ)u = 0. Suppose
by contradiction that λ is an outgoing regular spectral point of H. Since λ is not an accumulation
point of eigenvalues located in λ+ i(0,∞), we can write, for ε > 0 small enough,

0 = CR0(λ+ iε)(H − λ)u = (Id +CR0(λ+ iε)CW )Cu+ iεCR0(λ+ iε)u. (4.7)

Lemma 4.2 yields
lim
ε→0+

εCR0(λ+ iε)u = 0.

Inserting this into (4.7), we obtain that

(Id +CR0(λ+ i0+)CW )Cu = 0,

which is impossible since Id +CR0(λ+ i0+)CW is injective by Lemma 4.1.
Similarly, λ cannot be an incoming regular spectral point of H. This concludes the proof of the

proposition. �

It should also be noted that, by Theorem 3.1, the eigenvectors associated to an embedded eigen-
value λ belong to H′±C (λ).

4.5. Local spectral regularity. In this section, we show that the notion of spectral regularity
introduced in Definition 2.2 is a local property. We will need to distinguish the case of a spectral
singularity embedded in the essential spectrum of H from the case of a ‘threshold spectral singular-
ity’. We mention that spectral singularities at thresholds have been recently studied, in a Banach
spaces setting, in [10].

Here we will say that a point λ ∈ σess(H) is a spectral threshold of H if there exists r > 0 such
that either

σess(H) ∩ D̊(λ, r) ⊂ [λ,∞), (4.8)
or

σess(H) ∩ D̊(λ, r) ⊂ (−∞, λ]. (4.9)
We say that λ is a left threshold if (4.8) holds and a right threshold if (4.9) holds.

If λ belongs to σess(H), we will in this section make the assumption that there exists r > 0 such
that the maps

D̊(λ, r) ∩ C± 3 z 7→ CR0(z)C (4.10)

extend by continuity to D̊(λ, r) ∩ C̄±.
The next proposition shows that the notion of spectral regularity is a local property. Note that

Item (ii) of Proposition 4.7 corresponds to the definition of a regular spectral point in [25, 26], in the
particular case where H is dissipative. The proof of the next result being a quite straightforward
extension of the proof of [26, Lemma 4.1], it is deferred to Appendix A.

Proposition 4.7. Let λ ∈ σess(H). Suppose that there exists r > 0 such that the maps (4.10) extend
by continuity to D̊(λ, r) ∩ C̄±. The following conditions are equivalent:

(i) λ is an outgoing/incoming regular spectral point,
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(ii) There exists a compact interval Kλ ⊂ R whose interior contains λ, such that Kλ does not
have any accumulation point of eigenvalues of H located in C±, and such that the limit

CRH(µ± i0+)CW := lim
ε→0+

CRH(µ± iε)CW

exists uniformly in µ ∈ Kλ in the norm topology of L(H).

Proof. See Appendix A. �

Proposition 4.7 has the following consequence.

Corollary 4.8. Suppose that for all λ ∈ σess(H), there exists r > 0 such that the maps (4.10)
extend by continuity to D̊(λ, r)∩ C̄±. Then the set of spectral singularities of H is a closed set whose
Lebesgue measure vanishes.

Proof. Let E := E+ ∪ E−, where

E± := {λ ∈ σess(H0), λ is an outgoing/incoming spectral singularity of H}.

It follows from Proposition 4.7 that E+ and E− are closed. Hence E is closed. Moreover, by the
assumption that z 7→ CR0(z)CW extends by continuity to the real axis, we can apply [70, Theorem
1.8.3], which implies that Id +CR0(λ ± i0+)CW is invertible in L(H) for a.e. λ ∈ σess(H). By
Proposition 4.1, this proves that the Lebesgue measures of E+ and E− vanish. �

Our next concern is to characterize outgoing/incoming regular spectral points λ ∈ σess(H) as
nontangential limits of the weighted resolvent CRH(z)CW , as z → λ. If λ is a left spectral threshold,
we will assume that there exists r > 0 such that the map

{λ+ ν, |ν| < r, 0 < arg(ν) < 2π} = D̊(λ, r) \ [λ,∞) 3 z 7→ CR0(z)C (4.11)

extends by continuity to {λ+ ν, |ν| < r, 0 ≤ arg(ν) ≤ 2π}. Il λ is a right spectral threshold, we will
assume that there exists r > 0 such that the map

{λ+ ν , |ν| < r, −π < arg(ν) < π} = D̊(λ, r) \ (−∞, λ] 3 z 7→ CR0(z)C (4.12)

extends by continuity to {λ + ν , |ν| < r, −π ≤ arg(ν) ≤ π}. The next proposition proves, in
particular, that under these assumptions, outgoing and incoming spectral singularities at thresholds
coincide.

Proposition 4.9.
(1) Let λ be in the interior of σess(H). Suppose that there exists r > 0 such that the maps (4.10)

extend by continuity to D̊(λ, r) ∩ C̄±. The following conditions are equivalent:
(i) λ is an outgoing/incoming regular spectral point,
(ii) There exist a complex neighborhood Oλ of λ such that O±λ := Oλ ∩ C± ⊂ ρ(H) and a

continuous map γ : (0, 1]→ O±λ such that

lim
ε→0+

γ(ε) = λ and lim
ε→0+

CRH(γ(ε))CW

exists in the norm topology of L(H).
(2) Let λ ∈ σess(H) be a spectral threshold of H such that (4.8) holds. Suppose that there exists

r > 0 such that the map (4.11) extends by continuity to {λ + ν, |ν| < r, 0 ≤ arg(ν) ≤ 2π}.
The following conditions are equivalent:
(i) λ is an outgoing regular spectral point of H,
(ii) λ is an incoming regular spectral point of H,
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(iii) There exist a complex neighborhood Oλ of λ such that Oλ \ [λ,∞) ⊂ ρ(H) and a con-
tinuous map γ : (0, 1]→ Oλ \ [λ,∞) such that

lim
ε→0+

γ(ε) = λ and lim
ε→0+

CRH(γ(ε))CW (4.13)

exists in the norm topology of L(H).
The same holds if (4.9) holds instead of (4.8), assuming that there exists r > 0 such that
the map (4.12) extends by continuity to {λ + ν, |ν| < r, −π ≤ arg(ν) ≤ π} and replacing
Oλ \ [λ,∞) by Oλ \ (−∞, λ] in (iii).

Proof. Consider the most difficult case (2). We prove that (2)(i) ⇒ (2)(iii). Let λ ∈ σess(H) be
an outgoing regular spectral point of H and suppose that (4.8) holds. By Proposition 4.1, we know
that Id +CR0(λ + i0+)CW is invertible in L(H). Since, by assumption, the map (4.11) extends
by continuity to {λ + ν, |ν| < r, 0 ≤ arg(ν) ≤ 2π} for some r > 0, and since the set of invertible
operators in L(H) is open, this implies that there exists a complex neighborhood Oλ ⊂ D̊(λ, r) of
λ, such that the map

Oλ \ [λ,∞) 3 z 7→
(

Id +CR0(z)CW
)−1 (4.14)

is analytic. The usual Birmann-Schwinger principle yields Oλ \ [λ,∞) ⊂ ρ(H). It then suffices to
take γ(ε) = λ+ iδε, with δ > 0 small enough.

Next we prove that (2)(iii)⇒ (2)(i). In the same way as in Proposition 4.1, the existence of the
limit (4.13) is equivalent to the invertibility of Id + CR0(γ(0+))CW in L(H). Note that the limit
CR0(γ(0+))C exists in the norm topology of L(H) since we have assumed that there exists r > 0
such that the map z 7→ CR0(z)C extends by continuity to {λ + ν, |ν| < r, 0 ≤ arg(ν) ≤ 2π}. We
can then argue as before; this gives the existence of a complex neighborhood Oλ of λ such that the
map (4.14) is analytic and extends by continuity to {λ+ ν, |ν| < r, 0 ≤ arg(ν) ≤ 2π}. In particular,
Id +CR0(λ+ i0+)CW is well-defined and invertible in L(H). Applying Proposition 4.1, this shows
that λ is an incoming regular spectral point of H.

The proof of (2)(ii) ⇔ (2)(iii) is identical. One proceeds analogously to prove (2) in the case
where (4.9) holds instead of (4.8).

Finally, the argument easily adapts to prove (1). �

Note that in the case of an outgoing/incoming regular spectral point λ ∈ σess(H), our proof shows
that z 7→ CRH(z)CW has a nontangential limit at λ, in the sense that the limit

lim
ε→0+

CRH(γ(ε))CW (4.15)

does not depend on the continuous curve γ : (0, 1] → C± such that γ(ε) → λ as ε → 0+. See
Figure 2. This property can also be deduced from Lindelöf’s Theorem (see e.g. [60]) if the map
z 7→ CRH(z)CW is known to be analytic and bounded in the domain O±λ .

•λ

Oλ

γ

Figure 2. Outgoing spectral singularity located inside the essential spectrum. The
figure shows an example of a curve γ : (0, 1] → O+

λ , where O
+
λ = Oλ ∩ C+ and Oλ is a complex

neighborhood of λ. The thick line represents the essential spectrum of H.

Likewise, in the case of a regular spectral point λ located at a spectral threshold of H, the limit
(4.15) does not depend on the continuous curve γ : (0, 1]→ C \ [λ,∞) (or γ : (0, 1]→ C \ (−∞, λ],
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depending on whether (4.8) or (4.9) holds). This is the reason why the incoming and outgoing
spectral singularities coincide. See Figure 3.

•λ

Oλγ

Figure 3. Spectral singularity located at a threshold. The figure shows an example of a
curve γ : (0, 1]→ Oλ \ [λ,∞), where Oλ is a complex neighborhood of λ. The thick line represents
the essential spectrum of H.

4.6. Spectral singularities for dissipative operators. In this section, we focus on the particular
case where the operator H is dissipative. Recall that H = H0 + V with V ∈ L(H). We write

V = V1 − iV2, V1 = CW1C, V2 = CW2C,

whereW1 := Re(W ) andW2 := − Im(W ). Here the real and imaginary parts of a bounded operator
A ∈ L(H) are defined as usual by Re(A) := 1

2(A+A∗), Im(A) := 1
2i(A−A

∗). We suppose that

W2 ≥ 0,

so that
H = H0 + V1 − iV2 =: HV1 − iV2

is indeed dissipative. Our purpose is to prove that if λ is an outgoing regular spectral point of the
self-adjoint part HV1 = H0 + V1, then λ is also an outgoing regular spectral point for H. In other
words, adding the ‘dissipative part’ −iV2 cannot create outgoing spectral singularities.

We begin with recalling the following easy lemma (see [13, Lemma 6.1] or [25, Lemma 3.1]). We
include a proof for the convenience of the reader.

Lemma 4.10. Let λ ∈ R be a real eigenvalue of H. Then λ is an eigenvalue of HV1 and

Ker(H − λ) ⊂ Hdisc(HV1) ∩Ker(V2). (4.16)

Proof. Let u ∈ Ker(H − λ), u 6= 0. Then

λ ‖u‖2H = 〈u,Hu〉H = 〈u,HV1u〉H − i
∥∥∥W 1

2
2 Cu

∥∥∥2

H
.

Since λ ∈ R, identifying the real and imaginary parts, we obtain that u ∈ Ker(W
1
2

2 C) ⊂ Ker(V2)
and therefore Hu = HV1u = λu. This establishes (4.16). �

Note that Definition 2.2 of a regular spectral point of H applies to HV1 as well. In other words,
λ ∈ σess(HV1) is an outgoing/incoming regular spectral point of HV1 if

CRV1(λ± i0+)CW1 := lim
ε→0+

CRV1(λ± iε)CW1

exits in L(H). Otherwise, λ is an outgoing/incoming spectral singularity of HV1 . Moreover, Propo-
sition 4.1 applied to HV1 shows that λ is an outgoing/incoming regular spectral point of HV1 if and
only if Id +CR0(λ ± i0+)CV1 is invertible in L(H), which is also equivalent to Id +R0(λ ± i0+)V ′1
being invertible in L(H′C).

The next proposition is the main result of this subsection.
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Proposition 4.11. Suppose that Hypothesis 5 holds. Let λ ∈ σess(H) and suppose that the limits
(4.1) exist in the norm topology of L(H). If λ is an outgoing regular spectral point of HV1 then λ is
an outgoing regular spectral point of H.

Proof. Suppose that λ is an outgoing regular spectral point of HV1 . Suppose also, by contradiction,
that λ is an outgoing spectral singularity of H. By Theorem 3.1, there exists Ψ ∈ H+

C such that

Ψ = −R0(λ+ i0+)V ′Ψ and (H ′ − λ)Ψ = 0. (4.17)

Recall from Section 2.3 that V ′ ∈ L(H′C ,HC) is given by V ′ = CWC ′. Since W = W1 − iW2, this
yields

〈V ′Ψ,Ψ〉HC ,H′C =
〈
W1C

′Ψ , C ′Ψ
〉
H + i

〈
W2C

′Ψ , C ′Ψ
〉
H ,

and hence, since W2 ≥ 0,

Im
(
〈V ′Ψ,Ψ〉HC ,H′C

)
=
〈
W2C

′Ψ , C ′Ψ
〉
H ≥ 0. (4.18)

Now, using (4.17), we have

Im
(
〈V ′Ψ,Ψ〉HC ,H′C

)
= − Im

〈
V ′Ψ ,R0(λ+ i0+)V ′Ψ

〉
HC ,H′C

=
−1

2i

(〈
WC ′Ψ , CR0(λ+ i0+)V ′Ψ

〉
H −

〈
CR0(λ+ i0+)V ′Ψ ,WC ′Ψ

〉
H
)

=
−1

2i

(〈
WC ′Ψ , CR0(λ+ i0+)V ′Ψ

〉
H −

〈
WC ′Ψ , CR0(λ− i0+)V ′Ψ

〉
H
)

= lim
ε→0+

−ε
〈
WC ′Ψ , CR0(λ+ iε)R0(λ− iε)V ′Ψ

〉
H

= lim
ε→0+

−ε
〈
R0(λ− iε)V ′Ψ ,R0(λ− iε)V ′Ψ

〉
H ≤ 0. (4.19)

Equations (4.18) and (4.19) imply that W2C
′Ψ = 0. Inserting this into (4.17), we obtain that

Ψ = −R0(λ+ i0+)V ′1Ψ and (H ′0 + V ′1 − λ)Ψ = 0.

which is a contradiction since λ is a regular spectral point of HV1 . �

Remark 4.12. The previous proof actually shows that, under the conditions of Proposition 4.11,

λ is an outgoing spectral singularity of H ⇒ W2C
′Ψ = 0. (4.20)

Since C ′ is injective, this in turn yields

W2 is injective ⇒ H has no outgoing spectral singularities.

In the context of Schrödinger operators, one can also combine (4.20) with the unique continuation
principle (see e.g. [58, Theorem XIII.63]) to obtain Proposition 3.7.

Proof of Proposition 3.7. Let λ > 0. Assuming that (3.9) holds with σ > 1, suppose by contradiction
that λ is an outgoing spectral singularity of H. Then, by Proposition 3.5, there exists Ψ ∈ L2

−σ/2,
Ψ 6= 0, such that

(−∆ + V (x)− λ)Ψ = 0.

This implies that Ψ ∈ H2
loc(R3) and that |∆Ψ(x)| ≤ (‖V ‖L∞ + λ)|Ψ(x)| for a.e. x ∈ R3. Now,

since there exists a non-trivial open set U such that Im(V ) < 0 on U , (4.20) and the fact that
C(x) = 〈x〉−σ/2 imply that Ψ(x) = 0 on U . By [58, Theorem XIII.63], we conclude that Ψ = 0.
This is a contradiction.

The same argument holds for λ = 0 under the condition that (3.9) holds with σ > 2. �
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5. Spectral resolution formula and spectral subspaces

In this section, we begin with constructing a functional calculus for H. In Section 5.1, we consider
the simplest case of intervals without spectral singularities, next, in Section 5.2, we construct a
regularized functional calculus in intervals possibly containing spectral singularities. The latter is
subsequently used in Section 5.3 to establish the spectral resolution formula stated in Proposition
3.10. Finally we prove Theorems 3.2 and 3.3 in Sections 5.4 and 5.5, respectively.

5.1. Functional calculus in intervals not containing spectral singularities. Consider first a
closed interval I ⊂ R that does not contain any spectral singularities of H. We will furthermore
assume that a limiting absorption principle holds for H in I, in the sense that there exists ε0 > 0
such that

sup
Re(z)∈I,±Im(z)∈(0,ε0)

∥∥CRH(z)CW
∥∥
L(H)

<∞. (5.1)

Note that, in the same way as for H0, Fatou’s Theorem and (5.1) yield that the limits CRH(λ ±
i0+)CW exist for almost every λ ∈ I, in the norm topology of L(H), and that the map I 3 λ 7→
CRH(λ ± i0+)CW ∈ L(H) is bounded. The main purpose of this subsection is then to define a
spectral projection for H in I by mimicking Stone’s formula, setting

1I(H) := w-lim
ε→0+

1

2πi

∫
I

(
RH(λ+ iε)−RH(λ− iε)

)
dλ. (5.2)

The next proposition shows that, under our assumptions, 1I(H) is a well-defined non-orthogonal
projection. The proof is similar to that given in [25] for dissipative operators. For the convenience of
the reader, a sketch of the proof of Proposition 5.1 focusing on the differences with [25] is reported
in Appendix B.

Proposition 5.1. Suppose that Hypothesis 1 holds. Let I ⊂ R be a closed interval and suppose that
there exists ε0 > 0 such that (5.1) holds. Then the weak limit (5.2) exists in L(H) and we have

1I1(H)1I2(H) = 1I1∩I2(H), (5.3)

for any closed intervals I1, I2 ⊂ I without spectral singularity, with the convention that 1∅(H) = 0.
In particular, 1I(H) is a projection. Its adjoint is given by

1I(H)∗ = 1I(H
∗) = w-lim

ε→0+

1

2πi

∫
I

(
RH∗(λ+ iε)−RH∗(λ− iε)

)
dλ. (5.4)

Proof. See Appendix B. �

We note the following representation formula which follows from our proof:

1I(H) = 1I(H0)− 1

2iπ

∫
I
R0(λ∓ i0+)CWCR0(λ± i0+)dλ

+
1

2iπ

∫
I
R0(λ± i0+)CWCRH(λ± i0+)CWCR0(λ± i0+)dλ, (5.5)

in the sense of quadratic forms on H×H. We recall that, for all u ∈ H, λ 7→ CR0(λ± i0+)u denotes
the limit of λ 7→ CR0(λ± iε)u in L2(R;H) as ε → 0+, while, for a.e. λ, CRH(λ± i0+)CW is the
limit of CRH(λ± iε)CW as ε→ 0+, in the norm topology of L(H).

Under the same assumptions and using similar arguments, we also have the following functional
calculus. We denote by Cb(I) the set of bounded continuous functions on I.
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Proposition 5.2. Under the conditions of Proposition 5.1, the map

Cb(I) 3 f 7→ f(H) := w-lim
ε→0+

1

2πi

∫
I
f(λ)

(
RH(λ+ iε)−RH(λ− iε)

)
dλ ∈ L(H) (5.6)

is a Banach algebra morphism. Moreover, for all t ∈ R,

eitH1I(H) = w-lim
ε→0+

1

2πi

∫
I
eitλ
(
RH(λ+ iε)−RH(λ− iε)

)
dλ (5.7)

and for all z0 ∈ ρ(H),

RH(z0)1I(H) = w-lim
ε→0+

1

2πi

∫
I
(λ− z0)−1

(
RH(λ+ iε)−RH(λ− iε)

)
dλ. (5.8)

Proof. See Appendix B. �

We mention that this functional calculus uniquely extends to a Borel functional calculus, i.e. an
algebra morphism L∞(I) 3 f → f(H). See e.g. [34, Theorem 2.4].

5.2. ‘Regularized’ functional calculus. Our next concern is to regularize the definition (5.2) in
the case where the spectral interval I contains spectral singularities. More generally, we will now
consider a closed interval I ⊂ R and a bounded holomorphic function

h : U → C, {z ∈ C, Re(z) ∈ I, |Im(z)| ≤ ε0} ⊂ U,
with ε0 > 0 and U open, such that

sup
Re(z)∈I,±Im(z)∈(0,ε0)

|h(z)|
∥∥CRH(z)CW

∥∥
L(H)

<∞. (5.9)

We will also assume that
λ 7→ sup

0<ε<ε0

|h′(λ± iε)| ∈ L2(I), (5.10)

where h′ stands for the derivative of h. The ‘regularized spectral projection’ for H in I is then
defined by (

h1I
)
(H) := w-lim

ε→0+

1

2πi

∫
I

(
h(λ+ iε)RH(λ+ iε)− h(λ− iε)RH(λ− iε)

)
dλ. (5.11)

In this context, Proposition 5.1 should be modified as follows.

Proposition 5.3. Suppose that Hypothesis 1 holds. Let I ⊂ R be a closed interval. Suppose that
there exist ε0 > 0 and a bounded holomorphic function h defined on a complex neighborhood of
{z ∈ C, Re(z) ∈ I, |Im(z)| ≤ ε0} such that (5.9) and (5.10) hold. Then the weak limit (5.11) exists
in L(H) and its adjoint is given by(

h1I
)
(H)∗ =

(
h1I

)
(H∗) = w-lim

ε→0+

1

2πi

∫
I

(
h(λ+ iε)RH∗(λ+ iε)− h(λ− iε)RH∗(λ− iε)

)
dλ.

Proof. See Appendix B. �

It is not difficult to verify that, if H is self-adjoint, then (h1I)(H) = h(H)1I(H) (see the proof
of Proposition 5.3). However, under the assumptions of Proposition 5.3, this formula does not make
sense since 1I(H) is ill-defined in general.

Similarly as in (5.5), our proof will show that

(h1I)(H) = (h1I)(H0)− 1

2iπ

∫
I
h(λ)R0(λ∓ i0+)CWCR0(λ± i0+)dλ

+
1

2iπ

∫
I
h(λ)R0(λ± i0+)CWCRH(λ± i0+)CWCR0(λ± i0+)dλ, (5.12)



28 J. FAUPIN AND N. FRANTZ

in the sense of quadratic forms on H×H.
One can also define a ‘regularized functional calculus’ on the set of functions

Cb,reg(I) :=
{
f : I → C, ∃g ∈ Cb(I), f = hg}.

Proposition 5.4. Under the conditions of Proposition 5.3, the map

Cb,reg(I) 3 f 7→ f(H) := w-lim
ε→0+

1

2πi

∫
I
g(λ)

(
h(λ+ iε)RH(λ+ iε)− h(λ− iε)RH(λ− iε)

)
dλ ∈ L(H)

is an algebra morphism and there exists c > 0 such that

‖f(H)‖L(H) ≤ c‖g‖L∞ , (5.13)

for all f ∈ Cb,reg(I), with f = hg. Moreover, for all t ∈ R,

eitH
(
h1I

)
(H) = w-lim

ε→0+

1

2πi

∫
I
eitλ
(
h(λ+ iε)RH(λ+ iε)− h(λ− iε)RH(λ− iε)

)
dλ (5.14)

and for all z0 ∈ ρ(H),

RH(z0)
(
h1I

)
(H) = w-lim

ε→0+

1

2πi

∫
I
(λ− z0)−1

(
h(λ+ iε)RH(λ+ iε)−h(λ− iε)RH(λ− iε)

)
dλ. (5.15)

Proof. See Appendix B. �

Again, this functional calculus uniquely extends to a Borel functional calculus. For other defini-
tions of functional calculi for general operators on Banach spaces under an assumption of polynomial
growth of the resolvent near the real axis, we refer to [14, 34].

5.3. Spectral resolution formula. We now turn to the proof of the resolution formula stated in
Proposition 3.10. It relies in particular on the following resolvent bounds.

Lemma 5.5. Suppose that Hypothesis 1 holds. Let I ⊂ R be a closed interval and suppose that there
exists ε0 > 0 such that (5.1) holds.

(i) There exists c > 0 such that, for a.e. λ ∈ I, for all ε ∈ (0, ε0),

‖RH(λ± iε)‖L(H) ≤ cε−1.

(ii) There exists c > 0 such that, for all ε ∈ (0, ε0), for all u ∈ H,∫
I
‖RH(λ± iε)u‖2Hdλ ≤ cε−1‖u‖2H.

Proof. See Appendix B. �

To prove Proposition 3.10, we will rely on the following construction. Assume that Hypotheses
2 and 3 hold. Let σdisc,real(H) = {e1, . . . , ep} be the set of real, discrete eigenvalues of H, with
e1 < · · · < ep. Note that σdisc,real(H) is finite by Hypothesis 2. Let δ > 0 be the distance between
σdisc,real(H) and σess(H). For ε > 0 small enough, we consider the complex open set Uε such that
σ(H) ⊂ Uε and the boundary of Uε is given by (i) small circles surrounding each discrete eigenvalue
of H and no other point of σ(H), (ii) rectangles whose opposite sides are given by the complex
segments [e` + δ/2 + iε, e`+1 − δ/2 + iε] and [e` + δ/2 − iε, e`+1 − δ/2 − iε] and (iii) the curve
given by the complex segments [ep + δ/2± iε, ε−3 ± iε], [ep + δ/2− iε, ep + δ/2 + iε] and the (long)
circle arc centered at the origin and joining the complex points ε−3 + iε and ε−3 − iε. The circles
and rectangles defined by (i), (ii) are oriented counterclockwise, while the curve defined by (iii) is
oriented clockwise. See Figure 4. We denote by Γ(i) the union of curves defined by (i) and by Γε,]
the unions of curves defined by ], where ] stands for (ii) or (iii). If σdisc,real(H) is empty, then Γε,(ii)
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is absent and we replace ep − δ > 2 by −1 in the definition of Γε,(iii) (fixing arbitrarily −1 as a real
number such that −1 < inf σess(H)).

×

×

×

×

×

×

×

Figure 4. The contour Γε. The crosses and thick lines represent the eigenvalues and essential
spectrum of H, respectively.

.

We are now ready to prove Proposition 3.10. Recall that the function r has been defined in (3.15),
for some z0 ∈ ρ(H), z0 ∈ C \ R.

Proof of Proposition 3.10. In order to be able to apply Proposition 5.4 for a suitable function h, it
is convenient to add a decaying term to the regularizing function r. Hence we set

r̃(z) := (z − z0)−1r(z) = (z − z0)−(ν1+···+νn+ν∞+1)
n∏
j=1

(z − λj)νj , (5.16)

so that r̃ satisfies (5.10) in any interval I ⊂ R. Let C̄ := C ∪ {∞} denote the Riemann sphere.
We note that σ(H) ∪ {∞} ⊂ Uε ∪ {∞} and that Uε ∪ {∞} is an open set in C̄. The function r̃ is
extended to C̄ by setting r̃(∞) = 0. By the Riesz-Dunford functional calculus (see e.g. [19, Section
VIII.9]), using in particular that r̃ is analytic in a neighborhood of σ(H) ∪ {∞} in C̄, we have that

r̃(H) = − 1

2iπ

∫
Γε

r̃(z)RH(z)dz. (5.17)

We consider successively the contributions to this integral from Γ(i), Γε,(ii) and Γε,(iii). The con-
tribution from Γ(i) gives, by definition, the Riesz projection onto the discrete spectral subspace of
H,

− 1

2iπ

∫
Γ(i)

r̃(z)RH(z)dz = r̃(H)Πdisc(H). (5.18)

The contribution from Γε,(ii) gives, for each rectangle, four terms. The integrals over the vertical
segments are of orderO(ε). This easily follows from the fact that z 7→ |r̃(z)|‖RH(z)‖L(H) is uniformly
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bounded on these segments, whose lengths are equal to 2ε. The sum of the integrals over the
horizontal segments can be rewritten as

1

2iπ

∫ e`+1−δ/2

e`+δ/2

(
r̃(λ+ iε)RH(λ+ iε)− r̃(λ− iε)RH(λ− iε)

)
dλ.

Applying Proposition 5.4, we deduce that

w-lim
ε→0+

∫ e`+1−δ/2

e`+δ/2

(
r̃(λ+ iε)RH(λ+ iε)− r̃(λ− iε)RH(λ− iε)

)
dλ

=

∫ e`+1−δ/2

e`+δ/2
r̃(λ)

(
RH(λ+ i0+)−RH(λ− i0+)

)
dλ.

Therefore, the contribution to (5.17) from Γε,(ii) gives

w-lim
ε→0+

− 1

2iπ

∫
Γε,(ii)

r̃(z)RH(z)dz =
1

2iπ

p−1∑
`=1

∫ e`+1−δ/2

e`+δ/2
r̃(λ)

(
RH(λ+ i0+)−RH(λ− i0+)

)
dλ. (5.19)

It remains to consider the contribution from Γε,(iii). As before, the integral over the small vertical
segment is of order O(ε). The sum of the integrals over the horizontal segments can be rewritten as

1

2iπ

∫ ε−3

ep+δ/2

(
r̃(λ+ iε)RH(λ+ iε)− r̃(λ− iε)RH(λ− iε)

)
dλ.

First, we note that∫ ∞
ε−3

(
r̃(λ+ iε)RH(λ+ iε)− r̃(λ− iε)RH(λ− iε)

)
dλ = O(ε).

Indeed, we have |r̃(λ±iε)| ≤ c|λ|−1 for λ large enough and hence, by the Cauchy-Schwarz inequality,∫ ∞
ε−3

∣∣〈u, r̃(λ± iε)RH(λ± iε)v
〉
H
∣∣dλ ≤ cε

3
2 ‖u‖H

(∫ ∞
ε−3

∥∥RH(λ± iε)v
∥∥2

Hdλ
) 1

2

≤ cε‖u‖H‖v‖H,

the second inequality being a consequence of Lemma 5.5(ii). Hence

1

2iπ

∫ ε−3

ep+δ/2

〈
u,
(
r̃(λ+ iε)RH(λ+ iε)− r̃(λ− iε)RH(λ− iε)

)
v
〉
Hdλ

=
1

2iπ

∫ ∞
ep+δ/2

〈
u,
(
r̃(λ+ iε)RH(λ+ iε)− r̃(λ− iε)RH(λ− iε)

)
v
〉
Hdλ+O(ε)‖u‖H‖v‖H.

Combining this with Proposition 5.4, we obtain that

w-lim
ε→0+

1

2iπ

∫ ε−3

ep+δ/2

(
r̃(λ+ iε)RH(λ+ iε)− r̃(λ− iε)RH(λ− iε)

)
dλ

=
1

2iπ

∫ ∞
ep+δ/2

r̃(λ)
(
RH(λ+ i0+)−RH(λ− i0+)

)
dλ.

The integral over the circle arc in Γε,(iii) can be estimated as follows. Denote by Cε this circle arc.
For z ∈ Cε, |Im(z)| ≤ ε0, Lemma 5.5(i) implies that ‖RH(z)‖L(H) ≤ cε−2. Using in addition that
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|r̃(z)| ≤ C|z|−1 = O(ε3) for z ∈ Cε, we obtain∣∣∣ ∫
Cε∩{|Im(z)|≤ε0}

r̃(z)RH(z)dz
∣∣∣ = O(ε).

For z ∈ Cε, |Im(z)| ≥ ε0, it suffices to use that ‖RH(z)‖L(H) ≤ c together with |r̃(z)| ≤ C|z|−1 =

O(ε3) to conclude that ∣∣∣ ∫
Cε∩{|Im(z)|≥ε0}

r̃(z)RH(z)dz
∣∣∣ = O(ε3).

Putting together the previous estimates, we have shown that

w-lim
ε→0+

− 1

2iπ

∫
Γε,(iii)

r̃(z)RH(z)dz =
1

2iπ

∫ ∞
ep+δ/2

r̃(λ)
(
RH(λ+ i0+)−RH(λ− i0+)

)
dλ. (5.20)

Equations (5.17), (5.18), (5.19) and (5.20), together with the fact thatRH(λ+i0+) = RH(λ−i0+) =
RH(λ) if λ ∈ ρ(H), yield

r̃(H) = r̃(H)Πdisc(H) +
1

2iπ

∫
σess(H)

r̃(λ)
(
RH(λ+ i0+)−RH(λ− i0+)

)
dλ. (5.21)

It remains to show that one can replace r̃ by r in the previous equation. For the first two terms, we
have that r̃(H) = RH(z0)r(H) by definition, while (5.15) in Proposition 5.4 implies∫

σess(H)
r̃(λ)

(
RH(λ+ i0+)−RH(λ− i0+)

)
dλ

= RH(z0)

∫
σess(H)

r(λ)
(
RH(λ+ i0+)−RH(λ− i0+)

)
dλ.

Hence, applying (H − z0) to both sides of (5.21), we obtain (3.16). This concludes the proof. �

5.4. Proof of Theorem 3.2. Now we prove Theorem 3.2. We recall thatH±p (H) is the vector space
spanned by all generalized eigenstates corresponding to eigenvalues λ ∈ C such that ∓Imλ > 0 and
that H±ads is the closure of {u ∈ H, limt→∞ ‖e±itHu‖H = 0}. We begin with proving the following
easy inclusion, H±p (H) ⊂ H±ads(H), which holds under the assumption that H has finitely many
eigenvalues with finite algebraic multiplicities.

Proposition 5.6. Suppose that Hypothesis 2 holds. Then

H±p (H) ⊂ H±ads(H).

Proof. We prove thatH+
p (H) ⊂ H+

ads(H). Let λ ∈ σdisc(H) with Im(λ) < 0 and let u ∈ Ran(Πλ(H)).
For all t > 0, we estimate ∥∥e−itHu∥∥H ≤ 1

2π

∫
γ
et Im(z) ‖RH(z)u‖H dz,

where γ is the circle defined as in (2.3). Since γ ⊂ C−, we have∥∥e−itHu∥∥H ≤ e−tδ

2π

∫
γ
‖RH(z)u‖H dz,

for some δ > 0. Hence u ∈ H+
ads(H). The proof of H−p (H) ⊂ H−ads(H) is analogous. �

To prove the converse inclusion, we will use the following easy lemma. Recall that

Π±disc(H) =
∑

λ∈σdisc(H),∓Im(λ)>0

Πλ(H), Π0
disc(H) =

∑
λ∈σdisc(H),Im(λ)=0

Πλ(H).
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Lemma 5.7. Suppose that Hypothesis 2 holds. Then

H±ads(H) ⊂ Ker
(
Π∓disc(H) + Π0

disc(H)
)
.

Proof. Let u ∈ H+
ads(H). We have(

Π−disc(H) + Π0
disc(H)

)
e−itHu = e−itH

(
Π−disc(H) + Π0

disc(H)
)
u. (5.22)

The restriction of H to Ran(Π−disc(H) + Π0
disc(H)) = H−disc(H)⊕H0

disc(H) is a linear mapping from
a finite dimensional space to itself, whose eigenvalues have non-negative imaginary parts. Hence, by
Lyapunov’s Theorem,

lim
t→∞

∥∥e−itH(Π−disc(H) + Π0
disc(H)

)
u
∥∥
H 6= 0 unless

(
Π−disc(H) + Π0

disc(H)
)
u = 0.

Since the left-hand-side of (5.22) tends to 0 as t → ∞ (for u ∈ H+
ads(H)), we conclude that indeed

(Π−disc(H) + Π0
disc(H))u = 0. Hence we have proven that H+

ads(H) ⊂ Ker(Π−disc(H) + Π0
disc(H)). The

proof of H−ads(H) ⊂ Ker(Π+
disc(H) + Π0

disc(H)) is similar. �

Now we are ready to prove Theorem 3.2. We will use the regularizing function r defined in (3.15),
for some z0 ∈ ρ(H), z0 ∈ C \ R.

Proof of Theorem 3.2. In view of Proposition 5.6, it remains to show that H±ads(H) ⊂ H±p (H). We
prove that H+

ads(H) ⊂ H+
p (H), the inclusion H−ads(H) ⊂ H−p (H) can be proven in the same way.

Let u ∈ H+
ads(H). By Proposition 3.10, we can write

r(H)u = Πdisc(H)r(H)u+ ress(H)u, (5.23)

where
ress(H) := w-lim

ε→0+

1

2πi

∫
σess(H)

r(λ)
(
RH(λ+ iε)−RH(λ− iε)

)
dλ

is a bounded operator.
Clearly, since r(H) is bounded and commutes with e−itH , we have that r(H)u ∈ H+

ads(H). Lemma
5.7 then implies that r(H)u ∈ Ker(Π−disc(H) + Π0

disc(H)). Inserting this into (5.23) gives

r(H)u = Π+
disc(H)r(H)u+ ress(H)u. (5.24)

Now we show that u ∈ Ker(ress(H)). We have Ker(ress(H)) = Ran(ress(H)∗)⊥ where, by Proposition
5.3,

ress(H)∗ = w-lim
ε→0+

1

2πi

∫
σess(H)

r(λ)
(
RH∗(λ+ iε)−RH∗(λ− iε)

)
dλ.

For all v = ress(H)∗w ∈ Ran(ress(H)∗), we can write

|〈v, u〉H| =
∣∣〈e−itH∗v, e−itHu〉H∣∣ ≤ ∥∥e−itH∗v∥∥H∥∥e−itHu∥∥H. (5.25)

By (5.13) and (5.14) in Proposition 5.4, we have∥∥e−itH∗v∥∥H =
∥∥e−itH∗ress(H)∗w

∥∥
H ≤ c‖w‖H.

Inserting this into (5.25), letting t → ∞ and using that u ∈ H+
ads(H), we obtain that 〈v, u〉 = 0.

Hence u ∈ Ker(ress(H)) and therefore (5.24) reduces to

r(H)u = Π+
disc(H)r(H)u. (5.26)

We have proven that r(H)u belongs to H+
disc(H) = H+

p (H). Now the Riesz-Dunford functional
calculus shows that the restriction of r(H) to H+

p (H) is bounded invertible. Hence we deduce that
u ∈ H+

p (H). This concludes the proof. �
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5.5. Proof of Theorem 3.3. Recall that Hp(H) is the closure of the vector space spanned by all
generalized eigenvectors of H, and that the absolutely continuous spectral subspace of H has been
defined in Section 2.2. We want to prove that Hac(H) = Hp(H∗)⊥. We begin with the following
proposition which only requires that Hp(H) be finite dimensional.

Proposition 5.8. Suppose that Hypothesis 2 holds. Then

Hac(H) ⊂ Ran(Id−Πp(H)) = Hp(H∗)⊥.

Proof. Let u ∈ Hac(H). We decompose

u = Πp(H)u+ (Id−Πp(H))u.

Suppose by contradiction that Πp(H)u 6= 0. Then there exists v ∈ Hp(H∗) such that 〈u, v〉H = 1.
Indeed, if 〈u, v〉H = 0 for all v ∈ Hp(H∗), then u ∈ Hp(H∗)⊥ = Ker(Πp(H)).

Now, if v ∈ Hp(H∗) satisfies 〈u, v〉 = 1, the map t 7→
〈
e−itHu, v

〉
H cannot belong to L2(R,C)

since 〈
e−itHu, v

〉
H =

〈
u, eitH

∗
v
〉
H

and the restriction of iH∗ to Hp(H∗) is a linear mapping on a finite dimensional vector space.
This proves that Πp(H)u = 0 and hence that u ∈ Ran(Id−Πp(H)). �

To prove the converse inclusion, we will use the following easy lemma. Recall that r has been
defined in (3.15), for some z0 ∈ ρ(H), z0 ∈ C \ R.

Lemma 5.9. Suppose that Hypotheses 2 and 3 hold. Then

Ran
(
r(H)(Id−Πp(H))

)
is dense in Hp(H∗)⊥.

Proof. Since H commutes with Πp(H), r(H) preserves Hp(H∗)⊥ = Ran(Id−Πp(H)). The adjoint
of r(H)(Id−Πp(H)) is given by[

r(H)(Id−Πp(H))
]∗

=
[ n∏
j=1

(H∗ − λj)νj
]
RH∗(z̄0)−(ν1+···+νn+ν∞)(Id−Πp(H∗)).

Since the restriction of H∗ to Ran(Id−Πp(H∗)) has no eigenvalues, the right-hand-side of the pre-
vious equation is an injective operator, which concludes the proof of the lemma. �

Now we prove Theorem 3.3.

Proof of Theorem 3.3. By Proposition 5.8, we know that Hac(H) ⊂ Hp(H∗)⊥. To prove that
Hp(H∗)⊥ ⊂ Hac(H), since Hac(H) is closed, it suffices by Lemma 5.9 to show that

Ran
(
r(H)(Id−Πp(H))

)
⊂ Hac(H).

Let u = r(H)(Id−Πp(H))v ∈ Ran(r(H)(Id−Πp(H))). Let (vn)n∈N = (Cwn)n∈N be a sequence
in HC = Ran(C) such that vn → v as n→∞ (recall that HC is dense in H). We claim that

un := r(H)(Id−Πp(H))vn ∈ Hac(H). (5.27)

To prove (5.27), applying Proposition 3.10 and the fact that (Id−Πp(H))Πdisc(H) = 0, we first
observe that, for all ϕ ∈ H,

〈un, ϕ〉 =
〈
r(H)(Id−Πp(H))vn, ϕ

〉
= − 1

2iπ

∫
Λ
r(λ)

〈(
RH(λ+ i0+)−RH(λ− i0+)

)
vn, ψ

〉
dλ,
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where, to simplify notations, we set Λ := σess(H) and ψ := (Id−Πp(H∗))ϕ. Next we apply (5.14)
in Proposition 5.4 and Plancherel’s Theorem to obtain∫

R

∣∣〈e−itHun , ϕ〉∣∣2H dt

=

∫
Λ

∣∣〈r(λ)
(
RH(λ− i0+)−RH(λ+ i0+)

)
vn , ψ

〉
H
∣∣2 dλ. (5.28)

Using the resolvent identity

RH(z) = R0(z)−R0(z)VR0(z) +R0(z)VRH(z)VR0(z),

for all z ∈ ρ(H), we decompose∫
Λ
|r(λ) 〈(RH(λ− iε)−RH(λ+ iε)) vn , ψ〉H|

2 dλ

≤
∫

Λ
|r(λ) 〈(R0(λ− iε)−R0(λ+ iε)) vn , ψ〉H|

2 dλ

+

∫
Λ
|r(λ) 〈(R0(λ− iε)VR0(λ− iε)) vn , ψ〉H|

2 dλ

+

∫
Λ
|r(λ) 〈(R0(λ+ iε)R0(λ+ iε)) vn , ψ〉H|

2 dλ

+

∫
Λ
|r(λ) 〈(R0(λ− iε)VRH(λ− iε)VR0(λ− iε)) vn , ψ〉H|

2 dλ

+

∫
Λ
|r(λ) 〈(R0(λ+ iε)VRH(λ+ iε)VR0(λ+ iε)) vn , ψ〉H|

2 dλ. (5.29)

We claim that each term of the right-hand-side of the previous equation is bounded by cn ‖ϕ‖2H, for
some positive constant cn depending on n. We estimate each term separately.

For the first term in the right-hand-side of (5.29), it suffices to use that H0 is a self-adjoint
operator with purely absolutely continuous spectrum (by Hypothesis 1), which yields∫

Λ

∣∣r(λ)
〈(
R0(λ− i0+)−R0(λ+ i0+)

)
vn , ψ

〉∣∣2 dλ ≤ cn‖r‖2L∞ ‖ψ‖
2
H . (5.30)

Next, remembering that vn = Cwn and V = CWC, the second and third terms in the right-hand-
side of (5.29) are estimated as∫

Λ
|r(λ) 〈(R0(λ± iε)CWCR0(λ± iε))Cwn , ψ〉|2H dλ

≤ ‖W‖2L(H) ‖r‖
2
L∞ sup

λ∈Λ

(
‖CR0(λ± iε)C‖2L(H)

)
‖wn‖2H

∫
Λ
‖CR0(λ∓ iε)ψ‖2H dλ

≤ cn‖ψ‖2H, (5.31)

where we used Hypothesis 1 (and (3.3)) in the second inequality.
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Finally, to estimate the fourth and fifth terms in the right-hand-side of (5.29), we write similarly∫
Λ
|r(λ) 〈(R0(λ± iε)CWCRH(λ± iε)CWCR0(λ± iε))Cwn , ψ〉H|

2 dλ

≤ ‖W‖2L(H) sup
λ∈Λ

(
|r(λ)| ‖CRH(λ± iε)CW‖2L(H)

)
sup
λ∈Λ

(
‖CR0(λ± iε)C‖2L(H)

)
‖wn‖2H

×
∫

Λ
‖CR0(λ∓ iε)ψ‖2H dλ

≤ cn‖ψ‖2H, (5.32)

where we used Hypotheses 1 and 3 in the second inequality.
Inserting (5.29)–(5.32) into (5.28) and using that ‖ψ‖H ≤ ‖ϕ‖H, we deduce that∫

R

∣∣〈e−itHun , ϕ〉∣∣2H dt ≤ Cn‖ϕ‖2H.

Therefore, un ∈ Hac(H) for all n ∈ N. Since un → u in H as n → ∞, and since Hac(H) is closed,
this implies that u ∈ Hac(H) and hence the proof of the theorem is complete. �

Our last proposition shows that in the case where H is dissipative, Hypothesis 4 can be dropped in
the statement of Theorem 3.3. Using the notations from Section 4.6, we know that the only possible
generalized eigenvectors corresponding to a real eigenvalue of H are eigenvectors in the usual sense,
and that they are also eigenvectors of HV1 (and of H∗). In other words, if λ ∈ R is an eigenvalue of
H, then Ker((H − λ)2) = Ker(H − λ) and we have

u ∈ Ker(H − λ) ⇒ u ∈ Ker(HV1 − λ) ∩Ker(V2) ⇒ u ∈ Ker(H∗ − λ),

see also Lemma 4.10. Choosing an orthogonal basis {e1, . . . , en} in Ker(H −λ), the spectral projec-
tion corresponding to λ can then be defined in the usual way, setting

Πλ(H)u :=

n∑
j=1

〈ej , u〉ej , u ∈ H.

One readily checks that Πλ(H)∗ = Πλ(H∗). The spectral projection Πp(H) onto the point spectral
subspace of H can then be defined as in Section 2.2. Modifying the previous proof in a straightfor-
ward way, we deduce the following.

Proposition 5.10. Suppose that Hypotheses 1-3 hold and that H is dissipative, Im(H) ≤ 0. Then

Hac(H) = Ran(Id−Πp(H)) = Hp(H∗)⊥.

Appendix A. Appendix to Section 4

In this appendix, we provide the proofs of Propositions 4.1 and 4.7. They consist in a suitable
adaptation of the corresponding proofs in [26] where the particular case of dissipative operators have
been considered.

Proof of Proposition 4.1. We prove the result in the case of an outgoing regular spectral point, the
proof in the case of an incoming regular spectral point is identical.

First we prove that (i)⇒(ii). Suppose that λ is an outgoing regular spectral point of H. There
exists ε0 > 0 such that, for all ε ∈ (0, ε0), RH(λ+ iε) exists in L(H). The resolvent identity gives

(Id−CRH(λ+ iε)CW )(Id +CR0(λ+ iε)CW ) = Id . (A.1)
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Thus Id +CR0(λ + iε)CW is surjective on H. Since CR0(λ + iε)CW is compact, the Fredholm
alternative implies that Id +CR0(λ+ iε)CW is invertible in L(H). Letting ε→ 0+, using that the
limits in (4.1) exist, we obtain from (A.1) that

(Id−CRH(λ+ i0+)CW )(Id +CR0(λ+ i0+)CW ) = Id .

Thus Id +CR0(λ+ i0+)CW is surjective, and hence invertible in L(H) by the Fredholm alternative.
Next we prove that (ii)⇒(i). Suppose that Id +CR0(λ+ i0+)CW is invertible in L(H). Suppose

by contradiction that λ is an accumulation point of eigenvalues of H located in λ + i(0,∞). Then
there exists a sequence (εn)n∈N of positive real numbers such that εn → 0 as n → ∞ and, for all
n ∈ N, vectors un ∈ H, ‖un‖H = 1, such that

(H − (λ+ iεn))un = 0.

Applying CR0(λ+ iεn) to this equations yields

CR0(λ+ iεn)(H − (λ+ iεn))un = (Id +CR0(λ+ iεn)CW )Cun = 0.

Since Id +CR0(λ+ i0+)CW is invertible in L(H), for n large enough, Id +CR0(λ+ iεn)CW is also
invertible. Therefore CR0(λ+ iεn)(H− (λ+ iεn)) is injective, which is a contradiction since un 6= 0.

It remains to show that CRH(λ + iε)CW converges in L(H) as ε → 0+. Since for ε > 0 small
enough Id +CR0(λ+ iε)CW is invertible in L(H), (A.1) gives

CRH(λ+ iε)CW =
(

Id +CR0(λ+ iε)CW
)−1 − Id,

This proves that
CRH(λ+ i0+)CW =

(
Id +CR0(λ+ i0+)CW

)−1 − Id

exists in L(H). �

Before proving Proposition 4.7, we recall the proof of Lemma 4.2 which was used several times in
the main text.

Proof of Lemma 4.2. Consider for instance the operator R0 (λ+ iε)C. Let ε > 0, u ∈ H. We have

‖R0 (λ+ iε)Cu‖2H = 〈R0 (λ+ iε)Cu,R0 (λ+ iε)Cu〉H

=
1

2iε
〈Cu, [R0 (λ+ iε)−R0 (λ− iε)]Cu〉H

=
1

ε
Im (〈u,CR0 (λ+ iε)Cu〉H) .

Since the limits (4.1) exist, there exists c0 > 0 such that

sup
ε>0

Im (〈u,CR0 (λ+ iε)Cu〉H) ≤ c2
0 ‖u‖

2
H .

Hence
‖R0 (λ+ iε)Cu‖2H ≤

1

ε
c2

0 ‖u‖
2
H .

This proves the lemma for R0 (λ+ iε)C. The proof for R0 (λ− iε)C is identical. �

Proof of Proposition 4.7. Again, we prove the result in the case of an outgoing regular spectral point,
the proof in the case of an incoming regular spectral point being identical.

(ii)⇒(i) is obvious. We prove that (i)⇒(ii). Suppose that λ is an outgoing regular spectral point.
By Proposition 4.1,

A(λ) := Id +CR0(λ+ i0+)CW

is invertible in L(H). Since the maps in (4.10) extend by continuity to D̊(λ, r) ∩ C̄±, there exists a
compact interval Kλ ⊂ R whose interior contains λ such that, for all µ ∈ Kλ, A(µ) is invertible. By
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Proposition 4.1, this implies that each µ ∈ Kλ is not an accumulation point of eigenvalues located
in µ + i(0,∞) and that, for all µ ∈ Kλ, CRH(µ + i0+)CW exists in L(H). Finally, the fact that
the limit

CRH(µ+ i0+)CW = lim
ε→0+

CRH(µ+ iε)CW = (Id +CR0(µ+ i0+)CW )−1 − Id

is uniform in µ ∈ Kλ follows from the continuity of the map z 7→ (Id +CR0(z)CW )−1 on D̊(λ, r) ∩
C̄+. �

Appendix B. Appendix to Section 5

Proof of Propositions 5.1 and 5.2. To prove the existence of the weak limit in (5.2), we use twice
the resolvent formula, which gives for ε ∈ (0, ε0), ε0 > 0 small enough,

RH(λ± iε) = R0(λ± iε)−R0(λ± iε)VR0(λ± iε) +R0(λ± iε)VRH(λ± iε)VR0(λ± iε). (B.1)

Stone’s formula for the self-adjoint operator H0 shows that

w-lim
ε→0+

1

2πi

∫
I

(
R0(λ+ iε)−R0(λ− iε)

)
dλ = 1I(H0) (B.2)

in L(H). Since CR0(λ± iε)u converge in L2(I;H) as ε→ 0+ by Hypothesis 1, we deduce that the
weak limits

w-lim
ε→0+

∫
I
R0(λ± iε)VR0(λ± iε)dλ = w-lim

ε→0+

∫
I
R0(λ± iε)CWCR0(λ± iε)dλ (B.3)

exist in L(H). For the last term from (B.1), we write

w-lim
ε→0+

∫
I
R0(λ± iε)CWCRH(λ± iε)CWCR0(λ± iε)dλ

= w-lim
ε→0+

∫
I
R0(λ± i0+)CWCRH(λ± iε)CWCR0(λ± i0+)dλ, (B.4)

where we used that, for all u ∈ H, λ 7→ CR0(λ ± iε)u converge in L2(I;H) as ε → 0+, together
with the fact that CRH(λ ± iε)CW is uniformly bounded in ε ∈ (0, ε0) by (5.1). Since λ 7→
CR0(λ ± i0+)u belongs to L2(I,H) for all u ∈ H, combining the fact that CRH(λ ± iε)CW
converges to CRH(λ± i0+)CW in L(H) for a.e. λ ∈ I and again that CRH(λ± iε)CW is uniformly
bounded in ε ∈ (0, ε0), we obtain

lim
ε→0+

∫
I

〈
u,R0(λ± iε)CWCRH(λ± iε)CWCR0(λ± iε)v

〉
dλ

=

∫
I

〈
CR0(λ∓ i0+)u,WCRH(λ± i0+)CWCR0(λ± i0+)v

〉
dλ, (B.5)

by Lebesgue’s dominated convergence theorem.
Equations (B.1)–(B.5) prove that the weak limit in (5.2) exists. Moreover, for all u, v ∈ H, we

have that

〈u,1I(H)v〉 = 〈u,1I(H0)v〉 − 1

2iπ

∫
I

〈
CR0(λ∓ i0+)u,WCR0(λ± i0+)v

〉
dλ

+
1

2iπ

∫
I

〈
CR0(λ∓ i0+)u,WCRH(λ± i0+)CWCR0(λ± i0+)v

〉
dλ.

By the same argument, we obtain that (5.6) is a Banach algebra morphism. Equation (5.4) is easily
proven, while (5.3), (5.7) and (5.8) follow as in [25]. �
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Proof of Propositions 5.3 and 5.4. The proof has the same structure as that of Propositions 5.1 and
5.2, with the following modifications. First, (B.2) is replaced by the following argument. We write∫

I

(
h(λ+ iε)R0(λ+ iε)− h(λ− iε)R0(λ− iε)

)
dλ

=

∫
I
h(λ)

(
R0(λ+ iε)−R0(λ− iε)

)
dλ

+

∫
I

(
[h(λ+ iε)− h(λ)]R0(λ+ iε)− [h(λ− iε)− h(λ)]R0(λ− iε)

)
dλ.

For the first term, since H0 is self-adjoint, we have

w-lim
ε→0+

1

2πi

∫
I
h(λ)

(
R0(λ+ iε)−R0(λ− iε)

)
dλ = h(H0). (B.6)

For the second term, we use the mean-value Theorem together with the Cauchy-Schwarz inequality,
writing for all u, v ∈ H,∫

I

∣∣〈u, [h(λ± iε)− h(λ)]R0(λ± iε)v
〉
H
∣∣dλ

≤ ε‖u‖H
(∫

I

(
sup

0<ε<ε0

|h′(λ± iε)|
)2

dλ
) 1

2
(∫

I

∥∥R0(λ± iε)v
∥∥2

Hdλ
) 1

2
. (B.7)

The first integral is bounded by (5.10). The second integral can be rewritten as∫
I

∥∥R0(λ± iε)v
∥∥2

Hdλ =

∫
I

〈
v,R0(λ∓ iε)R0(λ± iε)v

〉
Hdλ

=
1

2iε

∫
I

〈
v,
(
R0(λ− iε)−R0(λ+ iε)

)
v
〉
Hdλ, (B.8)

from which we deduce that (∫
I

∥∥R0(λ± iε)v
∥∥2

Hdλ
) 1

2 ≤ cε−
1
2 ‖v‖H. (B.9)

Together with (B.6), (B.7) and (B.8), this implies that

w-lim
ε→0+

1

2πi

∫
I

(
h(λ+ iε)R0(λ+ iε)− h(λ− iε)R0(λ− iε)

)
dλ = h(H0).

The rest of the proof follows in the same way as in the proof of Propositions 5.1 and 5.2 (see
in particular (B.3) and (B.4)), using that h(λ ± iε) and h(λ ± iε)CRH(λ ± iε)CW are uniformly
bounded in ε ∈ (0, ε0). �

In the proof of the spectral resolution formula stated in Proposition 3.10, we used Lemma 5.5
which we now prove. The arguments are similar to those used in the previous proofs.

Proof of Lemma 5.5. To prove (i), it suffices to use the resolvent equation (B.1) together with the
fact that V = CWC and the estimates ‖R0(λ ± iε)‖L(H) ≤ ε−1, ‖CR0(λ ± iε)‖L(H) ≤ cε−1/2 (see
Lemma 4.2) and ‖CR(H ± iε)CW‖L(H) ≤ c by (5.1).
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To prove (ii), we use again (B.1), writing∫
I
‖RH(λ± iε)u‖2Hdλ ≤ 2

∫
I
‖R0(λ± iε)u‖2Hdλ

+ 2

∫
I
‖R0(λ± iε)CWCR0(λ± iε)u‖2Hdλ

+ 2

∫
I
‖R0(λ± iε)CWCRH(λ± iε)CWCR0(λ± iε)u‖2Hdλ.

By (B.9), the first term is bounded cε−1. The same holds for the second and third terms, using
again that ‖CR0(λ± iε)‖L(H) ≤ cε−1/2 and ‖CR(H ± iε)CW‖L(H) ≤ c. �

References

[1] M. Aafarani, Large time behavior of solutions to Schrödinger equation with complex-valued po-
tential, J. Math. Pures Appl., 150, (2021), 64–111.

[2] S. Agmon, Spectral properties of Schrödinger operators and scattering theory, Ann. Scuola Norm.
Sup. Pisa Cl. Sci., 2, (1975), 151–218.

[3] J-P. Antoine and C. Trapani, Partial inner product spaces, metric operators and generalized
hermicity, J.Phys. A: Math Theor., 46, (2013), 21p.

[4] F. Bagarello, J.-P. Gazeau, H.F Szafraniec, M. Znojil, Non-Selfadjoint Operators in Quantum
Physics. Mathematical Aspects, Hoboken, NJ: John Wiley & Sons, Inc, Hoboken, NJ, 2015.

[5] C.M. Bender, S. Boettcher. Real spectra in non-Hermitian Hamiltonians having PT symmetry,
Phys. Rev. Lett., 80, (1998), 5243–5246.

[6] J. Behrndt, A. F. M. ter Elst, F. Gesztesy, The Generalized Birman-Schwinger Principle,
arXiv:2005.01195, (2020).

[7] N. Bohr. Neutron capture and nuclear constitution, Nature, 137, (1936), 344–348.
[8] D. Borisov and D. Krejcirik, PT-symmetric waveguides, Integral Equations Operator Theory,

62, (2008), no. 4, 489–515.
[9] D. Borisov and D. Krejcirik, The effective Hamiltonian for thin layers with non-Hermitian

Robin-type boundary conditions, Asympt. Anal., 76, (2012), 49–59.
[10] N. Boussaid, A. Comech, Limiting absorption principle and virtual levels of operators in Banach

spaces, Ann. Math. Qué., 46, No. 1, (2022), 161–180.
[11] H.L. Cycon, R.G. Froese, W. Kirsch, B. Simon, Schrödinger operators, with application to

quantum mechanics and global geometry, Springer Study edition, Texts and Monographs in
Physics, 1987.

[12] E. B. Davies. Two-channel Hamiltonians and the optical model of nuclear scattering, Ann. Inst.
H. Poincaré Sect. A (N.S.), 29, (1978), 395–413.

[13] E. B. Davies. Nonunitary scattering and capture. I. Hilbert space theory, Comm. Math. Phys.
(3) 71, (1980), 277–288.

[14] E.B. Davies, The functional calculus, J. Lond. Math. Soc., 52, (1995), 166–176.
[15] E. B. Davies. Linear operators and their spectra, volume 106 of Cambridge Studies in Advanced

Mathematics. Cambridge University Press, Cambridge, 2007.
[16] W.H. Dickhoff and R.J. Charity. Recent developments for the optical model of nuclei, Prog.

Part. Nucl. Phys., 105, (2019), 252–299.
[17] P. Dorey, C. Dunning, and R. Tateo, Spectral equivalences, Bethe ansatz equations, and reality

properties in PT-symmetric quantum mechanics, J. Phys. A, 34, (2001), 5679–5704.
[18] N. Dunford. A survey of the theory of spectral operators, Bull. Amer. Math. Soc., 64, (1958),

217–274.



40 J. FAUPIN AND N. FRANTZ

[19] N. Dunford and J. T. Schwartz. Linear operators. Part III: Spectral operators, Interscience
Publishers [John Wiley & Sons, Inc.], New York-London-Sydney, 1971.

[20] S. Dyatlov and M. Zworski. Mathematical theory of scattering resonances, AMS studies in
Mathematics 200, 2019.

[21] R. El-Ganainy, K.G. Makris, M. Khajavikhan, Z.H. Musslimani, S. Rotter and D. N.
Christodoulides, Non-Hermitian physics and PT symmetry, Nature Physics, 14, (2018), 11–
19.

[22] K.-J. Engel and R. Nagel, One-parameter semigroups for linear evolution equations, volume 194
of Graduate Texts in Mathematics. Springer-Verlag, New York, 2000.

[23] M. Falconi, J. Faupin, J. Fröhlich and B. Schubnel, Scattering Theory for Lindblad Master
Equations, Comm. Math. Phys., (3) 350, (2017), 1185–1218.

[24] J. Faupin, Generic nature of asymptotic completeness in dissipative scattering theory, Rev.
Math. Phys., 33, No. 1, (2021), 23 p.

[25] J. Faupin and J. Fröhlich, Asymptotic completeness in dissipative scattering theory, Adv. Math.,
340, (2018), 300–362.

[26] J. Faupin and F. Nicoleau, Scattering matrices for dissipative quantum systems, J. Funct. Anal.,
9, (2019), 3062–3097.

[27] H. Feshbach, Unified theory of nuclear reactions, Ann. Phys. (NY), (1958), 357–390.
[28] H. Feshbach, The optical model and its justification, Ann. Rev. Nucl. Sci., 8, (1958).
[29] H. Feshbach, A unified theory of nuclear reactions II. Ann. Phys. (NY), (1962), 287–313.
[30] H. Feshbach, Theoretical Nuclear Physics, Nuclear Reactions, Wiley, New York, 1992.
[31] H. Feshbach, C. Porter and V. Weisskopf. Model for nuclear reactions with neutrons, Phys. Rev.,

96, (1954), 448–464.
[32] R. L. Frank, Eigenvalue bounds for Schrödinger operators with complex potentials. III, Trans.

Amer. Math. Soc., 370, (2018), 219–240.
[33] R. L. Frank, A. Laptev, and O. Safronov, On the number of eigenvalues of Schrödinger operators

with complex potentials, J. Lond. Math. Soc., (2) 94, (2016), 377–390.
[34] V. Georgescu, C. Gérard and D. Häfner, Boundary values of resolvents of selfadjoint operators

in Krein spaces, J. Funct. Anal., 265, No. 12, (2013), 3245–3304.
[35] F. Gesztesy, Y. Latushkin, M. Mitrea and M. Zinchenko, Non-self-adjoint operators, infinite

determinants and some applications, Russ. J. Math. Phys., 12, (2005), 443–471.
[36] C. Goldstein, Perturbation of non-selfadjoint operators. I, Arch. Rational Mech. Anal., 37,

(1970), 268–296.
[37] C. Goldstein, Perturbation of non-selfadjoint operators. II, Arch. Rational Mech. Anal., 42,

(1971), 380–402.
[38] M. Hansmann and D. Krejcirik, The abstract Birman-Schwinger principle and spectral stability,

arXiv:2010.15102.
[39] P. E. Hodgson, The nuclear optical model, Rep. Prog. Phys., 34, (1971), 765–819.
[40] G. E. Huige, Perturbation theory of some spectral operators, Comm. Pure Appl. Math., 24,

(1971), 741–757.
[41] A. Jensen and T. Kato, Spectral properties of Schrödinger operators and time-decay of the wave

functions, Duke Math. J., 46, (1979), no. 3, 583–611.
[42] T. Kato, Wave operators and similarity for some non-selfadjoint operators, Math. Ann., 162,

(1965/1966), 258–279.
[43] T. Kato. Perturbation theory for linear operatorsDie Grundlehren der mathematischen Wis-

senschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966.
[44] A.V. Kiselev and S. Naboko, Nonself-adjoint operators with almost Hermitian spectrum: Cayley

identity and some questions of spectral structure, Ark. Mat., 47, (2009), 91–125.



SPECTRAL DECOMPOSITION OF SOME NON-SELF-ADJOINT OPERATORS 41

[45] D. Krejcirik, Calculation of the metric in the Hilbert space of a PT-symmetric model via the
spectral theorem, J. Phys. A: Math. Theor., 41, (2008), 244012.

[46] D. Krejcirik, Mathematical aspects of quantum mechanics with non-self-adjoint operators, Ha-
bilitation Thesis, Universitas Carolina Pragensis, 2017.

[47] D. Krejcirik, H. Bila and M. Znojil, Closed formula for the metric in the Hilbert space of a
PT-symmetric model, J. Phys. A, 39, (2006), 10143–10153.

[48] D. Krejcirik, P. Siegl, M. Tater and J. Viola, Pseudospectra in non-Hermitian quantum mechan-
ics, J. Math. Phys., 56, (2015), 103513.

[49] D. Krejcirik, P. Siegl and J. Zelezny, On the similarity of Sturm-Liouville operators with non-
Hermitian boundary conditions to self-adjoint and normal operators, Complex Anal. Oper. The-
ory, 8, (2014), 255–281.

[50] R. Konno and S. T. Kuroda, On the finiteness of perturbed eigenvalues, J. Fac. Sci., Univ.
Tokyo, Sec. I, 13, (1966), 55–63.

[51] S. Longhi, Bloch Oscillations in Complex Crystals with PT Symmetry, Phys. Rev. Lett., 103,
(2009), 123601.

[52] P. A. Martin, Scattering theory with dissipative interactions and time delay, Nuovo Cimento B,
30, (1975), 217–238.

[53] K. Mochizuki, On the large perturbation by a class of non-selfadjoint operators, J. Math. Soc.
Japan, 19, (1967), 123–158.

[54] K. Mochizuki, Eigenfunction expansions associated with the Schrödinger operator with a complex
potential and the scattering theory, Publ. Res. Inst. Math. Sci. Ser. A, 4, (1968/69), 419–466.

[55] A. Mostafazadeh, Pseudo-Hermiticity versus PT symmetry: II. A complete characterization of
non-Hermitian Hamiltonians with a real spectrum, J. Math. Phys., 43, (2002), 2814–2816.

[56] S.N. Naboko, Absolutely continuous spectrum of a nondissipative operator, and a functional
model. I, Zap. Nauchn. Sem. Leningrad. Otdel Mat. Inst. Steklov., 65, (1976), 90–02 (Russian).
English transl.: J. Soviet Math., 16, (1981), 1109–1117.

[57] V. Petkov, Scattering theory for hyperbolic operators, volume 21 of Studies in Mathematics and
its Applications, North-Holland Publishing Co., Amsterdam, 1989.

[58] M. Reed and B. Simon. Methods of modern mathematical physics. I–IV. Academic Press
[Harcourt Brace Jovanovich, Publishers], New York-London, 1975–1980.

[59] A. Regensburger, Ch. Bersch, M.-A. Miri, G. Onishchukov, D. N. Christodoulides, and U.
Peschel, Parity-time synthetic photonic lattices, Nature, 488, (2012), 167–171.

[60] W. Rudin, Function theory in the Unit Ball of Cn, New York, NY: Springer New York, 1980.
[61] Ch. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip,

Observation of parity-time symmetry in optics, Nature Phys., 6, (2010), 192–195.
[62] J. Schwartz, Some non-selfadjoint operators, Comm. Pure Appl. Math., 13, (1960), 609–639.
[63] K. C. Shin, On the reality of the eigenvalues for a class of PT-symmetric oscillators, Commun.

Math. Phys., 229, (2002), 543–564.
[64] B. Simon. Phase space analysis of simple scattering systems: extensions of some work of Enss,

Duke Math. J., 46, (1979), 119–168.
[65] X. P. Wang, Number of eigenvalues for dissipative Schrödinger operators under perturbation, J.

Math. Pures Appl., 96, (2011) 409–422.
[66] X. P. Wang. Time-decay of semigroups generated by dissipative Schrödinger operators J. Differ-

ential Equations, 253, (2012), 3523–3542.
[67] X.P. Wang, Gevrey estimates of the resolvent and sub-exponential time-decay for the heat and

Schrödinger semigroups, J. Math. Pures Appl., 135, (2020), 284–338.
[68] X. P. Wang and L. Zhu, On the wave operator for dissipative potentials with small imaginary

part, Asymptot. Anal., 86, (2014), 49–57.



42 J. FAUPIN AND N. FRANTZ

[69] Z. Wen, C.M. Bender, PT-symmetric potentials having continuous spectra, J. Phys. A, 53,
(2020), 375302.

[70] D. R. Yafaev. Mathematical scattering theory, volume 105 of Translations of Mathematical
Monographs. American Mathematical Society, Providence, RI, 1992.

[71] D. R. Yafaev. Mathematical scattering theory, Analytic theory, Mathematical Surveys and
Monographs 158. American Mathematical Society, Providence, RI, 2010.

(J. Faupin) Institut Elie Cartan de Lorraine, Université de Lorraine, 57045 Metz Cedex 1, France
E-mail address: jeremy.faupin@univ-lorraine.fr

(N. Frantz) Institut Elie Cartan de Lorraine, Université de Lorraine, 57045 Metz Cedex 1, France
E-mail address: nicolas.frantz@univ-lorraine.fr


	1. Introduction
	2. Abstract setting
	2.1. The model
	2.2. Spectral subspaces, spectral projections
	2.3. Extension of the Hilbert space
	2.4. Regular spectral points and spectral singularities

	3. Assumptions and main results
	3.1. Hypotheses
	3.2. Main results
	3.3. Application to Schrödinger operators
	3.4. Organisation of the paper and ingredients of the proof

	4. Spectral singularities
	4.1. Birmann-Schwinger principle for spectral singularities
	4.2. Proof of Theorem 3.1
	4.3. Spectral singularities of the adjoint operator
	4.4. Embedded eigenvalues
	4.5. Local spectral regularity
	4.6. Spectral singularities for dissipative operators

	5. Spectral resolution formula and spectral subspaces
	5.1. Functional calculus in intervals not containing spectral singularities
	5.2. `Regularized' functional calculus
	5.3. Spectral resolution formula
	5.4. Proof of Theorem ??
	5.5. Proof of Theorem 3.3

	Appendix A. Appendix to Section 4
	Appendix B. Appendix to Section 5
	References

