The Energy-Momentum tensor on low dimensional Spin c manifolds

Georges Habib
Lebanese University, Faculty of Sciences II, Department of Mathematics
P.O. Box 90656 Fanar-Matn, Lebanon
ghabib@ul.edu.lb
Roger Nakad
Max Planck Institute for Mathematics, Vivatsgasse 7, 53111 Bonn, Germany
nakad@mpim-bonn.mpg.de

On a compact surface endowed with any $\operatorname{Spin}^{\text {c }}$ structure, we give a formula involving the Energy-Momentum tensor in terms of geometric quantities. A new proof of a Bär-type inequality for the eigenvalues of the Dirac operator is given. The round sphere \mathbb{S}^{2} with its canonical Spin ${ }^{c}$ structure satisfies the limiting case. Finally, we give a spinorial characterization of immersed surfaces in $\mathbb{S}^{2} \times \mathbb{R}$ by solutions of the generalized Killing spinor equation associated with the induced Spin $^{\text {c }}$ structure on $\mathbb{S}^{2} \times \mathbb{R}$.

Keywords: Spin ${ }^{\text {c }}$ structures, Dirac operator, eigenvalues, Energy-Momentum tensor, compact surfaces, isometric immersions.

Mathematics subject classifications (2000): 53C27, 53C40, 53C80.

1 Introduction

On a compact Spin surface, Th. Friedrich and E.C. Kim proved that any eigenvalue λ of the Dirac operator satisfies the equality [9, Thm. 4.5]:

$$
\begin{equation*}
\lambda^{2}=\frac{\pi \chi(M)}{\operatorname{Area}(M)}+\frac{1}{\operatorname{Area}(M)} \int_{M}\left|T^{\psi}\right|^{2} v_{g} \tag{1.1}
\end{equation*}
$$

where $\chi(M)$ is the Euler-Poincaré characteristic of M and T^{ψ} is the field of quadratic forms called the Energy-Momentum tensor. It is given on the complement set of zeroes of the eigenspinor ψ by

$$
T^{\psi}(X, Y)=g\left(\ell^{\psi}(X), Y\right)=\frac{1}{2} \operatorname{Re}\left(X \cdot \nabla_{Y} \psi+Y \cdot \nabla_{X} \psi, \frac{\psi}{|\psi|^{2}}\right)
$$

for every $X, Y \in \Gamma(T M)$. Here ℓ^{ψ} is the field of symmetric endomorphisms associated with the field of quadratic forms T^{ψ}. We should point out that
since ψ is an eigenspinor, the zero set is discret [3]. The proof of Equality (1.1) relies mainly on a local expression of the covariant derivative of ψ and the use of the Schrödinger-Lichnerowicz formula. This equality has many direct consequences. First, since the trace of ℓ^{ψ} is equal to λ, we have by the CauchySchwarz inequality that $\left|\ell^{\psi}\right|^{2} \geqslant \frac{\left(\operatorname{tr}\left(\ell^{\psi}\right)\right)^{2}}{n}=\frac{\lambda^{2}}{2}$, where tr denotes the trace of ℓ^{ψ}. Hence, Equality (1.1) implies the Bär inequality [2] given by

$$
\begin{equation*}
\lambda^{2} \geqslant \lambda_{1}^{2}:=\frac{2 \pi \chi(M)}{\operatorname{Area}(M)} . \tag{1.2}
\end{equation*}
$$

Moreover, from Equality (1.1), Th. Friedrich and E.C. Kim 9 deduced that $\int_{M} \operatorname{det}\left(T^{\psi}\right) v_{g}=\pi \chi(M)$, which gives an information on the Energy-Momentum tensor without knowing the eigenspinor nor the eigenvalue. Finally, for any closed surface M in \mathbb{R}^{3} of constant mean curvature H, the restriction to M of a parallel spinor on \mathbb{R}^{3} is a generalized Killing spinor of eigenvalue $-H$ with Energy-Momentum tensor equal to the Weingarten tensor $I I$ (up to the factor $-\frac{1}{2}$) [21] and we have by (1.1)

$$
H^{2}=\frac{\pi \chi(M)}{\operatorname{Area}(M)}+\frac{1}{4 \operatorname{Area}(M)} \int_{M}|I I|^{2} v_{g} .
$$

Indeed, given any surface M carrying such a spinor field, Th. Friedrich [8] showed that the Energy-Momentum tensor associated with this spinor satisfies the Gauss-Codazzi equations and hence M is locally immersed into \mathbb{R}^{3}.

Having a Spin ${ }^{\text {c }}$ structure on manifolds is a weaker condition than having a Spin structure because every Spin manifold has a trivial Spin ${ }^{c}$ structure. Additionally, any compact surface or any product of a compact surface with \mathbb{R} has a $\operatorname{Spin}^{\text {c }}$ structure carrying particular spinors. In the same spirit as in [14], when using a suitable conformal change, the second author [23] established a Bär-type inequality for the eigenvalues of the Dirac operator on a compact surface endowed with any $\operatorname{Spin}^{\text {c }}$ structure. In fact, any eigenvalue λ of the Dirac operator satisfies

$$
\begin{equation*}
\lambda^{2} \geqslant \lambda_{1}^{2}:=\frac{2 \pi \chi(M)}{\operatorname{Area}(M)}-\frac{1}{\operatorname{Area}(M)} \int_{M}|\Omega| v_{g}, \tag{1.3}
\end{equation*}
$$

where $i \Omega$ is the curvature form of the connection on the line bundle given by the Spin $^{\text {c }}$ structure. Equality is achieved if and only if the eigenspinor ψ associated with the first eigenvalue λ_{1} is a Killing Spin ${ }^{\text {c }}$ spinor, i.e., for every $X \in \Gamma(T M)$ the eigenspinor ψ satisfies

$$
\left\{\begin{array}{l}
\nabla_{X} \psi=-\frac{\lambda_{1}}{2} X \cdot \psi \tag{1.4}\\
\Omega \cdot \psi=i|\Omega| \psi
\end{array}\right.
$$

Here $X \cdot \psi$ denotes the Clifford multiplication and ∇ the spinorial Levi-Civita connection [7.

Studying the Energy-Momentum tensor on a compact Riemannian Spin or Spin ${ }^{\text {c }}$ manifolds has been done by many authors, since it is related to several geometric situations. Indeed, on compact Spin manifolds, J.P. Bourguignon and P. Gauduchon 5] proved that the Energy-Momentum tensor appears naturally
in the study of the variations of the spectrum of the Dirac operator. Th. Friedrich and E.C. Kim 10 obtained the Einstein-Dirac equation as the EulerLagrange equation of a certain functional. The second author extented these last two results to $\mathrm{Spin}^{\mathrm{c}}$ manifolds [24]. Even if it is not a computable geometric invariant, the Energy-Momentum tensor is, up to a constant, the second fundamental form of an isometric immersion into a Spin or Spin ${ }^{c}$ manifold carrying a parallel spinor 21, 24. For a better understanding of the tensor q^{φ} associated with a spinor field φ, the first author [12] studied Riemannian flows and proved that, if the normal bundle carries a parallel spinor ψ, the tensor q^{φ} associated with φ (the restriction of ψ to the flow) is the O'Neill tensor of the flow.

In this paper, we give a formula corresponding to (1.1) for any eigenspinor ψ of the square of the Dirac operator on compact surfaces endowed with any $\operatorname{Spin}^{\text {c }}$ structure (see Theorem (3.1). It is motivated by the following two facts: First, when we consider eigenvalues of the square of the Dirac operator, another tensor field is of interest. It is the skew-symmetric tensor field Q^{ψ} given by

$$
Q^{\psi}(X, Y)=g\left(q^{\psi}(X), Y\right)=\frac{1}{2} \operatorname{Re}\left(X \cdot \nabla_{Y} \psi-Y \cdot \nabla_{X} \psi, \frac{\psi}{|\psi|^{2}}\right)
$$

for all vector fields $X, Y \in \Gamma(T M)$. This tensor was studied by the first author in the context of Riemannian flows [12. Second, we consider any compact surface M immersed in $\mathbb{S}^{2} \times \mathbb{R}$ where \mathbb{S}^{2} is the round sphere equipped with a metric of curvature one. The Spin^{c} structure on $\mathbb{S}^{2} \times \mathbb{R}$, induced from the canonical one on \mathbb{S}^{2} and the Spin struture on \mathbb{R}, admits a parallel spinor [22]. The restriction to M of this $\operatorname{Spin}^{\text {c }}$ structure is still a Spin ${ }^{\text {c }}$ structure with a generalized Killing spinor 24.

In Section 2] we recall some basic facts on Spin^{c} structures and the restrictions of these structures to hypersurfaces. In Section 3 and after giving a formula corresponding to (1.1) for any eigenspinor ψ of the square of the Dirac operator, we deduce a formula for the integral of the determinant of $T^{\psi}+Q^{\psi}$ and we establish a new proof of the Bär-type inequality (1.3). In Section 4, we consider the 3 -dimensional case and treat examples of hypersurfaces in $\mathbb{C P}^{2}$. In the last section, we come back to the question of a spinorial characterisation of surfaces in $\mathbb{S}^{2} \times \mathbb{R}$. Here we use a different approach than the one in [25]. In fact, we prove that given any surface M carrying a generalized Killing spinor associated with a particular Spin c structure, the Energy-Momentum tensor satisfies the four compatibility equations stated by B. Daniel [6]. Thus there exists a local immersion of M into $\mathbb{S}^{2} \times \mathbb{R}$.

2 Preliminaries

In this section, we begin with some preliminaries concerning Spin ${ }^{\text {c }}$ structures and the Dirac operator. Details can be found in [18], [20], [7], [23] and [24].

The Dirac operator on $\operatorname{Spin}^{\text {c }}$ manifolds: Let $\left(M^{n}, g\right)$ be a Riemannian manifold of dimension $n \geqslant 2$ without boundary. We denote by SOM
the SO_{n}-principal bundle over M of positively oriented orthonormal frames. A $\operatorname{Spin}^{\mathrm{c}}$ structure of M is a $\operatorname{Spin}_{n}^{c}$-principal bundle ($\operatorname{Spin}^{c} M, \pi, M$) and an \mathbb{S}^{1}-principal bundle $\left(\mathbb{S}^{1} M, \pi, M\right)$ together with a double covering given by $\theta: \operatorname{Spin}^{c} M \longrightarrow \operatorname{SOM} \times{ }_{M} \mathbb{S}^{1} M$ such that $\theta(u a)=\theta(u) \xi(a)$, for every $u \in \operatorname{Spin}^{c} M$ and $a \in \operatorname{Spin}_{n}^{c}$, where ξ is the 2 -fold covering of $\operatorname{Spin}_{n}^{c}$ over $\mathrm{SO}_{n} \times \mathbb{S}^{1}$. Let $\Sigma M:=\operatorname{Spin}^{\mathrm{c}} M \times{ }_{\rho_{n}} \Sigma_{n}$ be the associated spinor bundle where $\Sigma_{n}=\mathbb{C}^{2\left[\frac{n}{2}\right]}$ and $\rho_{n}: \operatorname{Spin}_{n}^{c} \longrightarrow \operatorname{End}\left(\Sigma_{n}\right)$ denotes the complex spinor representation. A section of ΣM will be called a spinor field. The spinor bundle ΣM is equipped with a natural Hermitian scalar product denoted by (.,.). We define an L^{2}-scalar product $\langle\psi, \varphi\rangle=\int_{M}(\psi, \varphi) v_{g}$, for any spinors ψ and φ.
Additionally, any connection 1-form $A: T\left(\mathbb{S}^{1} M\right) \longrightarrow i \mathbb{R}$ on $\mathbb{S}^{1} M$ and the connection 1-form ω^{M} on SOM, induce a connection on the principal bundle $\mathrm{SO} M \times_{M} \mathbb{S}^{1} M$, and hence a covariant derivative ∇ on $\Gamma(\Sigma M)$ 7, 24]. The curvature of A is an imaginary valued 2 -form denoted by $F_{A}=d A$, i.e., $F_{A}=i \Omega$, where Ω is a real valued 2 -form on $\mathbb{S}^{1} M$. We know that Ω can be viewed as a real valued 2 -form on M [7, 17]. In this case $i \Omega$ is the curvature form of the associated line bundle L. It is the complex line bundle associated with the \mathbb{S}^{1}-principal bundle via the standard representation of the unit circle. For every spinor ψ, the Dirac operator is locally defined by

$$
D \psi=\sum_{i=1}^{n} e_{i} \cdot \nabla_{e_{i}} \psi
$$

where $\left(e_{1}, \ldots, e_{n}\right)$ is a local oriented orthonormal tangent frame and "." denotes the Clifford multiplication. The Dirac operator is an elliptic, self-adjoint operator with respect to the L^{2}-scalar product and verifies, for any spinor field ψ, the Schrödinger-Lichnerowicz formula

$$
\begin{equation*}
D^{2} \psi=\nabla^{*} \nabla \psi+\frac{1}{4} S \psi+\frac{i}{2} \Omega \cdot \psi \tag{2.1}
\end{equation*}
$$

where Ω. is the extension of the Clifford multiplication to differential forms given by $\left(e_{i}^{*} \wedge e_{j}^{*}\right) \cdot \psi=e_{i} \cdot e_{j} \cdot \psi$. For any spinor $\psi \in \Gamma(\Sigma M)$, we have 13

$$
\begin{equation*}
(i \Omega \cdot \psi, \psi) \geqslant-\frac{c_{n}}{2}|\Omega|_{g}|\psi|^{2} \tag{2.2}
\end{equation*}
$$

where $|\Omega|_{g}$ is the norm of Ω, with respect to g given by $|\Omega|_{g}^{2}=\sum_{i<j}\left(\Omega_{i j}\right)^{2}$ in any orthonormal local frame and $c_{n}=2\left[\frac{n}{2}\right]^{\frac{1}{2}}$. Moreover, equality holds in (2.2) if and only if $\Omega \cdot \psi=i \frac{c_{n}}{2}|\Omega|_{g} \psi$.
Every Spin manifold has a trivial Spin c structure [7, 19. In fact, we choose the trivial line bundle with the trivial connection whose curvature $i \Omega$ is zero. Also every Kähler manifold M of complex dimension m has a canonical Spin ${ }^{\text {c }}$ structure. Let \ltimes by the Kähler form defined by the complex structure J, i.e. $\ltimes(X, Y)=g(J X, Y)$ for all vector fields $X, Y \in \Gamma(T M)$. The complexified cotangent bundle

$$
T^{*} M \otimes \mathbb{C}=\Lambda^{1,0} M \oplus \Lambda^{0,1} M
$$

decomposes into the $\pm i$-eigenbundles of the complex linear extension of the complex structure. Thus, the spinor bundle of the canonical Spin ${ }^{c}$ structure is given by

$$
\Sigma M=\Lambda^{0, *} M=\oplus_{r=0}^{m} \Lambda^{0, r} M
$$

where $\Lambda^{0, r} M=\Lambda^{r}\left(\Lambda^{0,1} M\right)$ is the bundle of r-forms of type $(0,1)$. The line bundle of this canonical Spin $^{\text {c }}$ structure is given by $L=\left(K_{M}\right)^{-1}=\Lambda^{m}\left(\Lambda^{0,1} M\right)$, where K_{M} is the canonical bundle of M [7, 19]. This line bundle L has a canonical holomorphic connection induced from the Levi-Civita connection whose curvature form is given by $i \Omega=-i \rho$, where ρ is the Ricci form given by $\rho(X, Y)=\operatorname{Ric}(J X, Y)$. We point out that the canonical Spin ${ }^{c}$ structure on every Kähler manifold carries a parallel spinor [7, 22].

Spin c hypersurfaces and the Gauss formula: Let \mathcal{Z} be an oriented $(n+1)$-dimensional Riemannian Spin c manifold and $M \subset \mathcal{Z}$ be an oriented hypersurface. The manifold M inherits a Spin^{c} structure induced from the one on \mathcal{Z}, and we have [24]

$$
\Sigma M \simeq \begin{cases}\Sigma \mathcal{Z}_{\left.\right|_{M}} & \text { if } n \text { is even } \\ \Sigma^{+} \mathcal{Z}_{\left.\right|_{M}} & \text { if } n \text { is odd }\end{cases}
$$

Moreover Clifford multiplication by a vector field X, tangent to M, is given by

$$
\begin{equation*}
X \bullet \varphi=(X \cdot \nu \cdot \psi)_{\left.\right|_{M}}, \tag{2.3}
\end{equation*}
$$

where $\psi \in \Gamma(\Sigma \mathcal{Z})$ (or $\psi \in \Gamma\left(\Sigma^{+} \mathcal{Z}\right)$ if n is odd), φ is the restriction of ψ to M, "." is the Clifford multiplication on \mathcal{Z}, " \bullet " that on M and ν is the unit normal vector. The connection 1 -form defined on the restricted \mathbb{S}^{1}-principal bundle $\left(P_{\mathbb{S}^{1}} M:=P_{\mathbb{S}^{1}} \mathcal{Z}_{\left.\right|_{M}}, \pi, M\right)$, is given by $A=\left.A^{\mathcal{Z}}\right|_{M}: T\left(P_{\mathbb{S}^{1}} M\right)=T\left(P_{\mathbb{S}^{1}} \mathcal{Z}\right)_{\left.\right|_{M}} \longrightarrow$ $i \mathbb{R}$. Then the curvature 2 -form $i \Omega$ on the \mathbb{S}^{1}-principal bundle $P_{\mathbb{S}^{1}} M$ is given by $i \Omega=i \Omega^{\mathcal{Z}}{ }_{\left.\right|_{M}}$, which can be viewed as an imaginary 2 -form on M and hence as the curvature form of the line bundle L^{M}, the restriction of the line bundle $L^{\mathcal{Z}}$ to M. For every $\psi \in \Gamma(\Sigma \mathcal{Z})\left(\psi \in \Gamma\left(\Sigma^{+} \mathcal{Z}\right)\right.$ if n is odd), the real 2-forms Ω and $\Omega^{\mathcal{Z}}$ are related by [24]

$$
\begin{equation*}
\left.\left(\Omega^{\mathcal{Z}} \cdot \psi\right)_{\left.\right|_{M}}=\Omega \bullet \varphi-(\nu\lrcorner \Omega^{\mathcal{Z}}\right) \bullet \varphi . \tag{2.4}
\end{equation*}
$$

We denote by $\nabla^{\Sigma \mathcal{Z}}$ the spinorial Levi-Civita connection on $\Sigma \mathcal{Z}$ and by ∇ that on ΣM. For all $X \in \Gamma(T M)$, we have the spinorial Gauss formula [24]:

$$
\begin{equation*}
\left(\nabla_{X}^{\mathcal{Z} \mathcal{Z}} \psi\right)_{\left.\right|_{M}}=\nabla_{X} \varphi+\frac{1}{2} I I(X) \bullet \varphi \tag{2.5}
\end{equation*}
$$

where $I I$ denotes the Weingarten map of the hypersurface. Moreover, Let $D^{\mathcal{Z}}$ and D^{M} be the Dirac operators on \mathcal{Z} and M, after denoting by the same symbol any spinor and its restriction to M, we have

$$
\begin{equation*}
\nu \cdot D^{\mathcal{Z}} \varphi=\widetilde{D} \varphi+\frac{n}{2} H \varphi-\nabla_{\nu}^{\Sigma \mathcal{Z}} \varphi \tag{2.6}
\end{equation*}
$$

where $H=\frac{1}{n} \operatorname{tr}(I I)$ denotes the mean curvature and $\widetilde{D}=D^{M}$ if n is even and $\widetilde{D}=D^{M} \oplus\left(-D^{M}\right)$ if n is odd.

3 The 2-dimensional case

In this section, we consider compact surfaces endowed with any Spin ${ }^{\text {c }}$ structure. We have

Theorem 3.1 Let $\left(M^{2}, g\right)$ be a Riemannian manifold and ψ an eigenspinor of the square of the Dirac operator D^{2} with eigenvalue λ^{2} associated with any Spin c structure. Then we have

$$
\lambda^{2}=\frac{S}{4}+\left|T^{\psi}\right|^{2}+\left|Q^{\psi}\right|^{2}+\Delta f+|Y|^{2}-2 Y(f)+\left(\frac{i}{2} \Omega \cdot \psi, \frac{\psi}{|\psi|^{2}}\right)
$$

where f is the real-valued function defined by $f=\frac{1}{2} \ln |\psi|^{2}$ and Y is a vector field on $T M$ given by $g(Y, Z)=\frac{1}{|\psi|^{2}} \operatorname{Re}(D \psi, Z \cdot \psi)$ for any $Z \in \Gamma(T M)$.

Proof. Let $\left\{e_{1}, e_{2}\right\}$ be an orthonormal frame of $T M$. Since the spinor bundle ΣM is of real dimension 4, the set $\left\{\frac{\psi}{|\psi|} \frac{e_{1} \cdot \psi}{|\psi|}, \frac{e_{2} \cdot \psi}{|\psi|}, \frac{e_{1} \cdot e_{2} \cdot \psi}{|\psi|}\right\}$ is orthonormal with respect to the real product $\operatorname{Re}(\cdot, \cdot)$. The covariant derivative of ψ can be expressed in this frame as

$$
\begin{equation*}
\nabla_{X} \psi=\delta(X) \psi+\alpha(X) \cdot \psi+\beta(X) e_{1} \cdot e_{2} \cdot \psi \tag{3.1}
\end{equation*}
$$

for all vector fields X, where δ and β are 1 -forms and α is a $(1,1)$-tensor field. Moreover β, δ and α are uniquely determined by the spinor ψ. In fact, taking the scalar product of (3.1) respectively with $\psi, e_{1} \cdot \psi, e_{2} \cdot \psi, e_{1} \cdot e_{2} \cdot \psi$, we get $\delta=\frac{d\left(|\psi|^{2}\right)}{2|\psi|^{2}}$ and

$$
\alpha(X)=-\ell^{\psi}(X)+q^{\psi}(X) \quad \text { and } \quad \beta(X)=\frac{1}{|\psi|^{2}} \operatorname{Re}\left(\nabla_{X} \psi, e_{1} \cdot e_{2} \cdot \psi\right)
$$

Using (2.1), it follows that

$$
\lambda^{2}=\frac{\Delta\left(|\psi|^{2}\right)}{2|\psi|^{2}}+|\alpha|^{2}+|\beta|^{2}+|\delta|^{2}+\frac{1}{4} S+\left(\frac{i}{2} \Omega \cdot \psi, \frac{\psi}{|\psi|^{2}}\right) .
$$

Now it remains to compute the term $|\beta|^{2}$. We have

$$
\begin{aligned}
|\beta|^{2} & =\frac{1}{|\psi|^{4}} \operatorname{Re}\left(\nabla_{e_{1}} \psi, e_{1} \cdot e_{2} \cdot \psi\right)^{2}+\frac{1}{|\psi|^{4}} \operatorname{Re}\left(\nabla_{e_{2}} \psi, e_{1} \cdot e_{2} \cdot \psi\right)^{2} \\
& =\frac{1}{|\psi|^{4}} \operatorname{Re}\left(D \psi-e_{2} \cdot \nabla_{e_{2}} \psi, e_{2} \cdot \psi\right)^{2}+\frac{1}{|\psi|^{4}} \operatorname{Re}\left(D \psi-e_{1} \cdot \nabla_{e_{1}} \psi, e_{1} \cdot \psi\right)^{2} \\
& =g\left(Y, e_{1}\right)^{2}+g\left(Y, e_{2}\right)^{2}+\frac{\left|d\left(|\psi|^{2}\right)\right|^{2}}{4|\psi|^{4}}-g\left(Y, \frac{d\left(|\psi|^{2}\right)}{|\psi|^{2}}\right) \\
& =|Y|^{2}-2 Y(f)+\frac{\left|d\left(|\psi|^{2}\right)\right|^{2}}{4|\psi|^{4}}
\end{aligned}
$$

which gives the result by using the fact that $\Delta f=\frac{\Delta\left(|\psi|^{2}\right)}{2|\psi|^{2}}+\frac{\left|d\left(|\psi|^{2}\right)\right|^{2}}{2|\psi|^{4}}$.
Remark 3.2 Under the same conditions as Theorem3.1, if ψ is an eigenspinor of D with eigenvalue λ, we get

$$
\lambda^{2}=\frac{S}{4}+\left|T^{\psi}\right|^{2}+\Delta f+\left(\frac{i}{2} \Omega \cdot \psi, \frac{\psi}{|\psi|^{2}}\right)
$$

In fact, in this case $Y=0$ and

$$
\begin{align*}
0 & =\operatorname{Re}\left(D \psi, e_{1} \cdot e_{2} \cdot \psi\right)=\operatorname{Re}\left(e_{1} \cdot \nabla_{e_{1}} \psi+e_{2} \cdot \nabla_{e_{2}} \psi, e_{1} \cdot e_{2} \cdot \psi\right) \\
& =\operatorname{Re}\left(-e_{2} \cdot \nabla_{e_{1}} \psi+e_{1} \cdot \nabla_{e_{2}} \psi, \psi\right)=2 Q^{\psi}\left(e_{1}, e_{2}\right)|\psi|^{2} \tag{3.2}
\end{align*}
$$

This was proven by Friedrich and Kim in [9] for a Spin structure on M.

In the following, we will give an estimate for the integral $\int_{M} \operatorname{det}\left(T^{\psi}+Q^{\psi}\right) v_{g}$ in terms of geometric quantities, which has the advantage that it does not depend on the eigenvalue λ nor on the eigenspinor ψ. This is a generalization of the result of Friedrich and Kim in [9] for Spin structures.

Theorem 3.3 Let M be a compact surface and ψ any eigenspinor of D^{2} associated with eigenvalue λ^{2}. Then we have

$$
\begin{equation*}
\int_{M} \operatorname{det}\left(T^{\psi}+Q^{\psi}\right) v_{g} \geq \frac{\pi \chi(M)}{2}-\frac{1}{4} \int_{M}|\Omega| v_{g} \tag{3.3}
\end{equation*}
$$

Equality in (3.3) holds if and only if either Ω is zero or has constant sign.
Proof. As in the previous theorem, the spinor $D \psi$ can be expressed in the orthonormal frame of the spinor bundle. Thus the norm of $D \psi$ is equal to

$$
\begin{align*}
|D \psi|^{2} & =\frac{1}{|\psi|^{2}} \operatorname{Re}(D \psi, \psi)^{2}+\frac{1}{|\psi|^{2}} \sum_{i=1}^{2} \operatorname{Re}\left(D \psi, e_{i} \cdot \psi\right)^{2}+\frac{1}{|\psi|^{2}} \operatorname{Re}\left(D \psi, e_{1} \cdot e_{2} \cdot \psi\right)^{2} \\
& =\left(\operatorname{tr} T^{\psi}\right)^{2}|\psi|^{2}+|Y|^{2}|\psi|^{2}+\frac{1}{|\psi|^{2}} \operatorname{Re}\left(D \psi, e_{1} \cdot e_{2} \cdot \psi\right)^{2} \tag{3.4}
\end{align*}
$$

where we recall that the trace of T^{ψ} is equal to $-\frac{1}{|\psi|^{2}} \operatorname{Re}(D \psi, \psi)$. On the other hand, by (3.2) we have that $\frac{1}{|\psi|^{2}} \operatorname{Re}\left(D \psi, e_{1} \cdot e_{2} \cdot \psi\right)^{2}=2\left|Q^{\psi}\right|^{2}|\psi|^{2}$. Thus Equation (3.4) reduces to

$$
\frac{|D \psi|^{2}}{|\psi|^{2}}=\left(\operatorname{tr} T^{\psi}\right)^{2}+|Y|^{2}+2\left|Q^{\psi}\right|^{2}
$$

Now with the use of the equality $\operatorname{Re}\left(D^{2} \psi, \psi\right)=|D \psi|^{2}-\operatorname{div} \xi$, where ξ is the vector field given by $\xi=|\psi|^{2} Y$, we get

$$
\begin{equation*}
\lambda^{2}+\frac{1}{|\psi|^{2}} \operatorname{div} \xi=\left(\operatorname{tr} T^{\psi}\right)^{2}+|Y|^{2}+2\left|Q^{\psi}\right|^{2} \tag{3.5}
\end{equation*}
$$

An easy computation leads to $\frac{1}{|\psi|^{2}} \operatorname{div} \xi=\operatorname{div} Y+2 Y(f)$ where we recall that $f=\frac{1}{2} \ln \left(|\psi|^{2}\right)$. Hence substituting this formula into (3.5) and using Theorem 3.1 yields

$$
\frac{S}{4}+\left(\frac{i}{2} \Omega \cdot \psi, \frac{\psi}{|\psi|^{2}}\right)+\Delta f+\operatorname{div} Y=\left(\operatorname{tr} T^{\psi}\right)^{2}+\left|Q^{\psi}\right|^{2}-\left|T^{\psi}\right|^{2}=2 \operatorname{det}\left(T^{\psi}+Q^{\psi}\right)
$$

Finally integrating over M and using the Gauss-Bonnet formula, we deduce the required result with the help of Equation (2.2). Equality holds if and only if $\Omega \cdot \psi=i|\Omega| \psi$. In the orthonormal frame $\left\{e_{1}, e_{2}\right\}$, the 2 -form Ω can be written $\Omega=\Omega_{12} e_{1} \wedge e_{2}$, where Ω_{12} is a function defined on M. Using the decomposition of ψ into positive and negative spinors ψ^{+}and ψ^{-}, we find that the equality is attained if and only if

$$
\Omega_{12} e_{1} \cdot e_{2} \cdot \psi^{+}+\Omega_{12} e_{1} \cdot e_{2} \cdot \psi^{-}=i\left|\Omega_{12}\right| \psi^{+}+i\left|\Omega_{12}\right| \psi^{-}
$$

which is equivalent to say that,

$$
\Omega_{12} \psi^{+}=-\left|\Omega_{12}\right| \psi^{+} \quad \text { and } \quad \Omega_{12} \psi^{-}=\left|\Omega_{12}\right| \psi^{-}
$$

Now if $\psi^{+} \neq 0$ and $\psi^{-} \neq 0$, we get $\Omega=0$. Otherwise, it has constant sign. In the last case, we get that $\int_{M}|\Omega| v_{g}=2 \pi \chi(M)$, which means that the l.h.s. of this equality is a topological invariant.

Next, we will give another proof of the Bär-type inequality (1.3) for the eigenvalues of any $\mathrm{Spin}^{\text {c }}$ Dirac operator. The following theorem was proved by the second author in [23] using conformal deformation of the spinorial Levi-Civita connection.

Theorem 3.4 Let M be a compact surface. For any Spin ${ }^{\text {c }}$ structure on M, any eigenvalue λ of the Dirac operator D to which is attached an eigenspinor ψ satisfies

$$
\begin{equation*}
\lambda^{2} \geqslant \frac{2 \pi \chi(M)}{\operatorname{Area}(M)}-\frac{1}{\operatorname{Area}(M)} \int_{M}|\Omega| v_{g} . \tag{3.6}
\end{equation*}
$$

Equality holds if and only if the eigenspinor ψ is a $\operatorname{Spin}^{\text {c }}$ Killing spinor, i.e., it satisfies $\Omega \cdot \psi=i|\Omega| \psi$ and $\nabla_{X} \psi=-\frac{\lambda}{2} X \cdot \psi$ for any $X \in \Gamma(T M)$.

Proof. With the help of Remark (3.2), we have that

$$
\begin{equation*}
\lambda^{2}=\frac{S}{4}+\left|T^{\psi}\right|^{2}+\triangle f+\left(\frac{i}{2} \Omega \cdot \psi, \frac{\psi}{|\psi|^{2}}\right) \tag{3.7}
\end{equation*}
$$

Substituting the Cauchy-Schwarz inequality, i.e. $\left|T^{\psi}\right|^{2} \geqslant \frac{\lambda^{2}}{2}$ and the estimate (2.2) into Equality (3.7), we easily deduce the result after integrating over M. Now the equality in (3.6) holds if and only if the eigenspinor ψ satisfies $\Omega \cdot \psi=$ $i|\Omega| \psi$ and $\left|T^{\psi}\right|^{2}=\frac{\lambda^{2}}{2}$. Thus, the second equality is equivalent to say that $\ell^{\psi}(X)=\frac{\lambda}{2} X$ for all $X \in \Gamma(T M)$. Finally, a straightforward computation of the spinorial curvature of the spinor field ψ gives in a local frame $\left\{e_{1}, e_{2}\right\}$ after using the fact $\beta=-(* \delta)$ that

$$
\begin{aligned}
\frac{1}{2} R_{1212} e_{1} \cdot e_{2} \cdot \psi= & \left(\frac{\lambda^{2}}{2}+e_{1}\left(\delta\left(e_{1}\right)\right)+e_{2}\left(\delta\left(e_{2}\right)\right)\right) e_{2} \cdot e_{1} \cdot \psi-\lambda \delta\left(e_{2}\right) e_{1} \cdot \psi \\
& +\lambda \delta\left(e_{1}\right) e_{2} \cdot \psi+\left(e_{1}\left(\delta\left(e_{2}\right)\right)-e_{2}\left(\delta\left(e_{1}\right)\right)\right) \psi
\end{aligned}
$$

Thus the scalar product with $e_{1} \cdot \psi$ and $e_{2} \cdot \psi$ implies that $\delta=0$. Finally, $\beta=0$ and the eigenspinor ψ is a Spin^{c} Killing spinor.

Now, we will give some examples where equality holds in (3.6) or in (3.3). Some applications of Theorem 3.1 are also given.

Examples:

1. Let \mathbb{S}^{2} be the round sphere equipped with the standard metric of curvature one. As a Kähler manifold, we endow the sphere with the canonical Spin ${ }^{\text {c }}$ structure of curvature form equal to $i \Omega=-i \ltimes$, where \ltimes is the Kähler 2 -form. Hence, we have $|\Omega|=|\ltimes|=1$. Furthermore, we mentionned that for the canonical $\mathrm{Spin}^{\mathrm{c}}$ structure, the sphere carries parallel spinors, i.e., an eigenspinor associated with the eigenvalue 0 of the Dirac operator D. Thus equality holds in (3.6). On the other hand, the equality in (3.3) also holds, since the sign of the curvature form Ω is constant.
2. Let $f: M \rightarrow \mathbb{S}^{3}$ be an isometric immersion of a surface M^{2} into the sphere equipped with its unique Spin structure and assume that the mean curvature H is constant. The restriction of a Killing spinor on \mathbb{S}^{3} to the surface M defines a spinor field φ solution of the following equation [11]

$$
\begin{equation*}
\nabla_{X} \varphi=-\frac{1}{2} I I(X) \bullet \varphi+\frac{1}{2} J(X) \bullet \varphi \tag{3.8}
\end{equation*}
$$

where $I I$ denotes the second fundamental form of the surface and J is the complex structure of M given by the rotation of angle $\frac{\pi}{2}$ on $T M$. It is easy to check that φ is an eigenspinor for D^{2} associated with the eigenvalue $H^{2}+1$. Moreover $D \varphi=H \varphi+e_{1} \cdot e_{2} \cdot \varphi$, so that $Y=0$. Moreover the tensor $T^{\varphi}=\frac{1}{2} I I$ and $Q^{\varphi}=\frac{1}{2} J$. Hence by Theorem [3.1, and since the norm of φ is constant, we obtain

$$
H^{2}+\frac{1}{2}=\frac{1}{4} S+\frac{1}{4}|I I|^{2} .
$$

3. On two-dimensional manifolds, we can define another Dirac operator associated with the complex structure J given by $\widetilde{D}=J e_{1} \cdot \nabla_{e_{1}}+J e_{2} \cdot \nabla_{e_{2}}=$ $e_{2} \cdot \nabla_{e_{1}}-e_{1} \cdot \nabla_{e_{2}}$. Since \widetilde{D} satisfies $D^{2}=(\widetilde{D})^{2}$, all the above results are also true for the eigenvalues of \widetilde{D}.
4. Let M^{2} be a surface immersed in $\mathbb{S}^{2} \times \mathbb{R}$. The product of the canonical $S p i^{c}$ structure on \mathbb{S}^{2} and the unique Spin structure on \mathbb{R} define a $S \operatorname{Sin}^{c}$ structure on $\mathbb{S}^{2} \times \mathbb{R}$ carrying parallel spinors [22]. Moreover, by the Schrödinger-Lichnerowicz formula, any parallel spinor ψ satisfies $\Omega^{\mathbb{S}^{2} \times \mathbb{R}} \cdot \psi=i \psi$, where $\Omega^{\mathbb{S}^{2} \times \mathbb{R}}$ is the curvature form of the auxiliary line bundle. Let ν be a unit normal vector field of the surface. We then write $\partial t=T+f \nu$ where T is a vector field on $T M$ with $\|T\|^{2}+f^{2}=1$. On the other hand, the vector field T splits into $T=\nu_{1}+h \partial t$ where ν_{1} is a vector field on the sphere. The scalar product of the first equation by T and the second one by ∂t gives $\|T\|^{2}=h$ which means that $h=1-f^{2}$. Hence the normal vector field ν can be written as $\nu=f \partial t-\frac{1}{f} \nu_{1}$. As we mentionned before, the $\operatorname{Spin}^{\text {c }}$ structure on $\mathbb{S}^{2} \times \mathbb{R}$ induces a Spin^{c} structure on M with induced auxiliary line bundle. Next, we want to prove that the curvature form of the auxiliary line bundle of M is equal to $i \Omega\left(e_{1}, e_{2}\right)=-i f$, where $\left\{e_{1}, e_{2}\right\}$ denotes a local orthonormal frame on $T M$. Since the spinor ψ is parallel, we have by [22] that for all $X \in T\left(\mathbb{S}^{2} \times \mathbb{R}\right)$ the equality $\left.\operatorname{Ric}^{\mathbb{S}^{2} \times \mathbb{R}} X \cdot \psi=i(X\lrcorner \Omega^{\mathbb{S}^{2} \times \mathbb{R}}\right) \cdot \psi$. Therefore, we compute

$$
\begin{aligned}
\left.(\nu\lrcorner \Omega^{\mathbb{S}^{2} \times \mathbb{R}}\right) \bullet \varphi & \left.=(\nu\lrcorner \Omega^{\mathbb{S}^{2} \times \mathbb{R}}\right)\left.\cdot \nu \cdot \psi\right|_{M}=\left.i \nu \cdot \operatorname{Ric}^{\mathbb{S}^{2} \times \mathbb{R}} \nu \cdot \psi\right|_{M} \\
& =-\left.\frac{1}{f} i \nu \cdot \nu_{1} \cdot \psi\right|_{M}=\left.i \nu \cdot(\nu-f \partial t) \cdot \psi\right|_{M} \\
& =\left.(-i \psi-i f \nu \cdot \partial t \cdot \psi)\right|_{M}
\end{aligned}
$$

Hence by Equation (2.4), we get that $\Omega \bullet \varphi=-\left.i(f \nu \cdot \partial t \cdot \psi)\right|_{M}$. The scalar product of the last equality with $e_{1} \cdot e_{2} \cdot \psi$ gives

$$
\Omega\left(e_{1}, e_{2}\right)|\varphi|^{2}=-\left.f \operatorname{Re}\left(i \nu \cdot \partial t \cdot \psi, e_{1} \cdot e_{2} \cdot \psi\right)\right|_{M}=-\left.f \operatorname{Re}(i \partial t \cdot \psi, \psi)\right|_{M}
$$

We now compute the term $i \partial t \cdot \psi$. For this, let $\left\{e_{1}^{\prime}, J e_{1}^{\prime}\right\}$ be a local orthonormal frame of the sphere \mathbb{S}^{2}. The complex volume form acts as the
identity on the spinor bundle of $\mathbb{S}^{2} \times \mathbb{R}$, hence $\partial t \cdot \psi=e_{1}^{\prime} \cdot J e_{1}^{\prime} \cdot \psi$. But we have

$$
\Omega^{\mathbb{S}^{2} \times \mathbb{R}} \cdot \psi=-\rho \cdot \psi=-\ltimes \cdot \psi=-e_{1}^{\prime} \cdot J e_{1}^{\prime} \cdot \psi
$$

Therefore, $i \partial t \cdot \psi=\psi$. Thus we get $\Omega\left(e_{1}, e_{2}\right)=-f$. Finally,

$$
(i \Omega \bullet \varphi, \varphi)=\left.f \operatorname{Re}(\nu \cdot \partial t \cdot \psi, \psi)\right|_{M}=-f g(\nu, \partial t)|\varphi|^{2}=-f^{2}|\varphi|^{2}
$$

Hence Equality in Theorem 3.1 is just

$$
H^{2}=\frac{S}{4}+\frac{1}{4}|I I|^{2}-\frac{1}{2} f^{2}
$$

4 The 3-dimensional case

In this section, we will treat the 3-dimensional case.
Theorem 4.1 Let $\left(M^{3}, g\right)$ be an oriented Riemannian manifold. For any $\operatorname{Spin}^{\text {c }}$ structure on M, any eigenvalue λ of the Dirac operator to which is attached an eigenspinor ψ satisfies

$$
\lambda^{2} \leqslant \frac{1}{\operatorname{vol}(M, g)} \int_{M}\left(\left|T^{\psi}\right|^{2}+\frac{S}{4}+\frac{|\Omega|}{2}\right) v_{g}
$$

Equality holds if and only if the norm of ψ is constant and $\Omega \cdot \psi=i|\Omega| \psi$.
Proof. As in the proof of Theorem 3.1 the set $\left\{\frac{\psi}{|\psi|}, \frac{e_{1} \cdot \psi}{|\psi|}, \frac{e_{2} \cdot \psi}{|\psi|}, \frac{e_{3} \cdot \psi}{|\psi|}\right\}$ is orthonormal with respect to the real product $\operatorname{Re}(\cdot, \cdot)$. The covariant derivative of ψ can be expressed in this frame as

$$
\begin{equation*}
\nabla_{X} \psi=\eta(X) \psi+\ell(X) \cdot \psi \tag{4.1}
\end{equation*}
$$

for all vector fields X, where η is a 1 -form and ℓ is a (1,1)-tensor field. Moreover $\eta=\frac{d\left(|\psi|^{2}\right)}{2|\psi|^{2}}$ and $\ell(X)=-\ell^{\psi}(X)$. Using (2.1), it follows that

$$
\begin{aligned}
\lambda^{2} & =\frac{\Delta\left(|\psi|^{2}\right)}{2|\psi|^{2}}+\left|T^{\psi}\right|^{2}+\frac{\left|d\left(|\psi|^{2}\right)\right|^{2}}{4|\psi|^{4}}+\frac{1}{4} S+\left(\frac{i}{2} \Omega \cdot \psi, \frac{\psi}{|\psi|^{2}}\right) \\
& =\Delta f-\frac{\left|d\left(|\psi|^{2}\right)\right|^{2}}{2|\psi|^{4}}+\left|T^{\psi}\right|^{2}+\frac{1}{4} S+\left(\frac{i}{2} \Omega \cdot \psi, \frac{\psi}{|\psi|^{2}}\right)
\end{aligned}
$$

By the Cauchy-Schwarz inequality, we have $\frac{1}{2}\left(i \Omega \cdot \psi, \frac{\psi}{|\psi|^{2}}\right) \leqslant \frac{1}{2}|\Omega|$. Integrating over M and using the fact that $\left|d\left(|\psi|^{2}\right)\right|^{2} \geqslant 0$, we get the result.

Example 4.2 Let M^{3} be a 3-dimensional Riemannian manifold immersed in $\mathbb{C P}^{2}$ with constant mean curvature H. Since $\mathbb{C P}^{2}$ is a Kähler manifold, we endow it with the canonical Spin ${ }^{\text {c }}$ structure whose line bundle has curvature equal to $-3 i \ltimes$. Moreover, by the Schrödinger-Lichnerowicz formula we have that any parallel spinor ψ satisfies $\Omega^{\mathbb{C P}^{2}} \cdot \psi=6 i \psi$. As in the previous example, we compute

$$
\left.(\nu\lrcorner \Omega^{\mathbb{C P}^{2}}\right) \bullet \varphi=i\left(\nu \cdot \operatorname{Ric}^{\mathbb{C P}^{2}}(\nu) \cdot \psi\right)_{\left.\right|_{M}}=-3 i \varphi
$$

Finally, $\Omega \bullet \varphi=3 i \varphi$. Using Equation (2.6), we have that $-\frac{3}{2} H$ is an eigenvalue of D. Since the norm of φ is constant, equality holds in Theorem 4.1 and hence

$$
\frac{9}{4} H^{2}+\frac{3}{2}=\frac{S}{4}+\frac{1}{4}|I I|^{2} .
$$

5 Characterization of surfaces in $\mathbb{S}^{2} \times \mathbb{R}$

In this section, we characterize the surfaces in $\mathbb{S}^{2} \times \mathbb{R}$ by solutions of the generalized Killing spinors equation which are restrictions of parallel spinors of the canonical Spin ${ }^{\text {c }}$-structure on $\mathbb{S}^{2} \times \mathbb{R}$ (see also [25] for a different proof). First recall the compatibility equations for characterization of surfaces in $\mathbb{S}^{2} \times \mathbb{R}$ established by B. Daniel [6, Thm 3.3]:

Theorem 5.1 Let (M, g) be a simply connected Riemannian manifold of dimension 2, $A: T M \rightarrow T M$ a field of symmetric operator and T a vector field on $T M$. We denote by f a real valued function such that $f^{2}+\|T\|^{2}=1$. Assume that M satisfies the Gauss-Codazzi equations, i.e. $G=\operatorname{det} A+f^{2}$ and

$$
d^{\nabla} A(X, Y):=\left(\nabla_{X} A\right) Y-\left(\nabla_{Y} A\right) X=f(g(Y, T) X-g(X, T) Y)
$$

where G is the gaussian curvature, and the following equations

$$
\nabla_{X} T=f A(X), \quad X(f)=-g(A X, T)
$$

Then there exists an isometric immersion of M into $\mathbb{S}^{2} \times \mathbb{R}$ such that the Weingarten operator is A and $\partial t=T+f \nu$, where ν is the normal vector field to the surface M.

Now using this characterization theorem, we state our result:

Theorem 5.2 Let M be an oriented simply connected Riemannian manifold of dimension 2. Let T be a vector field and denote by f a real valued function such that $f^{2}+\|T\|^{2}=1$. Denote by A a symmetric endomorphism field of $T M$. The following statements are equivalent:

1. There exists an isometric immersion of M into $\mathbb{S}^{2} \times \mathbb{R}$ of Weingarten operator A such that $\partial t=T+f \nu$, where ν is the unit normal vector field of the surface.
2. There exists a $\mathrm{Spin}^{\mathrm{c}}$ structure on M whose line bundle has a connection of curvature given by $i \Omega=-i f \ltimes$, such that it carries a non-trivial solution φ of the generalized Killing spinor equation $\nabla_{X} \varphi=-\frac{1}{2} A X \bullet \varphi$, with $T \bullet \varphi=-f \varphi+\bar{\varphi}$.

Proof. We begin with $1 \Rightarrow 2$. The existence of such a Spin ${ }^{\text {c }}$ structure is assured by the restriction of the canonical one on $\mathbb{S}^{2} \times \mathbb{R}$. Moreover, using the spinorial Gauss formula (2.5), any parallel spinor ψ on $\mathbb{S}^{2} \times \mathbb{R}$ induces a generalized Killing spinor $\varphi=\left.\psi\right|_{M}$ with A the Weingarten map of the surface M. Hence it remains
to show the relation $T \bullet \varphi=-f \varphi+\bar{\varphi}$. In fact, using that $\Omega^{\mathbb{S}^{2} \times \mathbb{R}} \cdot \psi=i \psi$, we write in the frame $\left\{e_{1}, e_{2}, \nu\right\}$

$$
\begin{equation*}
\Omega^{S^{2} \times \mathbb{R}}\left(e_{1}, e_{2}\right) e_{1} \cdot e_{2} \cdot \psi+\Omega^{\mathbb{S}^{2} \times \mathbb{R}}\left(e_{1}, \nu\right) e_{1} \cdot \nu \cdot \psi+\Omega^{S^{2} \times \mathbb{R}}\left(e_{2}, \nu\right) e_{2} \cdot \nu \cdot \psi=i \psi . \tag{5.1}
\end{equation*}
$$

By the previous example in Section [3, we know that $\Omega^{\mathbb{S}^{2} \times \mathbb{R}}\left(e_{1}, e_{2}\right)=-f$. For the other terms, we compute

$$
\Omega^{\mathbb{S}^{2} \times \mathbb{R}}\left(e_{1}, \nu\right)=\Omega^{\mathbb{S}^{2} \times \mathbb{R}}\left(e_{1}, \frac{1}{f} \partial t-\frac{1}{f} T\right)=-\frac{1}{f} g\left(T, e_{2}\right) \Omega^{\mathbb{S}^{2} \times \mathbb{R}}\left(e_{1}, e_{2}\right)=g\left(T, e_{2}\right),
$$

where the term $\Omega^{\mathbb{S}^{2} \times \mathbb{R}}\left(e_{1}, \partial t\right)$ vanishes since we can split e_{1} into a sum of vectors on the sphere and on \mathbb{R}. Similarly, we find that $\Omega^{\mathbb{S}^{2} \times \mathbb{R}}\left(e_{2}, \nu\right)=-g\left(T, e_{1}\right)$. By substituting these values into (5.1) and taking Clifford multiplication with $e_{1} \cdot e_{2}$, we get the desired property. For $2 \Rightarrow 1$, a straightforward computation for the spinorial curvature of the generalized Killing spinor φ yields on a local frame $\left\{e_{1}, e_{2}\right\}$ of $T M$ that

$$
\begin{equation*}
(-G+\operatorname{det} A) e_{1} \bullet e_{2} \bullet \varphi=-\left(d^{\nabla} A\right)\left(e_{1}, e_{2}\right) \bullet \varphi+i f \varphi \tag{5.2}
\end{equation*}
$$

In the following, we will prove that the spinor field $\theta:=i \varphi-i f \bar{\varphi}+J T \bullet \varphi$ is zero. For this, it is sufficient to prove that its norm vanishes. Indeed, we compute

$$
\begin{equation*}
|\theta|^{2}=|\varphi|^{2}+f^{2}|\varphi|^{2}+\|T\|^{2}|\varphi|^{2}-2 \operatorname{Re}(i \varphi, i f \bar{\varphi})+2 \operatorname{Re}(i \varphi, J T \bullet \varphi) \tag{5.3}
\end{equation*}
$$

From the relation $T \bullet \varphi=-f \varphi+\bar{\varphi}$ we deduce that $\operatorname{Re}(\varphi, \bar{\varphi})=f|\varphi|^{2}$ and the equalities

$$
g\left(T, e_{1}\right)|\varphi|^{2}=\operatorname{Re}\left(i e_{2} \bullet \varphi, \varphi\right) \quad \text { and } \quad g\left(T, e_{2}\right)|\varphi|^{2}=-\operatorname{Re}\left(i e_{1} \bullet \varphi, \varphi\right)
$$

Therefore, Equation (5.3) becomes

$$
\begin{aligned}
|\theta|^{2} & =2|\varphi|^{2}-2 f^{2}|\varphi|^{2}+2 \operatorname{Re}(i \varphi, J T \bullet \varphi) \\
& =2|\varphi|^{2}-2 f^{2}|\varphi|^{2}+2 g\left(J T, e_{1}\right) \operatorname{Re}\left(i \varphi, e_{1} \bullet \varphi\right)+2 g\left(J T, e_{2}\right) \operatorname{Re}\left(i \varphi, e_{2} \bullet \varphi\right) \\
& =2|\varphi|^{2}-2 f^{2}|\varphi|^{2}+2 g\left(J T, e_{1}\right) g\left(T, e_{2}\right)|\varphi|^{2}-2 g\left(J T, e_{2}\right) g\left(T, e_{1}\right)|\varphi|^{2} \\
& =2|\varphi|^{2}-2 f^{2}|\varphi|^{2}-2 g\left(J T, e_{1}\right)^{2}|\varphi|^{2}-2 g\left(T, e_{1}\right)^{2}|\varphi|^{2} \\
& =2|\varphi|^{2}-2 f^{2}|\varphi|^{2}-2| | T \|^{2}|\varphi|^{2}=0 .
\end{aligned}
$$

Thus, we deduce if $\varphi=-f^{2} e_{1} \cdot e_{2} \cdot \varphi-f J T \cdot \varphi$, where we use the fact that $\bar{\varphi}=i e_{1} \bullet e_{2} \bullet \varphi$. In this case, Equation (5.2) can be written as

$$
\left(-G+\operatorname{det} A+f^{2}\right) e_{1} \bullet e_{2} \bullet \varphi=-\left(\left(d^{\nabla} A\right)\left(e_{1}, e_{2}\right)+f J T\right) \bullet \varphi .
$$

This is equivalent to say that both terms $R_{1212}+\operatorname{det} A+f^{2}$ and $\left(d^{\nabla} A\right)\left(e_{1}, e_{2}\right)+$ $f J T$ are equal to zero. In fact, these are the Gauss-Codazzi equations in Theorem 5.1. In order to obtain the two other equations, we simply compute the derivative of $T \cdot \varphi=-f \varphi+\bar{\varphi}$ in the direction of X to get

$$
\begin{aligned}
\nabla_{X} T \bullet \varphi+T \bullet \nabla_{X} \varphi & =\nabla_{X} T \bullet \varphi-\frac{1}{2} T \bullet A(X) \bullet \varphi \\
& =-X(f) \varphi-f \nabla_{X} \varphi+\nabla_{X} \bar{\varphi} \\
& =-X(f) \varphi+\frac{1}{2} f A X \bullet \varphi+\frac{1}{2} A X \bullet \bar{\varphi} \\
& =-X(f) \varphi+\frac{1}{2} f A X \bullet \varphi+\frac{1}{2} A X \bullet(T \bullet \varphi+f \varphi) .
\end{aligned}
$$

This reduces to $\nabla_{X} T \bullet \varphi+g(T, A(X)) \varphi=-X(f) \varphi+f A(X) \bullet \varphi$. Hence we obtain $X(f)=-g(A(X), T)$ and $\nabla_{X} T=f A(X)$ which finishes the proof.

Remark 5.3 The second condition in Theorem5.2 is equivalent to the existence of a Spinc structure whose line bundle L verifies $c_{1}(L)=\left[\frac{i}{2 \pi} f \ltimes\right]$ and $f \ltimes$ is a closed 2-form. This Spin c structure carries a non-trivial solution φ of the generalized Killing spinor equation $\nabla_{X} \varphi=-\frac{1}{2} A X \bullet \varphi$, with $T \bullet \varphi=-f \varphi+\bar{\varphi}$.

Acknowledgment

Both authors are grateful to Oussama Hijazi for his encouragements and relevant remarks.

References

[1] C. Bär, Extrinsic bounds for eigenvalues of the Dirac operator, Ann. Global Anal. Geom. 16 (1998), 573-596.
[2] C. Bär, Lower eigenvalue estimates for Dirac operators, Math. Ann. 293 (1992), 39-46.
[3] C. Bär, Zero sets of solutions to semilinear elliptic systems of first order, Invent. Math. 138, 1 (1999), 183-202.
[4] A. L. Besse, Einstein manifolds, Springer, Berlin, 1987.
[5] J.P. Bourguignon and P. Gauduchon, Spineurs, opérateurs de Dirac et variations de métriques, Commun. Math. Phys. 144 (1992), 581-599.
[6] B. Daniel, Isometric immersions into $\mathbb{S}^{n} \times \mathbb{R}$ and $\mathbb{H}^{n} \times \mathbb{R}$ and application to minimal surfaces, Trans. Amer. Math. Soc. 361 (2009), 6255-6282.
[7] Th. Friedrich, Dirac operator's in Riemannian geometry, Graduate studies in mathematics, Volume 25, American Mathematical Society.
[8] Th. Friedrich, On the spinor representation of surfaces in Euclidean 3spaces, J. Geom. Phys. 28 (1998), 143-157.
[9] Th. Friedrich and E. C. Kim, Some remarks on the Hijazi inequality and generalizations of the Killing equation for spinors, J. Geom. Phys. 37 (2001), 1-14.
[10] Th. Friedrich and E. C. Kim, The Einstein-Dirac equation on Riemannian Spin manifolds, J. Geom. Phys. 33 (2000), 128-172.
[11] G. Habib and J. Roth, Skew Killing spinors, to appear in Central European Journal of Mathematics.
[12] G. Habib, Energy-Momentum tensor on foliations, J. Geom. Phys. 57 (2007), 2234-2248.
[13] M. Herzlich et A. Moroianu, Generalized Killing spinors and conformal eigenvalue estimates for $\mathrm{Spin}^{\mathrm{c}}$ manifold, Ann. Glob. Anal. Geom. 17 (1999), 341-370.
[14] O. Hijazi, A conformal Lower bound for the smallest eigenvalue of the Dirac operator and Killing spinors, Commun. Math. Phys. 104, 151-162 (1986).
[15] O. Hijazi, Lower bounds for the eigenvalues of the Dirac operator, Journal of Geometry and Physics 16 (1995) 27-38.
[16] O. Hijazi, Spertral properties of the Dirac operator and geometrical structures, Proceedings of the summer school on geometric methods in quantum field theory, Villa de Leyva, Colombia, july 12-30, 1999, World Scientific 2001.
[17] S. Kobayashi et K. Nomizu, Foundations of differential geometry, Volume 1, Wiley Classics library Edition Published (1996).
[18] H.B. Lawson and M.L. Michelson, Spin geometry, Princeton University press, Princeton, New Jersey, 1989.
[19] B. Mellor, Spin ${ }^{\text {c }}$-manifolds, unpublished paper.
[20] S. Montiel, Using spinors to study submanifolds, Roma 2004 - Nancy 2005.
[21] B. Morel, Tenseur d'impulsion-énergie et géométrie spinorielle extrinsèque, Ph.D. thesis, Institut Elie Cartan, 2002.
[22] A. Moroianu, Parallel and Killing spinors on Spin ${ }^{\text {c }}$ manifolds, Comm. Math. Phys. 187 (1997), 417-428.
[23] R. Nakad, Lower bounds for the eigenvalues of the Dirac operator on Spin ${ }^{\text {c }}$ manifolds, J. Geom. Phys. 60 (2010), 1634-1642.
[24] R. Nakad, The Energy-Momentum tensor on Spin ${ }^{\text {c manifolds, IJGMMP }}$ Vol. 8, No. 2, 2011.
[25] J. Roth, Spinorial characterizations of surfaces into 3-dimensional homogeneous manifolds, J. Geom. Phys. 60 (2010), 1045-1061.

