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Abstract

In this paper we introduce the magnetic Hodge Laplacian, which is
a generalization of the magnetic Laplacian on functions to differential
forms. We consider various spectral results, which are known for the
magnetic Laplacian on functions or for the Hodge Laplacian on differential
forms, and discuss similarities and differences of this new “magnetic-type”
operator.
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1 Introduction and statement of results

The classical magnetic Laplacian on a Riemannian manifold (Mn, g) associated
to a smooth real 1-form α ∈ Ω1(M) acts on the space of smooth complex-valued
functions C∞(M,C) and is given by

∆α = δαdα, (1.1)

where dα := dM + iα and δα := δM − i⟨α♯, ·⟩ (note that δM is the L2-adjoint
of dM ). Here α♯ ∈ X (M) is the vector field corresponding to the 1-form α via
the musical isomorphism ⟨α♯, X⟩ = α(X). The 1-form α is called the magnetic
potential and dMα is the magnetic field. The magnetic Laplacian ∆α can be
viewed as a first order perturbation of the usual Laplacian ∆M = δMdM , namely
for any f ∈ C∞(M,C),

∆αf = ∆Mf − 2i⟨grad f, α♯⟩+ (|α♯|2 − i divα♯)f. (1.2)

In the case of a closed manifold or a compact manifold with boundary, both
operators ∆M and ∆α (with suitable boundary conditions when ∂M ̸= ∅) have
a discrete spectrum with non-decreasing eigenvalues with multiplicity denoted
by (λk(M))k∈N and (λαk (M))k∈N, respectively. There are very few Rieman-
nian manifolds where the complete set of eigenvalues can be given explicitly.
Amongst them is the unit round sphere Sn with the standard metric g, whose
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eigenfunctions can be described as spherical harmonics. In Appendix A, we give
an explicit derivation of the spectrum of a magnetic Laplacian on (S3, g) with
a special magnetic potential α. This derivation is based on the Hopf fibration
S1 ↪→ S3 → S2, and α is a constant magnetic field along the S1-fibers.

In analogy with the generalization of the usual Laplacian ∆M on functions
to the Hodge Laplacian δMdM + dMδM on differential forms, it is natural to
generalize the magnetic Laplacian on functions to complex differential forms as
follows. On the set of complex-valued differential p-forms Ωp(M,C), we define

∆α := δαdα + dαδα

where dα := dM + iα∧ and δα := δM − iα♯⌟ is its formal adjoint. Both dα

and δα can also be expressed via the magnetic covariant derivative ∇α
XY :=

∇M
X Y + iα(X)Y for any X,Y ∈ C∞(TM ⊗ C) (see formula (3.1)). We refer

to this operator ∆α acting on Ωp(M,C) as the magnetic Hodge Laplacian on
complex p-forms.

We establish the following results for the magnetic Hodge Laplacian on an
oriented Riemannian manifold (Mn, g):

(a) We show that the magnetic Hodge Laplacian commutes with the Hodge
star operator (see Corollary 3.2).

(b) We derive a magnetic analogue of the classical Bochner-Weitzenböck for-
mula (see Theorem 3.4).

(c) We prove gauge invariance of the magnetic Laplacian on forms ∆α (see
Corollary 3.8).

(d) We obtain a Shigekawa-type result (see Theorem 3.9) for the magnetic
Hodge Laplacian ∆α on a closed Riemannian manifold M in the case
where M has a parallel p-form and α is a Killing 1-form (for the original
statement, see [29]).

(e) Following a result by Gallot-Meyer [13] for the Hodge Laplacian, we derive
a lower bound for the first eigenvalue of the magnetic Hodge Laplacian for
closed manifolds (see Theorem 4.2).

(f) Following a result by Colbois-El Soufi-Ilias-Savo [6] for the magnetic Lapla-
cian on functions, we derive an upper bound for the first eigenvalue of the
magnetic Hodge Laplacian for closed manifolds (see Theorem 4.3).

(g) We show that in general the diamagnetic inequality does not hold for
magnetic Hodge Laplacians (Corollary 4.6). In fact, we give a counterex-
ample which is based on the calculations in Appendix A. In addition, we
give an explicit characterization which determines when the diamagnetic
inequality holds for ∆tξ with ξ a Killing vector field (see Corollary 4.5).
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(h) Following the work of Raulot-Savo in [26], we derive a Reilly formula for
the magnetic Hodge Laplacian on Riemannian manifolds with boundary
(see Theorem 5.1) and use it to derive a lower bound for the first eigen-
value of the magnetic Hodge Laplacian on an embedded hypersurface of
a Riemannian manifold (see Theorem 6.2).

(i) Following the work of Guerini-Savo in [14], we derive a “gap” estimate
between the first eigenvalues of consecutive p-values of the magnetic Hodge
Laplacians on Ωp(M,C) for isometrically immersed manifolds (Mn, g) in
Euclidean space Rn+m (see Theorem 6.3).

Acknowledgment: The third named author thanks Durham University for
its hospitality during his stay. He also thanks the Alexander von Humboldt
foundation and the Alfried Krupp Wissenschaftskolleg in Greifswald.

2 Review of the magnetic Laplacian for func-
tions

Before we introduce the magnetic Hodge Laplacian in the next section, we
first recall some results for the classical magnetic Laplacian on functions. Let
(Mn, g) be a Riemannian manifold and α ∈ Ω1(M). The magnetic Laplacian
∆α acting on complex-valued smooth functions defined by formula (1.1) has

the property of gauge invariance, that is ∆α(eif ) = eif∆α+dMf for any smooth
real-valued function f . When M is compact (with or without boundary), the
spectrum of ∆α (or with suitable boundary conditions when ∂M ̸= ∅) is discrete.
Therefore, by the gauge invariance, the spectrum of ∆α is equal to the spectrum

of ∆α+dMf . Thus, when α is exact, the spectrum of ∆α reduces to that of the
usual Laplace-Beltrami operator. In [8, Prop. 3], it is proven that one can
always assume that α is a co-closed 1-form (and tangential, i.e. ν⌟α = 0, when
M has a boundary) without changing the spectrum of ∆α. Moreover, by using
the Hodge decomposition on compact manifolds, the authors show in [6, Prop.
1] that one can further consider α to be of the form

α = δMψ + h,

where ψ is a 2-form on M (with ν⌟ψ = 0 when ∂M ̸= ∅), and h is a harmonic
1-form on M , that is, dMh = δMh = 0 (with ν⌟h = 0 when ∂M ̸= ∅), and
again the spectrum does not change. Here, we point out that the first eigen-
value λα1 (M) of ∆α is not necessarily zero like for the usual Laplacian ∆M as
shown in [29, Ex. 1]. This interesting property of the magnetic Laplacian was
characterized by Shigekawa (see [29, Prop. 3.1 and Thm. 4.2]) as follows.

Theorem 2.1 (Shigekawa). Let (Mn, g) be a closed Riemannian manifold and

BM =

{
ατ :=

dMτ

iτ
: τ ∈ C∞(M, S1)

}
.

Then the following are equivalent:
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(a) α ∈ BM ,

(b) dMα = 0 and
∫
c
α ∈ 2πZ for all closed curves c in M ,

(c) λα1 (M) = 0.

Hence, when α cannot be gauged away, meaning that α does not belong to
the set BM , the first eigenvalue is necessarily positive. This gauge invariance
can be described by the following: If ατ ∈ BM for some τ ∈ C∞(M, S1), the
Laplacians ∆α and ∆α+ατ are unitarily equivalent, that is

τ̄∆ατ = ∆α+ατ .

Thus ∆α and ∆α+ατ have the same spectrum as stated before. Now, the diamag-
netic inequality compares the first eigenvalue of ∆α to the one for the Laplacian
∆M and says that

λα1 (M) ≥ λ1(M),

with equality if and only if the magnetic potential α can be gauged away. When
M has no boundary, the diamagnetic inequality provides no information since
λ1(M) = 0. However, when we consider manifolds with boundary and the
magnetic Laplacian is associated to the Dirichlet or Robin boundary conditions,
the diamagnetic inequality still holds and tells us that the first eigenvalue λα1 (M)
is always positive.

A simple estimate for the first eigenvalue of the magnetic Laplacian can be
deduced straightforwardly from the min-max principle. Indeed, when applying
the Rayleigh quotient to a constant function, we get, after choosing δMα = 0,
that

λα1 (M) ≤
∫
M

|α|2dµg

Vol(M)
≤ ||α||2∞.

Several papers have been devoted to estimating the first eigenvalue of the
magnetic Laplacian, see, for example, [2, 5, 12, 16, 19, 20, 8, 9, 10, 7, 11, 6].
Among these results, we quote two of them [11], [6] on closed Riemannian
manifolds.

The first result gives magnetic Lichnerowicz-type estimates for the first two
eigenvalues:

Theorem 2.2 (see [11, Thm. 1.1]). Let (Mn, g) be a closed Riemannian man-
ifold of dimension n ≥ 2 and α ∈ Ω1(M). If

RicM ≥ C > 0 and ∥dMα∥∞ ≤

(
1 + 2

√
n− 1

n

)−1

C, (2.1)

then we have

0 ≤ λα1 (M) ≤ a−(C, ∥dMα∥∞, n) and λα2 (M) ≥ a+(C, ∥dMα∥∞, n),
(2.2)
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where

a±(C,A, n) = n ·
(C −A)±

√
(C −A)2 − 4(n−1

n )A2

2(n− 1)
.

The technique used to obtain this result is an integral Bochner-type formula
which involves the magnetic Hessian that is associated to the magnetic covari-
ant derivative ∇α. A related result to Theorem 2.2 for the magnetic Laplacian
with Robin boundary conditions on compact Riemannian manifolds (M, g) with
smooth boundary was proved in [15]. In the setup of the above theorem, it is
natural to ask whether the estimates are sharp for some α that is not gauged
away. For this, we employ the example of the round sphere S3 where the mag-
netic field α is collinear to the Killing vector field that defines the Hopf fibration.
We refer to Appendix A for more details on the computation.

Example (Unit sphere S3 with α = tY2). Let (S3, g) be the unit sphere in
R4 with standard metric g of curvature 1. We use the notation introduced in
Appendix A. Let α = tY2 where Y2 is the unit Killing vector field on S3. Using
(A.6), we obtain dMα = 2t Y3 ∧ Y4 where {Y2, Y3, Y4} is an orthonormal frame
of TS3 and, therefore, ∥dMα∥∞ = 2t. Since RicM = C = 2, condition (2.1) is

satisfied for |t| ≤
√
3√

3+
√
8
= tmax ≈ 0.38, and for t ∈ [0, tmax] we have, by (2.2),

λα1 (S3) ≤
3

2

[
(1− t)−

√
(1− t)2 − 8

3
t2

]

≤ 3

2

[
(1− t) +

√
(1− t)2 − 8

3
t2

]
≤ λα2 (S3).

On the other hand, we conclude from (A.9) that λα1 (S3) = t2 and λα2 (S3) =
3 − 2t + t2 for small t ∈ [0, tmax]. The relations between these two smallest
eigenvalues and their estimates for small t > 0 are illustrated in Figure 1.
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Figure 1: Eigenvalues λα1 (S3) and λα2 (S3) in red and upper and lower bounds in
blue, as functions over t ∈ [0, tmax].

As we can see from Figure 1, sharpness of the upper estimate of λα1 (S3) is
lost (see the discussion after Lemma 4.1).

The second result was given in [6] in the general setting of magnetic Schrödin-
ger operators ∆α + q with Neumann boundary conditions. For simplicity, we
formulate it in the special case of a closed Riemannian manifold (Mn, g) with
vanishing potential q = 0. We will return to this estimate later in Subsection
4.2.

Theorem 2.3 ([6, Thm. 2]). Let (Mn, g) be a closed Riemannian manifold and
let α ∈ Ω1(M) be of the form α = δMψ + h with ψ ∈ Ω2(M) and h a harmonic
1-form. Then,

λα1 (M) ≤ 1

vol(M)

(
d(h,LZ)

2 +
∥dMα∥22
λ′′1,1(M)

)
,

where λ′′1,1(M) is the first eigenvalue of the Hodge Laplacian ∆M on co-exact
1-forms, LZ is the lattice of integer harmonic 1-forms in Ω1(M), and

d(h,LZ)
2 = inf

η∈LZ
∥h− η∥22.

In order to check the sharpness of this inequality, we consider again the case
of the round sphere with the magnetic field given by the Killing vector field.

Example (Unit sphere S3 with α = tY2). Let (S3, g) be the unit round sphere in
R4 with standard metric g of curvature 1 and let α = tY2. Since H

1(S3) = 0 and
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δMα = 0, α is co-exact and therefore of the form δMψ for some ψ ∈ Ω2(M).
Moreover, we have from [13, p. 37], [23] that λ′′1,1(S3) = 4. Thus, Theorem 2.3
yields

λα1 (S3) ≤
1

4vol(S3)

∫
S3
|dMα|2dµg = t2,

that is, the upper estimate of the first magnetic eigenvalue is sharp for this case.

Finally, as we mention in the introduction, examples of closed Riemannian
manifolds (Mn, g) with non-trivial magnetic potential α ∈ Ω1(M) (that is,
magnetic potential which cannot be gauged away) for which the full spectrum
of the magnetic Laplacian ∆α can be explicitly given, are very scarce (see, for
example, [8, 7] for such computations).

3 The magnetic Hodge Laplacian for differential
forms

In this section, we introduce the magnetic Hodge Laplacian for differential forms,
prove a magnetic Bochner formula, and discuss its gauge invariance. Henceforth
(Mn, g) will denote an oriented n-dimensional Riemannian manifold and Ωp(M)
and Ωp(M,C) will denote the spaces of real and complex differential p-forms for
0 ≤ p ≤ n. The spaces of real and complex vector fields on M are denoted
by X (M) and XC(M). To simplify notation, we will often identify real and
complex vector fields with real and complex 1-forms via the (complex-linear)
musical isomorphisms. That is, Ω1(M,C) → XC(M); ω 7→ ω♯ given by ω(X) =

⟨X,ω♯⟩, where ⟨·, ·⟩ stands for the Hermitian scalar product extended from the
Riemannian metric g to XC(M).

3.1 The magnetic Hodge Laplacian

Fix a smooth 1-form α ∈ Ω1(M) (a magnetic potential) and consider the mag-
netic differential on Ωp(M,C), given by

dα := dM + iα ∧ .

It is not difficult to check that the L2-adjoint of dα acting on complex differential
forms (when M is without boundary) w.r.t. the Hermitian inner product∫

M

⟨ω, η⟩ dµg =

∫
M

∗(ω ∧ ∗η̄) dµg

is given by
δα := δM − iα♯⌟,

where δM = (−1)n(p+1)+1 ∗ dM∗ is the formal adjoint of dM on p-forms (both
extended complex linearly to complex differential forms) and the Hodge star
operator is extended to a complex linear operator ∗ : Ωp(M,C) → Ωn−p(M,C).
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Recall here that the interior product “⌟” is the pointwise adjoint of the wedge
product “∧”. Both dα and δα are the differential and co-differential associated to
the magnetic connection on differential forms ∇α

X := ∇M
X + iα(X) on Ωp(M,C).

That means we have

dα =

n∑
j=1

e∗j ∧∇α
ej and δα = −

n∑
j=1

ej⌟∇α
ej , (3.1)

where {e1, . . . , en} is a local orthonormal frame of TM . Now, we define the
magnetic Hodge Laplacian acting on Ωp(M,C) as follows:

∆α := dαδα + δαdα.

We first have the following observation:

Lemma 3.1. On differential p-forms, we have ∗dα = (−1)p+1δα∗ and ∗δα =
(−1)pdα∗.

Proof. The proof is straightforward from the fact that ∗dM = (−1)p+1δM∗ and
∗(α∧) = (−1)pα♯⌟∗ on p-forms. Also, we have that ∗δM = (−1)pdM∗ and
∗(α♯⌟) = (−1)p+1α ∧ ∗.

The following is an immediate consequence of Lemma 3.1 above.

Corollary 3.2. The magnetic Hodge Laplacian ∆α commutes with the Hodge
star operator.

Proof. Indeed, on p-forms, we have

∆α∗ = (dαδα + δαdα) ∗
= (−1)p+1dα ∗ dα + (−1)pδα ∗ δα

= ∗(δαdα + dαδα) = ∗∆α.

The magnetic Laplacian ∆α has the same principal symbol as the Hodge
Laplacian ∆M (see Equation (3.10) in the next section), since it differs by lower
order terms. Therefore, it is an elliptic, essentially self-adjoint operator acting
on smooth complex forms on a closed oriented Riemannian manifold or acting
on smooth complex forms with Dirichlet boundary condition on an oriented
Riemannian manifold with boundary (see Subsection 5.1 below). Therefore,
∆α has a discrete spectrum consisting of nonnegative eigenvalues (λαj,p(M))j∈N,
denoted in ascending order with multiplicities. Moreover, as for the usual Hodge
Laplacian, its spectrum on p-forms is the same as the one on (n− p)-forms and
the first eigenvalue is characterized by

λα1,p(M) = inf

{∫
M
(|dαω|2 + |δαω|2)dµg∫

M
|ω|2dµg

}
, (3.2)
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where ω runs over all smooth p-forms with ω|∂M = 0, if ∂M ̸= ∅.
We also note that the differential dα does not satisfy the crucial property

dα ◦ dα = 0 to introduce cohomology groups. In fact, we have

(dα)2 = idMα∧ (3.3)

where dMα ∈ Ω2(M) is the magnetic field. We could, however, still define
magnetic Betti numbers via

bαj (M) = dimKer(∆α|Ωj(M,C)).

Corollary 3.2 implies that bαj (M) = bαn−j(M). Moreover, we have bα0 (M) =
bαn(M) = 0 for any magnetic potential α that cannot be gauged away, that is
α /∈ BM , by the diamagnetic inequality. In Theorem 3.9, we investigate the
existence of closed Riemannian manifolds (Mn, g) with a magnetic potential
α that cannot be gauged away, for which some of the corresponding magnetic
Betti numbers bαk (M), 1 ≤ k ≤ n− 1, are non-zero.

3.2 A magnetic Bochner formula

Recall that the Hodge Laplacian ∆M := dMδM+δMdM is related to the Bochner
Laplacian on M via a curvature term by the Bochner-Weitzenböck formula.
Namely, we have (see, e.g, [24, Thm. 7.4.5] or [31, p. 14])

∆M = ∇∗∇+ B[p], (3.4)

where B[p], called the Bochner operator, is a symmetric endomorphism on Ωp(M)
given by B[p] =

∑n
j,k=1 e

∗
k ∧ ej⌟RM (ej , ek). Here RM is the curvature operator

associated to the Levi-Civita connection ∇M which is given by RM (X,Y ) =
[∇M

X ,∇M
Y ]−∇M

[X,Y ] for all X,Y ∈ X (M) and {e1, . . . , en} is a local orthonormal
frame of TM . The Bochner Laplacian ∇∗∇ is given by

∇∗∇ = −
n∑

j=1

∇M
ej ∇

M
ej +

n∑
j=1

∇M
∇M

ej
ej
.

In the following, we derive a similar magnetic Bochner-Weitzenböck formula
for ∆α, which will provide a relation between the Hodge Laplacians ∆α and
∆M . For this, we recall the following definition. Given a Euclidean vector
space V of dimension n and an endomorphism A : V → V , there exists a
canonical extension A[p] of A on the set of differential p-forms (p ≥ 1) given by
A[p] : Λp(V ∗) → Λp(V ∗) via

(A[p]ω)(v1, . . . , vp) =

p∑
j=1

ω(v1, . . . , Avj , . . . , vp), (3.5)

for v1, . . . , vp ∈ V . By convention, we take A[0] = 0. One can easily show from
the definition that the endomorphism A[p] can be written in terms of A as

A[p] =

n∑
j=1

e∗j ∧ (A(ej)⌟), (3.6)
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where {e1, . . . , en} is an orthonormal frame of V . If A is a symmetric (resp.
skew-symmetric) endomorphsim on V , then so is A[p] on Λp(V ∗). In this case,
if we denote the eigenvalues of A by η1 ≤ . . . ≤ ηn, then we have the following
estimates. For any ω ∈ Λp(V ∗)

⟨A[p]ω, ω⟩ ≥ σp|ω|2 and ⟨A[p]ω, ω⟩ ≤ (σn − σn−p)|ω|2 ≤ p∥A∥ · |ω|2, (3.7)

where σp := η1 + . . .+ ηp are called the p-eigenvalues of A[p] and ∥A∥ is the op-
erator norm of A. In order to state the magnetic Bochner-Weitzenböck formula,
we introduce the following magnetic Bochner operator on Ωp(M,C):

B[p],α :=

n∑
j,k=1

e∗k ∧ (ej⌟R
α(ej , ek)) ,

where as before {ei}i=1,...,n is a local orthonormal frame of TM . Here Rα is the
curvature operator associated to the magnetic covariant derivative ∇α, that is

Rα(X,Y )Z = ∇α
X∇α

Y Z −∇α
Y ∇α

XZ −∇α
[X,Y ]Z

for X,Y, Z ∈ XC(M). Now, we express the magnetic Bochner operator in terms
of the usual one by the following lemma.

Lemma 3.3. On the set of complex differential p-forms, the magnetic Bochner
operator B[p],α is equal to

B[p],α = B[p] − iA[p],α,

where A[p],α is the canonical extension to complex p-forms of the skew-symmetric
endomorphism Aα on TM given by Aα(X) = (X⌟dMα)♯ for any vector field X
on M .

Proof. An easy computation shows that, for anyX,Y ∈ X (M) and ω ∈ Ωp(M,C),

Rα(X,Y )ω = RM (X,Y )ω + i(dMα)(X,Y )ω.

The proof can then be deduced from the definition of B[p],α and the fact that
Aα is skew-symmetric.

We make the following observation. Using the identity on p-forms ∗(X♭∧) =
(−1)pX⌟∗ valid for any vector fieldX, one can easily show that B[p] = (−1)p(n−p)∗
B[n−p]∗ which gives that ⟨B[p]·, ·⟩ = ⟨B[n−p] ∗ ·, ∗·⟩ where ∗ is the Hodge star op-
erator on M and ⟨·, ·⟩ is the pointwise Hermitian product on Ωp(M,C). In
the same way, and since the endomorphism Aα is skew-symmetric, one can
also show that A[p],α = (−1)p(n−p) ∗ A[n−p],α∗. Therefore, we deduce that
B[p],α = (−1)p(n−p) ∗ B[n−p],α∗ and, thus,

⟨B[p],α·, ·⟩ = ⟨B[n−p],α ∗ ·, ∗·⟩ (3.8)

on complex p-forms. Notice here that iA[p],α is a symmetric endomorphism on
Ωp(M,C). Now we formulate the magnetic Bochner-Weitzenböck formula.
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Theorem 3.4 (Magnetic Bochner-Weitzenböck formula). Let (Mn, g) be a Rie-
mannian manifold and α ∈ Ω1(M). Then we have

∆α = (∇α)∗∇α + B[p],α, (3.9)

where (∇α)∗∇α = −
∑n

j=1 ∇α
ej∇

α
ej +

∑n
j=1 ∇α

∇M
ej

ej
. Moreover, we have

∆α = ∆M − iA[p],α + i(δMα)− 2i∇M
α + |α|2. (3.10)

Proof. The proof follows the same computations as for the Hodge Laplacian
∆M . For this, we use the expressions of dα and δα in (3.1) on an orthonormal
frame {ej}nj=1 on TM chosen in a way that ∇Mej = 0 at some point x ∈M . By

the fact that, for all X,Y ∈ XC(M), we have ∇α
X(Y ∧·) = (∇M

X Y )∧·+Y ∧∇α
X ·,

which can be proven by a straightforward computation (the same relation holds
for the interior product), we can write at x ∈M :

∆α = dαδα + δαdα

= −
n∑

j,k=1

e∗k ∧∇α
ek
(ej⌟∇α

ej )−
n∑

j,k=1

ej⌟∇α
ej (e

∗
k ∧∇α

ek
)

= −
n∑

j,k=1

e∗k ∧ (ej⌟∇α
ek
∇α

ej )−
n∑

j,k=1

ej⌟(e
∗
k ∧∇α

ej∇
α
ek
)

= −
n∑

j,k=1

e∗k ∧ (ej⌟∇α
ek
∇α

ej )−
n∑

j=1

∇α
ej∇

α
ej +

n∑
j,k=1

e∗k ∧ (ej⌟∇α
ej∇

α
ek
)

= −
n∑

j=1

∇α
ej∇

α
ej +

n∑
j,k=1

e∗k ∧ (ej⌟R
α(ej , ek)),

where in the fourth equality we used the relation

X⌟(β ∧ ·) = (X⌟β) ∧ ·+ (−1)deg ββ ∧ (X⌟·),

for any differential form β. This shows that (3.9) holds. To obtain (3.10), we
just combine Lemma 3.3 with the Bochner-Weitzenböck formula (3.4) and the
fact that at x ∈M

(∇α)∗∇α = −
n∑

j=1

∇α
ej∇

α
ej

= −
n∑

j=1

∇M
ej (∇

M
ej + iα(ej))− i

n∑
j=1

α(ej)(∇M
ej + iα(ej))

= ∇∗∇+ iδMα− 2i∇M
α + |α|2.
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Remark. Formula (3.10) is a generalization of the formula for the magnetic
Laplacian for functions, given by

∆αf = δαdαf = ∆Mf + i(δMα)f − 2iα(f) + |α|2f,

since A[0],α = 0.

Now, we will consider a particular case for the magnetic field α. We will
assume that it is a Killing 1-form, that is its corresponding vector field α♯ by
the musical isomorphism is a Killing vector field. In this case, the standard
Hodge Laplacian ∆M commutes with Lα since it commutes with all isometries.
Indeed, we will show that, when α is of constant norm, the exterior differential
dM and codifferential δM both commute with the magnetic Laplacian. Notice
here that, in general, dα and δα do not commute with ∆α as a consequence of
(3.3) and even when α♯ is Killing. We now show that Equation (3.10) has the
simpler expression (3.11) in this case. We also recall that for simplicity α and
α♯ are identified throughout the paper.

Proposition 3.5. Let (Mn, g) be a Riemannian manifold and let α be a Killing
1-form, then

∆α = ∆M − 2iLα + |α|2, (3.11)

where Lα is the Lie derivative in the direction of α. In particular, Lα∆
α =

∆αLα. Moreover, if the norm of α is constant, we have that ∆αdM = dM∆α

and ∆αδM = δM∆α and, therefore, the magnetic Laplacian preserves the set of
exact and co-exact forms.

Proof. The fact that α is Killing gives Aα(X) = X⌟dMα = 2∇M
X α for any

vector field X ∈ TM . Therefore, we get by (3.6) that

A[p],α =

n∑
j=1

e∗j ∧Aα(ej)⌟ = 2

n∑
j=1

e∗j ∧∇M
ej α⌟ = 2T [p],α,

where T [p],X is the canonical extension of the endomorphism TX = ∇MX, for
any X, given by the expression in (3.6). Now, the identity LX = ∇M

X + T [p],X

valid on p-forms for any vector field X on TM [27, Lem. 2.1] allows us to deduce
that

2Lα = 2∇M
α +A[p],α. (3.12)

Hence, Equation (3.10) and the fact that δMα = 0 since α is Killing gives the
desired identity (3.11). In order to prove that Lα commutes with ∆α, we first
use α(|α|2) = 2g(∇M

α α, α) = 0 which is a consequence of the fact that α is
Killing. Now, we compute, for any p-form ω,

Lα(|α|2 · ω) = α(|α|2) · ω + |α|2 · Lαω = |α|2 · Lαω.

Thus, by the fact that Lα commutes with the Laplacian ∆M , we get that
Lα∆

α = ∆αLα. Now we assume |α| is constant. It follows from Cartan’s
formula LXω = X⌟dMω+dM (X⌟ω) that LX commutes with dM for any vector
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field X. Since dM commutes with ∆M and with Lα as well as with multipli-
cation by the constant |α|2, we deduce that dM commutes with ∆α. That the
codifferential δM commutes with ∆α comes from the fact that δM commutes
with ∆M and with Lα, which is a consequence of δM = ±∗dM∗ and Lα∗ = ∗Lα

by Equation (3.12). (Recall here that A[p],α∗ = ∗A[n−p],α). This finishes the
proof.

Remark. The relation (3.12) shows that for any complex differential forms ω
and ω′ on M , the following relation

⟨Lαω, ω
′⟩+ ⟨ω,Lαω

′⟩ = α(⟨ω, ω′⟩), (3.13)

holds pointwise when α is a Killing vector field (not necessarily of constant
norm), since A[p],α is skew-symmetric.

When the magnetic potential α is Killing of constant norm on (Mn, g),
we have seen that the magnetic Laplacian ∆α preserves the set of exact and
co-exact forms on M . In the following, we will assume M to be compact
and will let λα1,p(M) be the first non-negative eigenvalue of ∆α on differen-
tial p-forms and λα1,p(M)′ (resp. λα1,p(M)′′) be the first non-negative eigen-
value restricted to exact (resp. co-exact) p-forms. As in the standard case
[26], we can prove by Hodge duality that λα1,p(M)′′ = λα1,n−p(M)′ and that
λα1,p(M) ≤ min(λα1,p(M)′, λα1,p(M)′′). Recall here that the magnetic Laplacian
commutes with the Hodge star operator. However, we will see in the next propo-
sition, that the relation λα1,p(M) = min(λα1,p(M)′, λα1,p(M)′′) that usually holds

for the Laplacian ∆M is not always true for ∆α.
For the next proposition, we need the following well known result, which we

present for completeness.

Lemma 3.6. Let (Mn, g) be a compact manifold and let X be a Killing vector
field on M . For any harmonic form ω ∈ Ω(M) we have

LXω = 0.

Proof. Let ω ∈ Ω(M) be harmonic. Using Cartan’s formula, we see that LXω
is exact. Moreover, since the Lie derivative of a Killing vector field commutes
both with dM and δM , the Lie derivative LXω is both exact and harmonic.
Therefore, by Hodge decomposition, LXω = 0.

Proposition 3.7. Let (Mn, g) be a compact Riemannian manifold and let
α be a Killing 1-form. The first non-negative eigenvalue λα1,p(M) satisfies
λα1,p(M) = |α|2 or λα1,p(M) = min(λα1,p(M)′, λα1,p(M)′′) if α has constant norm.
If Hp(M) ̸= 0, then we get the estimate

λα1,p(M) ≤ ||α||2∞.

Proof. Let ω be a complex p-eigenform of the magnetic Hodge Laplacian asso-
ciated to the first eigenvalue λα1,p(M). By the Hodge decomposition, we write

ω = dMω0 + δMω1 + ω2,
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where ω0 ∈ Ωp−1(M,C), ω1 ∈ Ωp+1(M,C) and ω2 ∈ Ωp(M,C) is harmonic.
From the equation ∆αω = λα1,p(M)ω, by uniqueness of the decomposition and

the fact that both dM and δM commute with ∆α, we obtain the relation ∆αω2 =
λα1,p(M)ω2. Now, if ω2 does not vanish, then by the fact that α is Killing and ω2

is harmonic, we have by Lemma 3.6 that Lαω2 = 0. Thus, by Equation (3.11),
we get that ∆αω2 = |α|2ω2 and, therefore, λα1,p(M) = |α|2. If ω2 vanishes, then

we have ω = dMω0 + δMω1 and, hence, min(λα1,p(M)′, λα1,p(M)′′) ≤ λα1,p(M).
When Hp(M) ̸= 0 then there is a non-vanishing p-harmonic form ω on M and
thus, as before, ∆αω = |α|2ω. Thus, by the min-max principle we deduce the
required estimate. This finishes the proof.

Example. As in the previous examples, consider the manifold M = S3 equipped
with the standard metric of curvatue 1. Let Y2 be the unit Killing vector field
as in Appendix B. It follows that the 1-forms dMu, dMv and α = tY2 are all
simultaneous eigenforms of the operators ∆α such that

∆αdMu = (3 + 2t+ t2)dMu,

∆αdMv = (3− 2t+ t2)dMv,

∆αα = (4 + t2)α.

Moreover, dMu, dMv are exact eigenforms associated to the smallest eigenvalue
λ′1,1(M) = 3 and α is a co-exact eigenform associated to the smallest eigenvalue
λ′′1,1(M) = 4 (see [23]). Therefore, we have for small t > 0,

λα1,1(M) = min(λα1,1(M)′, λα1,1(M)′′) = 3− 2t+ t2,

since H1(M) = 0. On the other hand, we get by Equation (A.9) that for small
t > 0, λα1,0(M) = t2 = |α|2. However, we have that

min(λα1,0(M)′, λα1,0(M)′′) = λα1,0(M)′′ = 3− 2t+ t2.

3.3 Gauge invariance of the magnetic Hodge Laplacian

Another consequence of the magnetic Bochner-Weitzenböck formula (3.10) is
the following result.

Corollary 3.8. Let (Mn, g) be a Riemannian manifold and let α be a differ-

ential 1-form on M . For any ατ = dMτ
iτ ∈ BM for some τ ∈ C∞(M,S1),

the magnetic Laplacians ∆α and ∆α+ατ on p-forms are unitarily equivalent,
meaning that

τ̄∆ατ = ∆α+ατ .

In particular, ∆α and ∆α+ατ have the same spectrum on a closed oriented
Riemannian manifold.

Proof. The proof relies mainly on the following identity. For any f ∈ C∞(M,C)
and ω ∈ Ωp(M,C), we have

∆M (fω) = f∆Mω + (∆Mf)ω − 2∇M
dMfω.
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Hence, for f = τ ∈ C∞(M,S1), we use Equation (3.10) to compute

τ̄∆α(τω) = τ̄
(
∆M (τω)− iA[p],α(τω) + i(δMα)(τω)− 2i∇M

α (τω) + |α|2τω
)

= ∆Mω + τ̄(∆Mτ)ω − 2τ̄∇M
dMτω − iA[p],αω + i(δMα)ω

−2iτ̄α(τ)ω − 2i∇M
α ω + |α|2ω. (3.14)

Taking the divergence of dMτ = iτατ , we get that

∆Mτ = δM (iτατ ) = iτδMατ + τ |ατ |2.

Hence, Equation (3.14) reduces to

τ̄∆α(τω) = ∆Mω + i(δMατ )ω + |ατ |2ω − 2i∇M
ατ
ω − iA[p],αω + i(δMα)ω

+2⟨α, ατ ⟩ω − 2i∇M
α ω + |α|2ω

= ∆Mω − iA[p],α+ατω + iδM (ατ + α)ω − 2i∇M
α+ατ

ω + |α+ ατ |2ω
= ∆α+ατω.

In the second equality, we used the fact that Aα = Aα+ατ since ατ is a closed
form. This allows us to deduce the result.

The gauge invariance of the magnetic Laplacian allows us to state a Shikegawa
type result for differential forms.

Theorem 3.9. Let (Mn, g) be a compact Riemannian manifold and let α be a
one-form on M . Assume that M carries a non-zero parallel p-form ω0 on M .
Then we have the following:

(a) If α ∈ BM , then λα1,p(M) = 0 and there exists an eigenform ω of ∆α

associated with the eigenvalue λα1,p(M) such that f := ⟨ω, ω0⟩ is nowhere
vanishing.

(b) Conversely, assume that α is Killing. If λα1,p(M) = 0 and there exists
an eigenform ω of ∆α associated with the eigenvalue λα1,p(M) such that
f := ⟨ω, ω0⟩ is not vanishing, then α ∈ BM and, in this case, it is a
parallel form.

Proof. We first prove (a). Since α = dMτ
iτ ∈ BM for some τ ∈ C∞(M, S1), we

deduce from Corollary 3.8 that the magnetic Laplacian has the same spectrum
as the Hodge Laplacian ∆M . Hence the first eigenvalue λα1,p(M) is equal to 0

due to the existence of a parallel form ω0 which gives that dMω0 = δMω0 = 0.
Moreover, one can easily check that the form ω := τω0 satisfies

dαω = dM (τω0) + iα ∧ τω0

= dMτ ∧ ω0 + iτα ∧ ω0

= −iτα ∧ ω0 + iτα ∧ ω0

= 0.
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In the same way, we prove that δαω = 0. Therefore, we have ∆αω = 0. Hence
the function f = ⟨ω, ω0⟩ = τ |ω0|2 is nowhere zero since τ ∈ S1 and the parallel
form ω0 is of constant norm.

Now, we prove (b). For this, we assume that α is Killing and we compute
the Laplacian of the function f . We choose a local orthonormal frame {ei} of
TM such that ∇Mei|x = 0 at some point x. Since the form ω0 is parallel, we
write

∆Mf(x) = −
n∑

i=1

(ei(ei(f)))(x) = −
n∑

i=1

⟨∇M
ei ∇

M
ei ω, ω0⟩x

= ⟨∇∗∇ω, ω0⟩x
(3.4)
= ⟨∆Mω − B[p]ω, ω0⟩x

(3.11)
= ⟨∆αω + 2iLαω − |α|2ω, ω0⟩x − ⟨ω,B[p]ω0⟩x

(3.13)
= −2i⟨ω,Lαω0⟩x + 2iα(⟨ω, ω0⟩x)− |α(x)|2f(x)
= 2iα(f)(x)− |α(x)|2f(x).

In this computation, we used the fact that B[p]ω0 = 0 since ω0 is parallel, and
also that Lαω0 = 0 by Lemma 3.6. Therefore, Equation (1.2) and divα♯ = 0
(since α is Killing) allows us to deduce that ∆αf = 0 and, therefore λα1 (M) =
0. Now, the classical Shikegawa’s result (Theorem 2.1) allows us to get that
α ∈ BM which is also equivalent to the fact that dMα = 0 and

∫
c
α ∈ 2πZ

for all closed curves c in M . Now, the condition dMα = 0 means that ∇Mα
is a symmetric two-tensor which is also skew-symmetric by the fact that α is
Killing. Hence, the form α is parallel.

Remark. We know from Lemma 3.6 that, on a compact manifold (Mn, g),
for any harmonic form ω and a Killing one-form α, we have that Lαω = 0.
However, there are ∆α-harmonic forms for which this fact no longer holds.
Indeed, assume that M carries a Killing one-form α which is also in BM , that

is α = dMτ
iτ (for instance, such forms exist on the flat torus) and hence parallel

by the same arguments as in the above proof. Assume also that a non-zero
parallel p-form ω0 exists on M . We have seen from the proof of Theorem 3.9
that ω = τω0 is a ∆α-harmonic form. Now, we compute

Lαω = α(τ)ω0 + τLαω0 = −iτ |α|2ω0 ̸= 0,

since α is parallel and, hence, is of constant norm.

We illustrate Theorem 3.9 with two examples.

Examples.

(a) The flat torus Tn is trivialized by parallel p-forms for any p. Hence, one
can always find, for any non-trivial differential form ω, a parallel form ω0

such that f = ⟨ω, ω0⟩ is not vanishing. Let α be any Killing one-form, we
get

λα1,p(Tn) = 0 ⇐⇒ α ∈ BTn . (3.15)
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(b) Let us consider the product manifold M = S1×S3 with the product metric.
For A ∈ R, we let α = Aω0 be the one-form on M , where ω0 := dθ is the
parallel unit one-form on S1. It is not difficult to check that α ∈ BS1×S3 if
and only if A ∈ Z. We show

λα1,1(S1 × S3) = 0 ⇐⇒ A ∈ Z.

When A ∈ Z, the spectrum of ∆α is the same as the spectrum of ∆M ,
and hence λα1,1(M) = 0 due to the existence of a parallel one-form. For
the converse, assume that λα1,1(S1 × S3) = 0 and that A /∈ Z. Hence,
α /∈ BS1×S3 and by Theorem 3.9, we obtain that f = ⟨ω, ω0⟩ = 0 for any
eigenform ω associated to λα1,1(M). Therefore, if we consider an orthonor-
mal frame on {ξ, e1, e2} on TS3 such that ξ is the unit Killing vector field

that defines the Hopf fibration with ∇S3
e1ξ = e2 and ∇S3

e2ξ = −e1 (since the

complex structure on S2 is given by J(X) = ∇S3
X ξ), we write

ω = f0ξ + f1e1 + f2e2

where f0, f1, f2 are smooth functions on S1×S3. Now, the condition dαω =
0 allows us to get that ∂fk

∂θ = −iAfk for k = 0, 1, 2, which gives that
fk = gke

−iAθ with functions gk which are constant on S1. However, the
functions fk are only periodic functions on S1 when A ∈ Z, which is a
contradiction.

4 Eigenvalue estimates for the magnetic Hodge
Laplacian on closed manifolds

In this section, we establish several eigenvalue estimates for the magnetic Hodge
Laplacian on a closed oriented Riemannian manifold (Mn, g). In particular, we
show that the diamagnetic inequality cannot hold in general.

4.1 A magnetic Gallot-Meyer estimate

The aim of this subsection is to derive a lower bound for the first eigenvalue of
the magnetic Hodge Laplacian on p-forms that is analogous to that of Gallot-
Meyer. We begin with the following lemma similar to [13, Lem. 6.8], relating
the magnetic connection to the magnetic differential and co-differential.

Lemma 4.1. Let (Mn, g) be a Riemannian manifold and let α be a magnetic
potential. For any complex differential p-form ω with p ≥ 1, we have

|∇αω|2 ≥ 1

p+ 1
|dαω|2 + 1

n− p+ 1
|δαω|2. (4.1)

Proof. The proof relies on defining the magnetic twistor form as in the usual
case: For any complex p-form ω and vector field X ∈ XC(M), we define

Pα
Xω := ∇α

Xω − 1

p+ 1
X⌟dαω +

1

n− p+ 1
X ∧ δαω.
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Using Equation (3.1), the norm of Pα is equal to

|Pαω|2 :=

n∑
j=1

|Pα
ejω|

2 = |∇αω|2 − 1

p+ 1
|dαω|2 − 1

n− p+ 1
|δαω|2 ≥ 0.

Here we use the fact that any complex p-form β on M can be written as β =
1
p

∑n
j=1 e

∗
j ∧ (ej⌟β), and therefore,

∑n
j=1 |ej⌟β|2 = p|β|2 and

∑n
j=1 |e∗j ∧ β|2 =

(n− p)|β|2.

Applying Inequality (4.1) to the 1-form ω := dαf , where f is a smooth
complex-valued function, we get that

|Hessαf |2 = |∇αdαf |2 ≥ 1

2
|(dα)2f |2 + 1

n
|∆αf |2 ≥ 1

n
|∆αf |2.

If the equality is attained, then (dα)2f = 0 which, by (3.3), is equivalent to
dMα = 0. Therefore if equality occurs in (2.2) (that is, if λα1 (M) = a−(C,A, n)),
then from [11, p. 1147], we should have equality in the above inequality which
means that necessarily dMα = 0. This explains why sharpness of the upper
bound for λα1 (M) in (2.2) is lost. The next result now reads as a “magnetic
version” of the Gallot-Meyer estimate [13, Thm. 6.13].

Theorem 4.2. Let (Mn, g) be a closed oriented Riemannian manifold, and let
α be a smooth 1-form on M . Assume that B[p],α ≥ K for some K > 0 and
p ≥ 1. Then, we have

λα1,p(M) ≥ C

C − 1
K,

where C = max(p+ 1, n− p+ 1).

Proof. Let ω be a p-eigenform of ∆α associated to the first eigenvalue λα1,p(M).
We apply the magnetic Bochner formula to ω, integrate it over M and use
inequality (4.1) to obtain

λα1,p(M)

∫
M

|ω|2dµg =

∫
M

|∇αω|2dµg +

∫
M

⟨B[p],αω, ω⟩dµg

≥ 1

C

∫
M

(|dαω|2 + |δαω|2)dµg +K

∫
M

|ω|2dµg

=

(
λα1,p(M)

C
+K

)∫
M

|ω|2dµg,

from which we deduce the desired inequality.

Remark. In view of Equality (3.8) and since the Hodge star operator commutes
with the magnetic Laplacian ∆α by Corollary 3.2, it is enough to consider p ≤ n

2
in the above estimate.
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Example. In order to check whether the condition B[p],α ≥ K required in the
previous theorem can be satisfied for some K > 0, we will employ the example
of the round sphere Sn for some odd n = 2m + 1 where the magnetic field
α is given by α = tξ, for t > 0, and ξ is the unit Killing vector field on
Sn that defines the Hopf fibration. Indeed, since on the round sphere B[p] =
p(n − p), we get that B[p],α = p(n − p) − tiA[p],ξ. Now, as AξX = X⌟dMξ =
2∇M

X ξ for any vector field X, we can always find an orthonormal basis of TSn
such that the matrix of Aξ consists of the eigenvalue 0 and block matrices of

type

(
0 ±2
∓2 0

)
. The eigenvalue 0 corresponds to the eigenvector ξ and the

block matrices come from the fact that ∇Mξ is the complex structure on ξ⊥.
Hence, in this basis, the eigenvalues of the symmetric matrix iAξ are −2, 0, 2
with multiplicities n−1

2 , 1, n−1
2 respectively. An easy computation shows that the

p-eigenvalues of the matrix iAξ are equal to

σp =

{
−2p, if p ≤ n−1

2 ,
−2(n− p), if p ≥ n+1

2 .

Recall here that n is odd. Hence the second inequality in (3.7) allows us to
deduce that

iA[p],ξ ≤
{

2p, if p ≤ n−1
2 ,

2(n− p), if p ≥ n+1
2 .

Thus, for t > 0, we deduce that

B[p],α ≥ K =

{
p(n− p− 2t), if p ≤ n−1

2 ,
(p− 2t)(n− p), if p ≥ n+1

2 .

Clearly, for any parameter t ≤ n−p
2 or p

2 , the number K is positive. Hence, The-
orem 4.2 yields the following estimates for the first eigenvalue of the magnetic
Laplacian ∆α on Sn with α = tξ,

λα1,p(Sn) ≥

{
n−p+1
n−p p(n− p− 2t), if p ≤ n−1

2 ,
p+1
p (p− 2t)(n− p), if p ≥ n+1

2 .

4.2 A differential form analogue of a Colbois-El Soufi-
Ilias-Savo estimate

In [6, Thm. 2], the authors give an upper bound for the first Neumann eigen-
value of ∆α defined on complex functions in terms of some distance function of
harmonic 1-forms to a specific lattice and the norm of the magnetic field dMα
for Riemannian manifolds with boundary. In the following, we prove a similar
result in the setting of differential forms for closed oriented Riemannian man-
ifolds (Mn, g). Before we state the result, let us first introduce some relevant
notation: We denote by m = b1(M) the first Betti number and let c1, . . . , cm
be a basis of H1(M,Z) and A1, . . . , Am ∈ H1(M) be its dual basis, that is

1

2π

∫
ci

Aj = δij .
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Let LZ be the lattice

LZ = ZA1 ⊕ ZA2 ⊕ . . .⊕ ZAm.

If H1(M) = 0 we set LZ = 0. Note that, by Hodge Theory, we can think of
LZ as a discrete subset of all real harmonic 1-forms. We now introduce the
following distance functions for any real 1-form β ∈ Ω1(M):

d2(β,LZ) =
√

inf
η∈LZ

∥β − η∥22,

d∞(β,LZ) =
√

inf
η∈LZ

∥β − η∥2∞.

When LZ = 0, the above distances reduce to ||β||2 or ||β||∞. Now, we state
the main result of this section.

Theorem 4.3. Let (Mn, g) be a closed Riemannian manifold and α ∈ Ω1(M)
be a magnetic potential of the form α = δMψ+h with h a harmonic 1-form and
ψ a 2-form. Then we have the following eigenvalue estimate for the magnetic
Hodge Laplacian on complex p-forms:

λα1,p(M) ≤ λ1,p(M) + min

{
d∞(α,LZ)

2,
∥ω0∥2∞
∥ω0∥22

d2(α,LZ)
2

}
(4.2)

with

d2(α,LZ)
2 ≤ d2(h,LZ)

2 +
∥dMα∥22
λ′′1,1(M)

, (4.3)

where ω0 is a real eigenform of the Hodge Laplacian ∆M associated to the first
eigenvalue λ1,p(M), and λ′′1,1(M) denotes the first eigenvalue of the Hodge Lapla-
cian on co-exact 1-forms.

Proof. The proof mainly follows the same lines as in [6]. Firstly, we choose ω0

to be a real p-form. Let η ∈ LZ, that is

η = n1A1 + n2A2 + . . .+ nmAm ∈ LZ,

for some integers n1, . . . , nm ∈ Z. We fix x0 ∈M and define

u(x) = e
i
∫ x
x0

η
.

The r.h.s. is well defined and independent of the path from x0 to x chosen, since∫ x

x0
η coincides for any pair of homotopic curves from x0 and x and agrees up to

a multiple of 2π for any arbitrary pair of paths from x0 to x as η ∈ LZ. Then
we have dMu = iuη. Therefore, for the p-form ω := uω0, we compute

dαω = dMω+iα∧ω = (dMu)∧ω0+ud
Mω0+iuα∧ω0 = udMω0+iu(η+α)∧ω0.

Similarly,

δαω = δMω−iα♯⌟ω = uδMω0−(dMu)♯⌟ω0−iuα♯⌟ω0 = uδMω0−iu(η+α)♯⌟ω0.
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Now we take the norms and use orthogonality of its real and imaginary parts
to obtain

|dαω|2 = |dMω0|2 + |(η + α) ∧ ω0|2,

and similarly
|δαω|2 = |δMω0|2 + |(η + α)♯⌟ω0|2.

Using the fact that |X ∧ ω|2 + |X♯⌟ω|2 = |X|2 · |ω|2 for any vector field X, we
add the above two equations and choose ω0 to be an eigenform of the Hodge
Laplacian to estimate

λα1,p(M) ≤
∫
M
(|dαω|2 + |δαω|2)dµg∫

M
|ω|2dµg

=

∫
M
(|dMω0|2 + |δMω0|2)dµg∫

M
|ω0|2dµg

+

∫
M

|η + α|2|ω0|2dµg∫
M

|ω0|2dµg

= λ1,p(M) +

∫
M

|η + α|2|ω0|2dµg∫
M

|ω0|2dµg

with ∫
M

|η + α|2|ω0|2dµg∫
M

|ω0|2dµg
≤ min

{
∥η + α∥2∞,

∥ω0∥2∞
∥ω0∥22

∥η + α∥22
}
.

Since η ∈ LZ was arbitrary, this proves Inequality (4.2).
For the proof of Inequality (4.3), recall that we have α = δMψ + h. Since

harmonic 1-forms are L2-orthogonal to the forms in δM (Ω2(M)), we have

d2(α,LZ)
2 = inf

η∈LZ

∫
M

|η + α|2dµg =

∫
M

|δMψ|2dµg + d2(h,LZ)
2.

Since δMψ is co-exact, we have∫
M

|dMδMψ|2dµg∫
M

|δMψ|2dµg
≥ λ′′1,1(M),

and therefore,

d2(α,LZ)
2 ≤

∫
M

|dMδMψ|2dµg

λ′′1,1(M)
+ d2(h,LZ)

2

=
∥dMα∥22
λ′′1,1(M)

+ d2(h,LZ)
2.

This finishes the proof of the theorem.

Remark. The factor
∥ω0∥2

∞
∥ω0∥2

2
requires knowledge of the p-eigenform of the small-

est eigenvalue. Under certain curvature conditions, it can be estimated from
above as explained in [22].
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4.3 The diamagnetic inequality does not hold for the mag-
netic Hodge Laplacian

A natural question is whether the diamagnetic inequality also holds for the
magnetic Hodge Laplacian. That is, whether the inequality

λα1,p(M) ≥ λ1,p(M)

holds or not for some p ≥ 1. An example where the diamagnetic inequality
holds is the flat n-dimensional torus M = Tn. Clearly, the first eigenvalue
λ1,p(M) = 0 for any p due to the existence of a parallel p-form. Hence the
inequality λα1,p(M) ≥ 0 = λ1,p(M) is satisfied. However, according to (3.15),
the first eigenvalue λα1,p(M) can be positive. In this subsection, we provide an
example to show that the diamagnetic inequality does not hold in general. While
this inequality is true for p = 0, we provide a counterexample for p = 1. We also
give an explicit characterisation which determines whether this inequality holds
for ∆tξ where ξ is a Killing vector field. We start with the following estimate:

Theorem 4.4. Let (Mn, g) be a closed oriented Riemannian manifold and ξ ∈
Ω1(M). Then, for any t ∈ R, we have, for α = tξ,

λα1,p(M) ≤ λ1,p(M) +
2t

∥ω∥22
Im

(∫
M

⟨Lξω, ω⟩dµg

)
+ t2∥ξ∥2∞, (4.4)

where ω ∈ Ωp(M,C) is an eigenform of the Hodge Laplacian ∆M (linearly
extended to complex p-forms) associated with the eigenvalue λ1,p(M), and LX

is the Lie derivative in the direction of the vector field X ∈ X (M). In particular,
if Im

(∫
M
⟨Lξω, ω⟩dµg

)
is negative for some complex eigenform ω, then we get

for small positive t that
λα1,p(M) < λ1,p(M),

which means that the diamagnetic inequality does not hold.

Proof. Let ω be any p-form in Ωp(M,C). By the characterization of the first
eigenvalue, we have for α = tξ

λα1,p(M) ≤
∫
M
(|dαω|2 + |δαω|2)dµg∫

M
|ω|2dµg

=

∫
M
(|dMω + itξ ∧ ω|2 + |δMω − itξ⌟ω|2)dµg∫

M
|ω|2dµg

.

Now, we compute∫
M

|dMω+ itξ ∧ ω|2dµg = ∥dMω∥22 +2tRe

(∫
M

⟨dMω, iξ ∧ ω⟩dµg

)
+ t2∥ξ ∧ ω∥22

and∫
M

|δMω − itξ⌟ω|2dµg = ∥δMω∥22 − 2tRe

(∫
M

⟨δMω, iξ⌟ω⟩dµg

)
+ t2∥ξ⌟ω∥22.
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Adding both equations and using the Cartan formula LXω = X⌟dMω+dM (X⌟ω)
for any vector field X yields∫

M

(
|dMω + itξ ∧ ω|2 + |δMω − itξ⌟ω|2

)
dµg = ∥dMω∥22 + ∥δMω∥22

− 2tRe

(∫
M

(
⟨iξ⌟dMω, ω⟩+ ⟨idM (ξ⌟ω), ω⟩

)
dµg

)
+ t2

∫
M

|ξ|2 · |ω|2dµg

= ∥dMω∥22 + ∥δMω∥22 + 2tIm

(∫
M

⟨Lξω, ω⟩dµg

)
+ t2

∫
M

|ξ|2 · |ω|2dµg.

Choosing ω ∈ Ωp(M,C) to be an eigenform of ∆M with respect to the eigenvalue
λ1,p(M), we conclude that

λα1,p(M) ≤ λ1,p(M) +
2t

∥ω∥22
Im

(∫
M

⟨Lξω, ω⟩dµg

)
+ t2∥ξ∥2∞.

This finishes the proof of the stated inequality. The last part is a direct conse-
quence of the fact that when Im

(∫
M
⟨Lξω, ω⟩dµg

)
< 0 one can then always find

positive small enough t so that the r.h.s of the above inequality is strictly less
than λ1,p(M).

Remark. Note that the real and imaginary parts of a complex eigenform of ∆M

are both also eigenforms of ∆M associated with the same eigenvalue. Therefore,
in order to have

Im

(∫
M

⟨Lξω, ω⟩dµg

)
̸= 0,

the eigenspace Emin of ∆M associated with the smallest eigenvalue λ1,p(M)
needs to be at least 2-dimensional. Of course, this higher dimensionality does
not necessarily imply that this term is non-zero.

In order to interpret the condition Im
(∫

M
⟨Lξω, ω⟩dµg

)
< 0 in Theorem 4.4,

we will consider the case when the vector field ξ is Killing.

Corollary 4.5. Let (Mn, g) be a closed oriented Riemannian manifold, ξ be a
Killing vector field on M and V := Ker(Lξ|Ωp(M,C)) for some fixed p. If the
eigenspace Ker(∆M − λ1,p(M)Id) associated with the first eigenvalue λ1,p(M)
is not included in V , then the diamagnetic inequality does not hold. If the
eigenspace Ker(∆M − λ1,p(M)Id) is included in V , then the diamagnetic in-
equality holds (at least for magnetic potentials tξ with small |t| > 0).

Proof. The Laplacian ∆M commutes with Lξ and, thus, the Lie derivative Lξ

preserves the eigenspace Ker(∆M − λ1,p(M)Id) which is of finite dimension.
Relation (3.13) says that the formal L2-adjoint of Lξ is equal to −Lξ. Hence,
the matrix of Lξ is skew-symmetric and, thus, the eigenvalues are of the form 0
and ±iβ. Since by assumption the eigenspace Ker(∆M − λ1,p(M)Id) is not in
the kernel of Lξ, we can always find an eigenform ω of ∆M such that Lξω = iβω
for some β with β < 0 (if β > 0, we choose its conjuguate ω). Hence, for such an
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eigenform, we deduce that Im
(∫

M
⟨Lξω, ω⟩dµg

)
= β

∫
M

|ω|2dµg < 0. Therefore
by Theorem 4.4 the diamagnetic inequality does not hold for small positive t.

To prove the second statement, we have from Relation (3.11) that ∆α =
∆M − 2itLξ + t2|ξ|2 holds for α = tξ. Also, we know from Proposition 3.5
that Lξ∆

α = ∆αLξ. Therefore, the operator ∆α preserves the space V as
well as its orthogonal complement, by the fact that it is a self-adjoint opera-
tor. As ∆M is perturbed analytically, the family (∆tξ)t is an analytic family
of self-adjoint operators with compact resolvent and therefore the Hilbert ba-
sis of p-eigenforms of ∆M and their corresponding eigenvalues can be extended
analytically in the perturbation parameter t to a Hilbert basis of p-eigenforms
of ∆tξ and their corresponding eigenvalues (see [18, Thm. VII.3.9]). Since by
assumption Ker(∆M − λ1,p(M)Id) ⊂ V and the fact that the spectrum is dis-
crete (with finite dimensional eigenspaces), we deduce that λ01,p(V ) = λ1,p(M),

where λ01,p(V ) denotes the lowest eigenvalue of ∆M on p-forms, restricted to
the invariant subspace V . Therefore, by choosing the analytic perturbation ωt

of any basis element ω in the ∆M -eigenspace corresponding to the eigenvalue
λ1,p(M) and using the fact that ωt is of unit L

2-norm, we obtain the estimate∫
M

⟨∆tξωt, ωt⟩dµg =

∫
M

⟨∆Mωt, ωt⟩dµg + t2
∫
M

|ξ|2|ωt|2dµg ≥ λ1,p(M).

In the last inequality, we use the min-max principle for ∆M . This implies
that λtξ1,p(V ) ≥ λ1,p(M) for all t. The continuity of the maps t 7→ λtξj,p(V )

and t 7→ λtξj,p(M) along with the fact that the eigenvalues are discrete and

λ01,p(V ) = λ1,p(M) imply that λtξ1,p(V ) = λtξ1,p(M) for small t. Hence, we deduce

that λtξ1,p(M) ≥ λ1,p(M) for small |t|.

Below we consider the 3-dimensional round sphere and show that the dia-
magnetic inequality is not satisfied for a suitable choice of magnetic potential.
For more details on the computation, we refer to Appendix A.

Corollary 4.6. Let (M = S3, g) be the 3-dimensional unit sphere (centered at
the origin) equipped with the canonical Riemannian metric g of curvature 1. Let
ξ = Y2 be the unit Killing vector field on S3 as in Appendix A. Then, for small
t > 0, we have, for α = tY2,

λα1,1(M) < λ1,1(M),

which means that the diamagnetic inequality does not hold in general for differ-
ential 1-forms.

Proof. Hence, from Corollary 4.5, we just need to find a 1-eigenform of the
Laplacian ∆M which is not in the kernel of Lξ. For this, we use the computations
done in Appendix B. Let (a, b), (z1, z2) ∈ C2\(0, 0) and set

v(z1, z2) = bz̄1 − az̄2.
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Recall that ∆Mv = 3v and that 3 is the smallest eigenvalue of ∆M associated
to the 1-form ω := dMv. Hence, we compute

Lξd
Mv = dM (Lξv) = −idMv.

In the last equality, we use the following consequence of the identity (A.2):
Lξv = Y2(v) = −iv. Hence the result follows from Corollary 4.5.

5 The magnetic Hodge Laplacian on manifolds
with boundary

5.1 A magnetic Green’s formula for differential forms

Let (Mn, g) be a compact oriented Riemannian manifold with smooth boundary
∂M and let α ∈ Ω1(M). We denote by ν the unit inward normal vector field
to ∂M and by ι : ∂M → M the canonical injection. For any pair of complex
differential forms ω1 and ω2, the magnetic Stokes formula∫

M

⟨dαω1, ω2⟩dµg =

∫
M

⟨ω1, δ
αω2⟩dµg −

∫
∂M

⟨ι∗ω1, ν⌟ω2⟩dµg

holds. Here ι∗ is the pull-back of differential forms on M to the boundary.
Indeed, it can be deduced from the usual Stokes formula and the expression of
dα and δα. As a consequence, we get∫

M

⟨∆αω1, ω2⟩dµg =

∫
M

⟨dαδαω1 + δαdαω1, ω2⟩dµg

=

∫
M

⟨δαω1, δ
αω2⟩dµg −

∫
∂M

⟨ι∗(δαω1), ν⌟ω2⟩dµg

+

∫
M

⟨dαω1, d
αω2⟩dµg +

∫
∂M

⟨ν⌟dαω1, ι
∗ω2⟩dµg (5.1)

=

∫
M

⟨ω1,∆
αω2⟩dµg +

∫
∂M

⟨ν⌟ω1, ι
∗(δαω2)⟩dµg

−
∫
∂M

⟨ι∗(δαω1), ν⌟ω2⟩dµg −
∫
∂M

⟨ι∗ω1, ν⌟d
αω2⟩dµg

+

∫
∂M

⟨ν⌟dαω1, ι
∗ω2⟩dµg.

Hence, we deduce that the magnetic Laplacian on smooth differential forms
with Dirichlet boundary condition is self-adjoint and, being elliptic, it has a
discrete spectrum that consists of real nonnegative eigenvalues.

5.2 A magnetic Reilly formula

In the following, we establish a Reilly formula for the magnetic Hodge Laplacian
on a compact oriented Riemannian manifold (Mn, g) with smooth boundary ∂M
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as in [26, Thm. 3]. (Note that the dimension of the manifold in [26] is n+ 1 in
contrast to our setting).

Theorem 5.1. Let (Mn, g) be a compact oriented Riemannian manifold with
smooth boundary ∂M and let α ∈ Ω1(M). Then we have for any ω ∈ Ωp(M,C),
p ≥ 1, the magnetic Reilly formula∫

M

(|dαω|2 + |δαω|2)dµg =

∫
M

|∇αω|2dµg +

∫
M

⟨B[p],αω, ω⟩dµg

+ 2Re

(∫
∂M

⟨dα
T

(ν⌟ω), ι∗ω⟩dµg

)
+

∫
∂M

⟨II[p]ι∗ω, ι∗ω⟩dµg

+

∫
∂M

⟨II[n−p]ι∗(∗ω), ι∗(∗ω)⟩dµg

where αT = ι∗α ∈ Ω1(∂M) is the tangential component of α, II = −∇Mν is the

Weingarten tensor of the boundary and dα
T

:= d∂M + iαT∧. Here II[p] is the
extension of II as defined in (3.5).

Proof. The proof follows the same lines as in [26, Thm. 3]. Indeed, we just need
to integrate the magnetic Bochner-Weitzenböck formula (3.9) over the manifold
M . From Equation (5.1), we have that∫

M

⟨∆αω, ω⟩dµg =

∫
M

|δαω|2dµg −
∫
∂M

⟨ι∗(δαω), ν⌟ω⟩dµg +

∫
M

|dαω|2dµg

+

∫
∂M

⟨ν⌟dαω, ι∗ω⟩dµg.

Notice here that
∫
M
⟨∆αω, ω⟩dµg is not necessarily real. Now from [26, Lemma

18] and the expression of δα, one can easily deduce the following

δα
T

(ι∗ω) = ι∗(δαω) + ν⌟∇α
νω + II[p−1](ν⌟ω)− (n− 1)Hν⌟ω

where the mean curvature H := 1
n−1 tr(II) of ∂M ⊂M . Also, using the expres-

sion of dα, we have that,

dα
T

(ν⌟ω) = −ν⌟dαω + ι∗(∇α
νω)− II[p](ι∗ω).
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Therefore, we arrive at∫
M

⟨∆αω, ω⟩dµg =

∫
M

(|dαω|2 + |δαω|2)dµg

−
∫
∂M

⟨δα
T

(ι∗ω)− ν⌟∇α
νω − II[p−1](ν⌟ω) + (n− 1)Hν⌟ω, ν⌟ω⟩dµg

+

∫
∂M

⟨−dα
T

(ν⌟ω) + ι∗(∇α
νω)− II[p](ι∗ω), ι∗ω⟩dµg

=

∫
M

(|dαω|2 + |δαω|2)dµg − 2Re

(∫
∂M

⟨dα
T

(ν⌟ω), ι∗ω⟩dµg

)
+

∫
∂M

⟨∇α
νω, ω⟩dµg +

∫
∂M

⟨II[p−1]ν⌟ω, ν⌟ω⟩dµg

−
∫
∂M

(n− 1)H|ν⌟ω|2dµg −
∫
∂M

⟨II[p]ι∗ω, ι∗ω⟩dµg.

In the above equality, we use the fact that ∇α
νω = ι∗(∇α

νω) + ν ∧ (ν⌟∇α
νω) at

any point on the boundary. Now since the identity ∗∂M II[p−1] + II[n−p]∗∂M =
(n − 1)H∗∂M holds on (p − 1)-forms on ∂M [26], we apply it to the form ν⌟ω
and take the Hermitian product with ∗∂M (ν⌟ω). This leads to the following

⟨II[p−1]ν⌟ω, ν⌟ω⟩+ ⟨II[n−p]ι∗(∗ω), ι∗(∗ω)⟩ = (n− 1)H|ν⌟ω|2,

where we also use that ι∗(∗ω) = ±∗∂M (ν⌟ω). Hence, after taking the real part,
the above equation reduces to

Re

(∫
M

⟨∆αω, ω⟩dµg

)
=

∫
M

(|dαω|2 + |δαω|2)dµg − 2Re

(∫
∂M

⟨dα
T

(ν⌟ω), ι∗ω⟩dµg

)
+Re

(∫
∂M

⟨∇α
νω, ω⟩dµg

)
−
∫
∂M

⟨II[n−p]ι∗(∗ω), ι∗(∗ω)⟩dµg

−
∫
∂M

⟨II[p]ι∗ω, ι∗ω⟩dµg.

(5.2)

Now, taking the Hermitian product of (3.9) with ω, integrating over M and
taking the real part yields

Re

(∫
M

⟨∆αω, ω⟩dµg

)
= Re

(∫
M

⟨(∇α)∗∇αω, ω⟩dµg

)
+

∫
M

⟨B[p],αω, ω⟩dµg

=
1

2

∫
M

∆M (|ω|2)dµg +

∫
M

|∇αω|2dµg +

∫
M

⟨B[p],αω, ω⟩dµg

=
1

2

∫
∂M

∂

∂ν
(|ω|2)dµg +

∫
M

|∇αω|2dµg +

∫
M

⟨B[p],αω, ω⟩dµg

= Re

(∫
∂M

⟨∇α
νω, ω⟩dµg

)
+

∫
M

|∇αω|2dµg +

∫
M

⟨B[p],αω, ω⟩dµg.

(5.3)
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The second equality is obtained by taking the real part of the pointwise iden-
tity ⟨(∇α)∗∇αω, ω⟩ = −

∑n
i=1 ei(⟨∇α

eiω, ω⟩) + |∇αω|2 valid at any point such
that ∇Mei = 0 and then using that Re(⟨∇α

Xω, ω⟩) = 1
2X(|ω|2) for any real vec-

tor field X. Comparing Equation (5.2) with Equation (5.3) yields the desired
magnetic Reilly formula.

Note that when p = 1, by taking ω = dαf for any smooth complex-valued
function f and using the fact that B[1],α = RicM + iAα (here A[1],α = −Aα

since Aα is skew-symmetric), the Reilly formula in Theorem 5.1 reduces to the
one stated in [11, Cor. 4.2] for manifolds without boundary and to [15, Thm.
1.2] for manifolds with boundary.

6 Eigenvalue estimates for the magnetic Hodge
Laplacian on manifolds with boundary

6.1 A magnetic Raulot-Savo estimate

In the following, we will estimate the first eigenvalue of the magnetic Laplacian
on the boundary of an oriented Riemannian manifold in terms of the so-called
p-curvatures as in [26, Thm. 1]. We mainly follow and refer to [26] for further
details. We consider a Riemannnian manifold (Mn, g) with smooth boundary
∂M , and denote by η1(x) ≤ . . . ≤ ηn−1(x) the eigenvalues of the Weingarten
tensor II = −∇Mν at any point x ∈ ∂M . Here, as before, ν is the inward unit
normal vector field to the boundary. For any p ∈ {1, . . . , n−1}, the p-curvatures
σp(x) are defined as σp(x) := η1(x) + . . . ηp(x) and we set

σp(∂M) = inf
x∈∂M

(σp(x)).

From Inequality (3.7), we have the following estimates

⟨II[p]ω, ω⟩ ≥ σp(∂M)|ω|2 and ⟨II[p]ω, ω⟩ ≤ (σn−1(∂M)− σn−1−p(∂M))|ω|2,
(6.1)

for any ω ∈ Ωp(∂M). Recall here that II[p] is the canonical extension of II to
differential p-forms as in Equation (3.5). Also, it is not difficult to check the

following inequality
σp(x)

p ≤ σq(x)
q , for p ≤ q, at any point x on the boundary

with equality if and only if η1(x) = η2(x) = . . . = ηq(x).
On manifolds with boundary, there are two notions of cohomology groups.

We briefly recall them: The absolute cohomology groupHp
A(M) which is defined

as the set of harmonic forms on M satisfying the absolute boundary conditions,
that is for any p ∈ {1, . . . , n},

Hp
A(M) := {ω ∈ Ωp(M,C)| dMω = δMω = 0 on M and ν⌟ω = 0 on ∂M}.

By Poincaré duality, the absolute cohomology group Hp
A(M) is isomorphic to

the relative cohomology group Hn−p
R (M) which is defined as

Hp
R(M) := {ω ∈ Ωp(M,C)| dMω = δMω = 0 on M and ι∗ω = 0 on ∂M}.
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In [26, Thm. 4], the authors provide geometric obstructions to the vanishing
of these cohomologies using the Reilly formula. Namely, these conditions are
related to the Bochner operator on M and to the p-curvatures of the boundary.
Following the same idea, we will use the magnetic Reilly formula to deduce
a similar vanishing result on the absolute cohomology groups by requiring a
condition on the magnetic Bochner operator B[p],α. We have the following result.

Proposition 6.1. Let (Mn, g) be a compact Riemannian manifold with smooth
boundary and let α be a differential 1-form on M . Assume that B[p],α ≥ |α|2
and that σp(∂M) > 0. Then, Hp

A(M) = 0.

Proof. Let ω ∈ Ωp(M,C) be an element in Hp
A(M). Applying the magnetic

Reilly formula to ω and using the fact that |dαω|2+ |δαω|2 = |α|2|ω|2 yields the
following:∫

M

|α|2|ω|2dµg =

∫
M

|∇αω|2dµg +

∫
M

⟨B[p],αω, ω⟩dµg +

∫
∂M

⟨II[p]ι∗ω, ι∗ω⟩dµg.

Now, the fact that |∇αω|2 ≥ 0, the condition on B[p],α and Inequality (6.1)
allow us to deduce that∫

M

|α|2|ω|2dµg ≥
∫
M

|α|2|ω|2dµg + σp(∂M)

∫
∂M

|ι∗ω|2dµg

=

∫
M

|α|2|ω|2dµg + σp(∂M)

∫
∂M

|ω|2dµg

≥
∫
M

|α|2|ω|2dµg.

In the last inequality, we used that σp(∂M) > 0. Hence, we have equality in
the above inequalities and, thus, ω = 0 on ∂M . Now, since ω is harmonic, this
leads to ω = 0 on M by [1].

In the following, we will consider a magnetic 1-form α on M such that its
tangential part αT = ι∗α is Killing of constant norm on ∂M . In this case, the

exterior differential d∂M and codifferential δ∂M commute with ∆αT

as we have
seen in Proposition 3.5. Hence, as in [26, Thm. 5], we will estimate the first

eigenvalue λα
T

1,p(∂M)′ of the magnetic Laplacian ∆αT

restricted to exact forms
in terms of the p-curvatures.

Theorem 6.2. Let (Mn, g) be a compact Riemannian manifold with smooth
boundary ∂M and let α be a differential 1-form on M such that αT is a Killing
form on ∂M of constant norm. Assume that B[p],α ≥ |α|2 and that the p-
curvatures σp(∂M) > 0 for some 1 ≤ p ≤ n

2 . Then the first eigenvalue

λα
T

1,p(∂M)′ satisfies the inequality

λα
T

1,p(∂M)′ ≥ σp(∂M)σn−p(∂M).
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Proof. Let ω = d∂Mβ be a complex exact p-eigenform of ∆αT

associated to the

eigenvalue λα
T

1,p(∂M)′. From [3, Lem. 3.1] (see also [28, Lem. 3.4.7]), there

exists a complex (p − 1)-form β̂ such that δMdM β̂ = 0, δM β̂ = 0 on M and

ι∗β̂ = β on ∂M . The form β̂ is unique up to a Dirichlet harmonic form, that
is an element in Hp−1

R (M). Notice here that β̂ cannot be a Dirichlet harmonic

form since this would lead to ω = 0. Let the p-form ω̂ := dM β̂ on M . Clearly,
the form ω̂ satisfies the following system:{

dM ω̂ = δM ω̂ = 0 on M ,
ι∗ω̂ = ω, on ∂M.

Applying the magnetic Reilly formula in Theorem 5.1 to the form ω̂ gives (after
using that |dαω̂|2 + |δαω̂|2 = |α|2|ω̂|2, the condition on the magnetic Bochner
operator B[p],α and the fact that |∇αω̂|2 ≥ 0) the following inequality

0 ≥ 2Re

(∫
∂M

⟨ν⌟ω̂, δα
T

ω⟩dµg

)
+σp(∂M)

∫
∂M

|ω|2dµg+σn−p(∂M)

∫
∂M

|ν⌟ω̂|2dµg.

(6.2)
We also use the first estimate in (6.1) applied to the p-form ι∗ω̂ = ω and to

the (n − p)-form ι∗(∗ω̂) = ∗∂M (ν⌟ω̂). As p ≤ n
2 , we have that

σp(∂M)
p ≤

σn−p(∂M)
n−p and thus σn−p(∂M) > 0. Then, by using the pointwise inequality

|ν⌟ω̂ + 1
σn−p(∂M)δ

αT

ω|2 ≥ 0, we get the following estimate

2

σn−p(∂M)
Re
(
⟨ν⌟ω̂, δα

T

ω⟩
)
+ |ν⌟ω̂|2 ≥ − 1

σn−p(∂M)2
|δα

T

ω|2.

Therefore by integrating this last inequality and multiplying it by σn−p(∂M),
Inequality (6.2) reduces to

1

σn−p(∂M)

∫
∂M

|δα
T

ω|2dµg ≥ σp(∂M)

∫
∂M

|ω|2dµg.

Finally, by using the fact that ω is a closed eigenform for the magnetic Laplacian

∆αT

, we have

λα
T

1,p(∂M)′
∫
∂M

|ω|2dµg =

∫
∂M

(|dα
T

ω|2 + |δα
T

ω|2)dµg

=

∫
∂M

(|αT ∧ ω|2 + |δα
T

ω|2)dµg

≥
∫
∂M

|δα
T

ω|2dµg

≥ σp(∂M)σn−p(∂M)

∫
∂M

|ω|2dµg.

which is the desired estimate. This finishes the proof of the theorem.
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6.2 A gap estimate between first eigenvalues

In the next result, we adapt the computations in [14, Thm. 2.3] to find a gap
estimate between the eigenvalues of different degrees λα1,p(M) and λα1,p−1(M).
For this, we will assume the manifold (Mn, g) is isometrically immersed into Eu-
clidean space Rn+m and consider the magnetic Laplacian with Dirichlet bound-
ary conditions, in contrast to [14] where absolute boundary conditions are taken.
Recall that for a given normal vector field Z to M , the Weingarten tensor IIZ
is the endomorphism of TM given by

⟨IIZ(X), Y ⟩ = ⟨Z, II(X,Y )⟩

where X,Y are tangent to M and II is the second fundamental form of the im-

mersion. As in Equation (3.5), we will use the extension II
[p]
Z of the Weingarten

tensor to p-differential forms.

Theorem 6.3. Let (Mn, g) be a compact manifold with smooth boundary that
is isometrically immersed into the Euclidean space Rn+m. Let α be a smooth
1-form on M . Then, for all 1 ≤ p ≤ n, the eigenvalues of the magnetic Dirichlet
Laplacian on M satisfy

λα1,p(M) ≥ λα1,p−1(M) +
1

p
sup
x∈M

λmin

(
B[p],α(x)−

m∑
t=1

(II
[p]
ft
)2(x)

)
,

where λmin(A) is the smallest eigenvalue of a symmetric operator A and {f1, . . . , fm}
is a local orthonormal basis of TM⊥.

Proof. The proof follows along the lines of [14]. For each j = 1, . . . , n + m,
the unit parallel vector field ∂xj

on Rn+m splits as ∂xj
= (∂xj

)T + (∂xj
)⊥ with

(∂xj
)T = dM (xj ◦ ι) where ι is the isometric immersion. For any p-eigenform

ω of ∆α associated to λα1,p(M) with Dirichlet boundary condition, the (p− 1)-

form (∂xj )
T ⌟ω clearly satisfies the Dirichlet boundary condition. Hence, by the

characterization (3.2) of the first eigenvalue applied to (∂xj )
T ⌟ω, we have for

each j,

λα1,p−1(M)

∫
M

|(∂xj
)T ⌟ω|2dµg ≤

∫
M

(|dα((∂xj
)T ⌟ω)|2 + |δα((∂xj

)T ⌟ω)|2)dµg.

(6.3)
In the following, we will take the sum over j and compute each term separately.
For this, we let {e1, . . . , en} denote a local orthonormal frame of TM . Recall
that any complex p-form β on M can be written as β = 1

p

∑n
s=1 e

∗
s ∧ (es⌟β),

and therefore,
∑n

s=1⟨es⌟β, es⌟γ⟩ = p⟨β, γ⟩ for any complex p-forms β, γ. Now,
the sum over j of the l.h.s. of (6.3) is equal to
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n+m∑
j=1

|(∂xj
)T ⌟ω|2 =

n+m∑
j=1

n∑
s,t=1

g((∂xj
)T , es)g((∂xj

)T , et)⟨es⌟ω, et⌟ω⟩

=

n∑
s,t=1

n+m∑
j=1

g(∂xj
, es)g(∂xj

, et)︸ ︷︷ ︸
δst

⟨es⌟ω, el⌟ω⟩

=

n∑
s=1

|es⌟ω|2 = p|ω|2. (6.4)

Now, using that (∂xj )
T = dM (xj ◦ ι), we have that ∇M (∂xj )

T = HessM (xj ◦ ι),
which is then a symmetic endomorphism on TM . Hence, it follows that

δM ((∂xj
)T ⌟ω) = −

n∑
i=1

ei⌟
(
∇M

ei (∂xj
)T ⌟ω

)
− (∂xj

)T ⌟δMω = −(∂xj
)T ⌟δMω.

In the last equality, we use the fact that
∑n

i=1 ei⌟(A(ei)⌟) = 0 for any symmetric
endomorphism A of TM . Therefore, we compute

δα((∂xj )
T ⌟ω) = δM ((∂xj )

T ⌟ω)− iα⌟((∂xj )
T ⌟ω)

= −(∂xj
)T ⌟δMω + i(∂xj

)T ⌟(α⌟ω)

= −(∂xj
)T ⌟δαω.

Hence, we deduce that

n+m∑
j=1

|δα((∂xj
)T ⌟ω)|2 =

n+m∑
j=1

|(∂xj
)T ⌟δαω|2 = (p− 1)|δαω|2. (6.5)

In the last equality, we apply (6.4) for δαω instead of ω. Now using Cartan’s

formula and the identity LXT ω = ∇M
XT ω + II

[p]

X⊥ω for any parallel vector field

X ∈ Rn+m proven in [14, formula (4.3)], where II
[p]

X⊥ is defined in (3.5), we write

dα((∂xj
)T ⌟ω)) = dM ((∂xj

)T ⌟ω) + iα ∧
(
(∂xj

)T ⌟ω
)

= L(∂xj
)T ω − (∂xj

)T ⌟dMω + iα ∧
(
(∂xj

)T ⌟ω
)

= ∇M
(∂xj

)T ω + II
[p]

(∂xj
)⊥
ω − (∂xj

)T ⌟dMω + iα ∧
(
(∂xj

)T ⌟ω
)

= ∇M
(∂xj

)T ω + II
[p]

(∂xj
)⊥
ω − (∂xj

)T ⌟dαω + i(∂xj
)T ⌟(α ∧ ω)

+iα ∧
(
(∂xj

)T ⌟ω
)

= ∇α
(∂xj

)T ω + II
[p]

(∂xj
)⊥
ω − (∂xj

)T ⌟dαω. (6.6)

In the last equality, we use the relation X⌟(α ∧ ω) = α(X)ω − α ∧ (X⌟ω)
for any vector field X and the definition of the magnetic covariant derivative
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∇α
X = ∇M

X + iα(X). Now, we want to take the norm in (6.6) and sum over j.
We have

n+m∑
j=1

|∇α
(∂xj

)T ω|
2 =

n+m∑
j=1

n∑
s,t=1

g((∂xj
)T , es)g((∂xj

)T , et)⟨∇α
esω,∇

α
etω⟩

=

n∑
s,t=1

n+m∑
j=1

g(∂xj , es)g(∂xj , et)︸ ︷︷ ︸
δst

⟨∇α
esω,∇

α
etω⟩

=

n∑
s=1

|∇α
esω|

2 = |∇αω|2.

We can do the same procedure for the cross terms in (6.6), for example, if we
denote by {f1, . . . , fm} a local orthonormal frame of TM⊥, we compute

n+m∑
j=1

⟨∇α
(∂xj

)T ω, II
[p]

(∂xj
)⊥
ω⟩ =

n+m∑
j=1

n∑
s=1

m∑
t=1

⟨(∂xj )
T , es⟩⟨(∂xj )

⊥, ft⟩⟨∇α
esω, II

[p]
ft
ω⟩

=

n∑
s=1

m∑
t=1

n+m∑
j=1

g(∂xj
, es)⟨∂xj

, ft⟩︸ ︷︷ ︸
⟨es,ft⟩=0

⟨∇α
esω, II

[p]
ft
ω⟩ = 0.

Therefore, all the terms involving (∂xj
)T and (∂xj

)⊥ at the same time will
vanish, and we get

n+m∑
j=1

|dα((∂xj
)T ⌟ω))|2 = |∇αω|2 +

m∑
t=1

|II[p]ft
ω|2 + (p+ 1)|dαω|2

−2

n∑
s=1

Re
(
⟨∇α

esω, es⌟d
αω⟩

)
= |∇αω|2 +

m∑
t=1

|II[p]ft
ω|2 + (p− 1)|dαω|2.

(6.7)

Replacing (6.4), (6.5) and (6.7) into Inequality (6.3), we obtain

λα1,p−1(M)p

∫
M

|ω|2dµg ≤
∫
M

(
|∇αω|2 +

m∑
t=1

|II[p]ft
ω|2 + (p− 1)(|dαω|2 + |δαω|2)

)
dµg.

Now using Equality (5.3) for the eigenform ω with Dirichlet boundary conditions
yields that∫

M

|∇αω|2dµg = λα1,p(M)

∫
M

|ω|2dµg −
∫
M

⟨B[p],αω, ω⟩dµg.
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Hence, we deduce that

λα1,p−1(M)p

∫
M

|ω|2dµg ≤ pλα1,p(M)

∫
M

|ω|2dµg −
∫
M

⟨B[p],αω, ω⟩dµg

+

m∑
t=1

∫
M

⟨(II[p]ft
)2ω, ω⟩dµg,

which ends the proof.

Corollary 6.4. Let (Mn, g) be a domain in Euclidean space Rn and let α be
a 1-form on M . Then, for all p ≥ 1, the eigenvalues of the magnetic Dirichlet
Laplacian satisfy

λα1,p(M) ≥ λα1,p−1(M)− ||dMα||∞.

In particular, the following estimate

λα1,p(M) ≥ λ0(M)− p||dMα||∞

holds, where λ0(M) is the first eigenvalue of the scalar Laplacian with Dirichlet
boundary condition.

Proof. Since M is a domain in Euclidean space, the second fundamental form
and the curvature operator of M vanish. Therefore, Theorem 6.3 allows us to
deduce that

λα1,p ≥ λα1,p−1 +
1

p
sup
x∈M

λmin

(
−iA[p],α

)
.

Recall here that −iA[p],α is a symmetric tensor field where Aα(X) = X⌟dMα
for all X ∈ TM . Now, by the second inequality in (3.7), we have iA[p],α ≤
p||Aα|| ≤ p||dMα||∞. This finishes the first part. The second part is easily
proved by taking successive p’s.

Corollary 6.5. Let (Mn, g) be a domain in the round unit sphere Sn and let α
be a 1-form on M . Then, for all p ≥ 1, the eigenvalues of the magnetic Dirichlet
Laplacian satisfy

λα1,p(M) ≥ λα1,p−1(M) + n− 2p− ||dMα||∞.

In particular, the following estimate

λα1,p(M) ≥ λ0(M) + p(n− p− 1− ||dMα||∞)

holds, where λ0(M) is the first eigenvalue of the scalar Laplacian with Dirichlet
boundary condition.

Proof. We use the isometric immersion of Sn ↪→ Rn+1 for which the second
fundamental form is the identity. The proof is then a direct consequence of
Theorem 6.3 using the fact that, on the round sphere, B[p] = p(n− p) and that∑m

a=1(II
[p]
fa
)2 = p2.
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A Spectral computations for magnetic Lapla-
cians for functions on Berger spheres

A.1 Eigenvalue decomposition of the ordinary Laplacian
on the standard 3-sphere

The following considerations are based on the arguments given in [17, pp. 27].
For further details see also [25, III.3-III.7].

Let S3 = {(z1, z2) ∈ C2 | |z1|2 + |z2|2 = 1} be the 3-dimensional unit sphere
and let g be the standard metric on S3 of curvature one. We can also think
of S3 as the Lie group of all unit quaternions via the identification (z1, z2) 7→
z1 + jz2 ∈ H2. Let Y2, Y3, Y4 be the left-invariant extensions of the tangent
vectors i,−k,−j ∈ T1S3. In this case, the vectors

Y2 = −y1∂x1
+ x1∂y1

− y2∂x2
+ x2∂y2

,

Y3 = −y2∂x1
− x2∂y1

+ y1∂x2
+ x1∂y2

,

Y4 = x2∂x1
− y2∂y1

− x1∂x2
+ y1∂y2

form an orthonormal basis of T(z1,z2)S3 at every point (z1, z2) = (x1 + y1i, x2 +
y2i) ∈ S3.

Then, we can write the Laplacian on (S3, g) as ∆S3f = −
∑4

j=2 Y
2
j (f) for

all f ∈ C∞(S3), whose eigenvalues are λk(S3) = k(k + 2), k ∈ N ∪ {0} with
multiplicity (k + 1)2. In particular, every eigenspace Ek associated with the
eigenvalue λk decomposes as

Ek = Vk,(a0,b0) ⊕ Vk,(a1,b1) ⊕ . . .⊕ Vk,(ak,bk), (A.1)

with any arbitrary choice of pairwise non-collinear vectors (aj , bj) ∈ C\{(0, 0)},
where

Vk,(a,b) = spanC{uka,b, uk−1
a,b va,b, . . . , ua,bv

k−1
a,b , v

k
a,b},

ua,b(z1, z2) := az1 + bz2, va,b(z1, z2) := bz̄1 − az̄2,

for (a, b) ∈ C2 \ {(0, 0)}, see [25, Zerlegungssatz III.6.2]. For short, we write
u := u(a,b), v := v(a,b) for some (a, b) ̸= (0, 0) and, for p ∈ {0, . . . , k}, we consider

ϕp := upvq−1

with p + q = k + 1. (We also set ϕp ≡ 0 for all other choices of p.) These
functions ϕp are spherical harmonics, that is, they are restrictions of harmonic
homogeneous polynomials on C2 to the unit sphere S3. Then we have Vk,(a,b) =
spanC{ϕ0, . . . , ϕk}. A straightforward computation yields (see [17, p. 30] or [25,
Lemma III.7.1])

Y2(ϕp) = i(p− q + 1)ϕp, (A.2)

Y3(ϕp) = ipϕp−1 + i(q − 1)ϕp+1, (A.3)

Y4(ϕp) = −pϕp−1 + (q − 1)ϕp+1, (A.4)

(Y 2
3 + Y 2

4 )(ϕp) = 2(p− 2pq − q + 1)ϕp.
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This implies

∆S3ϕp = −
4∑

j=2

Y 2
j (ϕp) = [(p+ q)2 − 1]ϕp = k(k + 2)ϕp,

confirming that the functions ϕp are eigenfunctions of ∆S3 in the eigenspace Ek.
Let us briefly describe the underlying representation theory. The Lie group

SU(2) acts irreducibly on each of the vector spaces Vk,(a,b) ⊂ C[z1, z̄1, z2, z̄2] via

ρ : SU(2)× Vk,(a,b) → Vk,(a,b), ρ(A,P (u, v)) = P ((u, v) ·A),

where P ∈ C[w1, w2] is any homogenous polynomial of degree k. Using the
decomposition (A.1), these irreducible representations ρj on each of the factors
Vk,(aj ,bj) give rise to the SU(2)-representation

µk := ρ0 ⊕ ρ1 ⊕ . . .⊕ ρk

on the eigenspace Ek.
On the other hand, the identification of S3 with the Lie group SU(2) via

(z1, z2) 7→
(
z1 −z̄2
z2 z̄1

)
provides a canonical isometric SU(2)-right action on (S3, g), which leads to the
corresponding unitary SU(2)-action

(Af)(z1 + jz2) = f((z1 + jz2)(α+ jβ)) forA =

(
α −β̄
β ᾱ

)
∈ SU(2)

on the function space C∞(S3) ⊂ L2(S3, g). Since ∆S3 commutes with isometries,
the eigenspace Ek ⊂ C∞(S3) is an invariant subspace of this latter action, and
its restriction to Ek agrees with the above SU(2)-representation µk (see [25,
Lemma III.6.5]).

Now let S1 ↪→ S3 → S2 be the Hopf fibration of (S3, g), where the fiber
through a point (z1, z2) ∈ S3 is given by F(z1,z2) := {(eitz1, eitz2)| t ∈ R} ⊂ S3.
The map S3 → S2 is a Riemannian submersion, the fibers are totally geodesic,
and we have

T(z1,z2)S
3 = V(z1,z2) ⊕H(z1,z2)

for any (z1, z2) ∈ S3, where the vertical component V(z1,z2) is spanned by Y2 and
the horizontal component H(z1,z2) is spanned by Y3 and Y4. This decomposition
induces a corresponding splitting

∆S3 = ∆v +∆h

of ∆S3 into a vertical and a horizontal Laplacian ∆v and ∆h (see [4, Def. 1.2
and 1.3]) with

∆v = −Y 2
2 and ∆h = −(Y 2

3 + Y 2
4 ).
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Since the fibres are totally geodesic, the three operators ∆S3 ,∆v,∆h commute
with each other, and L2(S3) admits a Hilbert basis consisting of simultaneous

eigenfunctions of ∆S3 and ∆h (see [4]). In our case, this Hilbert basis is obtained
through the eigenspaces Ek and their decompositions into the subspaces Vk,(a,b),
whose corresponding basis vectors ϕp, p ∈ {0, . . . , k}, are then the members of
this Hilbert basis.

A.2 Geometry of Berger spheres

Given the standard metric g on S3 of curvature 1 and ε > 0, the Berger sphere
is the Riemannian manifold (S3, gε) with

gε = ε2g|V×V ⊕ g|H×H ,

and the vector fields Y ε
2 := ε−1Y2, Y

ε
3 := Y3, Y

ε
4 := Y4 form a global orthonormal

frame. The Lie brackets are given by

[Y ε
2 , Y

ε
3 ] = −2

ε
Y ε
4 [Y ε

2 , Y
ε
4 ] =

2

ε
Y ε
3 [Y ε

3 , Y
ε
4 ] = −2εY ε

2 ,

and the Christoffel symbols of the Levi-Civita connection of gε are expressed as

∇S3
Y ε
j
Y ε
k = σjkY

ε
l (A.5)

with {j, k, l} = {2, 3, 4} for k ̸= j, σjj = 0 and σ23 = −σ24 = ε − 2/ε, σ32 =
σ43 = −σ34 = −σ42 = ε. In particular, we deduce that

dS
3

Y ε
2 = 2εY ε

3 ∧Y ε
4 , d

S3Y ε
3 = −2

ε
Y ε
2 ∧Y ε

4 , d
S3Y ε

4 =
2

ε
Y ε
2 ∧Y ε

3 and δS
3

Y ε
j = 0.

(A.6)

for j ∈ {2, 3, 4}. Here δS
3

is the L2-adjoint of dS
3

with respect to the metric
gε. The curvature tensor associated to the Levi-Civita connection of gε can be
computed explicitly and is equal to

RS3(Y ε
j , Y

ε
k )Y

ε
l = τjklY

ε
j

with τjkl = 0 for {j, k, l} = {2, 3, 4}, τ233 = τ244 = τ322 = τ422 = ε2 and
τ344 = τ433 = 4 − 3ε. The sectional curvatures of the planes spanned by pairs
of Y ε

i ’s are

KS3(span{Y ε
2 , Y

ε
3 }) = KS3(span{Y ε

2 , Y
ε
4 }) = ε2, KS3(span{Y ε

3 , Y
ε
4 }) = 4− 3ε2.

The Ricci tensor of any vector v =
∑4

j=2 ajY
ε
j is given by

RicS
3

(v, v) =

4∑
j=2

gε(R
S3(v, Y ε

j )Y
ε
j , v) = 2ε2a22 + (4− 2ε2)(a23 + a24),

38



which yields the following lower Ricci curvature bounds

inf
∥v∥=1

(
RicS

3

(v, v)
)
≥
{

2ε2, if ε ≤ 1,
4− 2ε2, if ε > 1.

(A.7)

Observe, moreover, that limε→0 Ric
S3(v) = 4(a23 + a24). Since the “scaled” Hopf

fibration S1ε ↪→ S3 → S2 is a Riemannian submersion with totally geodesic fiber
S1ε (see [4, Prop. 5.2]), any horizontal vector vh ∈ H(z1,z2) for (z1, z2) ∈ S3
is uniquely mapped to a vector ṽ ∈ TS2 and so we can say that, as ε → 0,
the Ricci curvature of (S3, gε) collapses to the Ricci curvature of CP 1 with the
Fubini-Study metric.

A.3 Eigenvalue decomposition of the ordinary Laplacian
on Berger Spheres

In this subsection, we will compute the eigenvalues of the Laplacian on the
Berger sphere S3. We refer to [30, Lem. 4.1], [21, Prop. 3.9] for similar results.

Since Y ε
2 , Y

ε
3 , Y

ε
4 form a global divergence-free orthonormal frame by (A.6),

the Laplacian on (S3, gε) is given by

∆S3
ε f = −

4∑
j=2

(Y ε
j )

2f ∀ f ∈ C∞(S3).

Using the fact that S1ε ↪→ S3 → S2 is a Riemannian submersion with totally
geodesic fibers, we can write

∆S3
ε = ∆v

ε +∆h
ε = ε−2∆v +∆h = ∆S3 + (ε−2 − 1)∆v,

where ∆v,∆h are the vertical and horizontal Laplacian w.r.t. g and ∆S3 is the
Laplacian on S3 w.r.t g.

Since {ϕp}p is a Hilbert basis for L2(S3, g), the set {ϕεp := ε1/2ϕp}p is a
Hilbert basis for L2(S3, gε). Moreover, the functions ϕεp’s are eigenfunctions for

∆S3
ε :

∆S3
ε ϕ

ε
p = k(k + 2)ϕεp + (ε−2 − 1)(p− q + 1)2ϕεp

=
[
k(k + 2) +

( 1
ε2

− 1
)
(2p− k)2

]
ϕεp.

The eigenvalues of ∆S3
ε are therefore all of the form

k(k + 2) +
( 1
ε2

− 1
)
(2p− k)2, k ∈ N ∪ {0}, p ∈ {0, . . . , k}.

One could also read off the spectrum of the vertical Laplacian ∆v from [30,
Lemma 3.1]. The following table lists the eigenvalues for k ∈ {0, 1, 2, 3}:
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k p λεk,p
0 0 0
1 0, 1 2 + ε−2

2 0, 2 4 + 4ε−2

2 1 8
3 0, 3 6 + 9ε−2

3 1, 2 14 + ε−2

Therefore the first non-zero eigenvalue of ∆S3
ε is 8 if ε ≤ 1/

√
6 and 2 + ε−2

if ε > 1/
√
6. Moreover, all the eigenvalues of ∆S3

ε tend to ∞, if k ̸= 2p, when
ε tends to 0 and are equal to k(k + 2) if k = 2p. Hence, as ε → 0, the only
eigenvalues not escaping to infinity are the ones coming from the Laplacian on
CP 1 with the Fubini-Study metric (recall that its spectrum is 4p(p+1) = k(k+2)
with p ∈ N ∪ {0} and k = 2p).

A.4 The magnetic Laplacian with constant magnetic po-
tential along the fibers on Berger spheres

As before let (S3, gε) be the Berger sphere and set α := εtY ε
2 = tY2, by the

identification through musical isomorphisms. Then |α|2 = ε2t2 and δS
3

α = 0 by
(A.6). Therefore for the magnetic Laplacian ∆α

ε on (S3, gε) we have,

∆α
ε f = ∆S3

ε f − 2iα♯(f) + ε2t2f.

Applying this identity to the functions f := ϕεp = ε1/2ϕp yields

∆α
ε ϕ

ε
p =

(
k(k + 2) +

(
1

ε2
− 1

)
(2p− k)2 + 2(2p− k)t+ ε2t2

)
ϕεp,

since
α♯(ϕεp) = tY2(ϕ

ε
p) = it(p− q + 1)ϕεp = it(2p− k)ϕεp (A.8)

by (A.2) and p+ q = k + 1. Therefore the spectrum of ∆α
ε is given by

k(k+2)+

(
1

ε2
− 1

)
(2p−k)2+2(2p−k)t+ ε2t2, k ∈ N∪{0}, p ∈ {0, . . . , k}.

(A.9)
If ε→ 0 (that is, if we are shrinking the fibers), the only eigenvalues not escaping
to infinity, are k(k + 2) for even integers k ≥ 0, that is, the eigenvalues of the
Laplacian on CP 1 with Fubini-Study metric. In other words, the magnetic
potential disappears under this process.

B Special eigen-1-forms of the (magnetic) Hodge
Laplacian on S3

Let α = εtY ε
2 be a Killing vector field of constant norm, then by Proposition

3.5 we have that ∆α
ε (d

S3u) = dS
3

(∆α
ε u) and ∆α

ε (d
S3v) = dS

3

(∆α
ε v). Now, by
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Equation (A.9), for the function u (which corresponds to p = q = k = 1) and
the function v (which corresponds to p = 0, q = 2, k = 1), we compute

∆α
ε u = (2 +

1

ε2
+ 2t+ ε2t2)u and ∆α

ε v = (2 +
1

ε2
− 2t+ ε2t2)v.

Hence dS
3

u and dS
3

v are eigenforms of ∆α
ε corresponding to the eigenvalues

(2 + 1
ε2 + 2t+ ε2t2) and (2 + 1

ε2 − 2t+ ε2t2) respectively.

To compute ∆α
ε Y

ε
2 , we first have by (A.6) that Y ε

2 is coclosed and dS
3

Y ε
2 =

2εY ε
3 ∧ Y ε

4 . Thus, by (A.5), we get that ∆S3
ε Y

ε
2 = 4ε2Y ε

2 . Also, we have

A[1],αY ε
2 = −Aα(Y ε

2 ) = −Y ε
2 ⌟(2εtY

ε
3 ∧ Y ε

4 ) = 0, and ∇M
α Y

ε
2 = 0.

Therefore, by Equation (3.10), we get that ∆α
ε Y

ε
2 = ε2(4 + t2)Y ε

2 . In the same
way one can check that

∆α
ε Y

ε
3 = (

4

ε2
+ t2ε2)Y ε

3 + 2iεt(1− ε+
2

ε
)Y ε

4 ,

and that

∆α
ε Y

ε
4 = (

4

ε2
+ t2ε2)Y ε

4 − 2iεt(1− ε+
2

ε
)Y ε

3 .

Hence for ε = 2, we get that Y ε
3 and Y ε

4 are eigenvectors associated to the
eigenvalue 1 + 4t2.
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