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Abstract

In this paper, we prove Kirchberg-type inequalities for any Kähler

spin foliation. Their limiting-cases are then characterized as being

transversal minimal Einstein foliations. The key point is to introduce

the transversal Kählerian twistor operators.

1 Introduction

On a compact Riemannian spin manifold (Mn, gM), Th. Friedrich [Fri80]
showed that any eigenvalue λ of the Dirac operator satisfies

λ2 ≥
n

4(n− 1)
S0, (1.1)

where S0 denotes the infimum of the scalar curvature of M. The limiting case
in (1.1) is characterized by the existence of aKilling spinor. As a consequence
M is Einstein. K.D. Kirchberg [Kir86] established that, on such manifolds
any eigenvalue λ satisfies the inequalities

λ2 ≥





m+1
4m

S0 if m is odd,

m
4(m−1)

S0 if m is even.

On a compact Riemannian spin foliation (M, gM ,F) of codimension q with
a bundle-like metric gM such that the mean curvature κ is a basic coclosed
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1-form, S.D. Jung [Jun01] showed that any eigenvalue λ of the transversal
Dirac operator satisfies

λ2 ≥
q

4(q − 1)
K∇

0 , (1.2)

where K∇
0 = inf

M
(σ∇+ |κ|2), here σ∇ denotes the transversal scalar curvature

with the transversal Levi-Civita connection ∇. The limiting case in (1.2)
is characterized by the fact that F is minimal (κ = 0) and transversally
Einstein (see Theorem 3.1). The main result of this paper is the following:

Theorem 1.1 Let (M, gM ,F) be a compact Riemannian manifold with a

Kähler spin foliation F of codimension q = 2m and a bundle-like metric

gM . Assume that κ is a basic coclosed 1-form, then any eigenvalue λ of the

transversal Dirac operator satisfies:

λ2 ≥
m+ 1

4m
K∇

0 if m is odd, (1.3)

and

λ2 ≥
m

4(m− 1)
K∇

0 if m is even. (1.4)

The limiting case in (1.3) is characterised by the fact that the foliation is
minimal and by existence of a transversal Kählerian Killing spinor (see The-
orem 4.3). We refer to Theorem 4.4 for the equality case in (1.4).
We point out that Inequality (1.3) was proved by S. D. Jung [JK03] with
the additional assumption that κ is transversally holomorphic. The author
would like to thank Oussama Hijazi for his support.

2 Foliated manifolds

In this section, we summarize some standard facts about foliations. For more
details, we refer to [Ton88], [Jun01].
Let (M, gM) be a (p+q)-dimensional Riemannian manifold and a foliation F
of codimension q and let ∇M be the Levi-civita connection associated with
gM . We consider the exact sequence

0 −→ L
ι

−→ TM
π

−→ Q −→ 0,

where L is the tangent bundle of TM and Q = TM/L ≃ L⊥ the normal
bundle. We assume gM to be a bundle-like metric on Q, that means the
induced metric gQ verifies the holonomy invariance condition,

LXgQ = 0, ∀X ∈ Γ(L),
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where LX is the Lie derivative with respect to X . Let ∇ be the connection
on Q defined by:

∇Xs =






π [X, Ys] , ∀X ∈ Γ(L) ,

π
(
∇M

X Ys

)
, ∀X ∈ Γ(L⊥) ,

where s ∈ Γ(Q) and Ys is the unique vector of Γ(L⊥) such that π (Ys) = s.
The connection ∇ is metric and torsion-free. The curvature of ∇ acts on
Γ(Q) by :

R∇ (X, Y ) s = ∇X∇Y s−∇Y∇Xs−∇[X,Y ]s, ∀X, Y ∈ χ (M) .

The transversal Ricci curvature is defined by:

ρ∇ : Γ(Q) −→ Γ(Q)

X 7−→ ρ∇ (X) =

q∑

j=1

R∇ (X, ej) ej .

Also, we define the transversal scalar curvature :

σ∇ =

q∑

i=1

gQ
(
ρ∇ (ei) , ei

)
=

q∑

i,j=1

R∇ (ei, ej, ej , ei) ,

where {ei}i=1,··· ,q is a local orthonormal frame of Q and R∇(X, Y, Z,W ) =

gQ(R
∇(X, Y )Z,W ), for all X, Y, Z,W ∈ Γ(Q). The foliation F is said to be

transversally Einstein if and only if

ρ∇ =
1

q
σ∇Id,

with constant transversal scalar curvature. The mean curvature of Q is given
by:

κ (X) = gQ (τ,X) , ∀X ∈ Γ(Q),

where τ =
∑p

l=1 II (el, el) , with {el}l=1,··· ,p is a local orthonormal frame of
Γ(L) and II is the second fundamental form of F defined by:

II : Γ(L)× Γ(L) −→ Γ(Q)

(X, Y ) 7−→ II (X, Y ) = π
(
∇M

X Y
)
.

We define basic r-forms by :

Ωr
B (F) = {Φ ∈ ΛrT ∗M | XxΦ = 0 and XxdΦ = 0, ∀X ∈ Γ(L)} ,
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where d is the exterior derivative and Xx is the interior product. Any Φ ∈
Ωr

B(F) can be locally written as

∑

1≤j1<···<jr≤q

βj1,··· ,jrdyj1 ∧ · · · ∧ dyjr ,

where ∂
∂xl

βj1,··· ,jr = 0, ∀l = 1, · · · , p. With the local expression of basic r-

forms, one can verify that κ is closed if F is isoparametric (κ ∈ Ω1
B (F)). For

all r ≥ 0,
d (Ωr

B (F)) ⊂ Ωr+1
B (F) .

We denote by dB = d|ΩB(F) where ΩB (F) is the tensor algebra of Ωr
B (F) .

We have the following formulas:

dB =

q∑

i=1

e⋆i ∧ ∇ei and δB = −

q∑

i=1

eix∇ei + κ x,

where δB is the adjoint operator of dB with respect to the induced scalar
product and {ei}i=1,··· ,q is a local orthonormal frame of Q.

3 The transversal Dirac operator on Kähler

Foliations

In this section, we start by recalling some facts on Riemannian foliations
which could be found in [GK91a], [GK91b], [AG97], [Jun01]. For complete-
ness, we also scketch a straightforward proof of Inequality ((1.2)) established
in [Jun01] and end by recalling well-known facts (see [Kir86], [Kir96], [Hij94a],
[Hij94b], [JK03]) on Kähler spin foliations.

On a foliated Riemannian manifold (M, gM ,F) , a transversal spin struc-
ture is a pair (SpinQ, η) where SpinQ is a Spinq-principal fibre bundle over
M and η a 2-fold cover such that the following diagram commutes:

SpinQ× Spinq SpinQ M

SOQ× SOq SOQ

✲

❄

η⊗Ad

❄

η

✲

✲
✑
✑
✑
✑
✑
✑
✑✸

The maps SpinQ× Spinq −→ SpinQ, and SOQ× SOq −→ SOQ, are respec-
tively the actions of Spinq and SOq on the principal fibre bundles SpinQ and
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SOQ. In this case, F is called a transversal spin foliation. We define the foli-
ated spinor bundle by: S (F) := SpinQ×ρ Σq, where ρ : Spinq −→ Aut (Σq) ,
is the complex spin representation and Σq is a C vector space of dimension N

with N = 2[
q

2 ], where [ ] stands for the integer part. Recall that the Clifford
multiplication M on S (F) is given by:

M : Γ(Q)× Γ(S(F)) −→ Γ(S(F))

(X,Ψ) 7−→ X ·Ψ.

There is a natural Hermitian product on S (F) such that, for all X, Y ∈
Γ(Q), the following relations are true:

〈X ·Ψ,Φ〉 = −〈Ψ, X · Φ〉 ,

X (〈Ψ,Φ〉) = 〈∇XΨ,Φ〉+ 〈Ψ,∇XΦ〉 ,

∇Y (X ·Ψ) = (∇YX) ·Ψ+X · (∇YΨ) ,

where ∇ is the Levi-Civita connection on S (F) and Ψ,Φ ∈ Γ(S(F)).

The transversal Dirac operator [GK91a, GK91b] is locally given by:

DtrΨ =

q∑

i=1

ei · ∇eiΨ−
1

2
κ ·Ψ, (3.1)

for all Ψ ∈ Γ(S(F)). We can easily prove using Green’s theorem [YT90] that
this operator is formally self adjoint. Furthermore, in [GK91b] it is proved
that if F is isoparametric and δBκ = 0, then we have the Schrödinger-
Lichnerowicz formula:

D2
trΨ = ∇⋆

tr∇trΨ+
1

4
K∇

σ Ψ,

where K∇
σ = σ∇ + |κ|2 and

∇⋆
tr∇trΨ = −

q∑

i=1

∇2
ei,ei

Ψ+∇κΨ,

with ∇2
X,Y = ∇X∇Y − ∇∇XY , for all X, Y ∈ Γ(TM). Denote by P the

transversal twistor operator defined by

P : Γ(S(F))
∇tr

−→ Γ(Q∗ ⊗ S(F))
π

−→ Γ(kerM),
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where π is the orthogonal projection on the kernel of the Clifford multipli-
cation M. With respect to a local orthonormal frame {e1, · · · , eq}, for all
Ψ ∈ Γ(S(F)), one has

PΨ =

q∑

i=1

e∗i ⊗ (∇eiΨ+
1

q
ei ·DtrΨ+

1

2q
ei · κ ·Ψ). (3.2)

For any spinor field Ψ, one can easily show that

q∑

i=1

ei · PeiΨ = 0. (3.3)

Now we give a simple proof of the following theorem:

Theorem 3.1 [Jun01] Let (M, gM ,F) be a compact Riemannian manifold

with a spin foliation F of codimension q and a bundle-like metric gM with

κ ∈ Ω1
B(F). Assume that δBκ = 0 and let λ be an eigenvalue of the transversal

Dirac operator, then

λ2 ≥
q

4(q − 1)
K∇

0 . (3.4)

Proof. For all Ψ ∈ Γ(S(F)), we have using Identities (3.2), (3.3) (3.1),

|PΨ|2 = |∇trΨ|2 −
1

q
|DtrΨ|2 −

1

q
ℜ(DtrΨ, κ ·Ψ)−

1

4q
|κ|2|Ψ|2.

For any spinor field Φ, we have that (Φ, κ · Φ) = −(κ · Φ,Φ) = −(Φ, κ · Φ),
so the scalar product (Φ, κ · Φ) is a pure imaginary function. Hence for any
eigenspinor Ψ of the transversal Dirac operator, we obtain

∫

M

|PΨ|2 +
1

4q

∫

M

|κ|2|Ψ|2 =

∫

M

|∇trΨ|2 −
1

q

∫

M

λ2|Ψ|2,

from which we deduce (3.4) with the help of the Schrödinger-Lichnerowicz
formula. Finally, we can easily prove in the limiting case that F is minimal
i.e. κ = 0, and transversally Einstein. �

A foliation F is called Kähler if there exists a complex parallel orthogonal
structure J : Γ(Q) −→ Γ(Q) (dimQ = q = 2m). Let Ω be the associated
Kähler, i.e., for all X, Y ∈ Γ(Q), Ω(X, Y ) = gQ(J(X), Y ) = −gQ(X, J(Y )).
The Kähler form can be locally expressed as

Ω =
1

2

q∑

i=1

ei · J(ei) = −
1

2

q∑

i=1

J(ei) · ei,
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and for all X ∈ Γ(Q), we have [Ω, X ] := Ω ·X −X · Ω = 2J(X). Under the
action of the Kähler form, the spinor bundle splits into an orthogonal sum

S(F) =
m

⊕
r=o

Sr(F),

where Sr(F) is an eigenbundle associated with the eigenvalue iµr = i(2r−m)
of the Kähler form Ω. Moreover, the spinor bundle of a Kähler spin foliation
carries a parallel anti-linear map j satisfying the relations:

j2 = (−1)
m(m+1)

2 Id,

[X, j] = 0,

(jΨ, jΦ) = (Φ,Ψ),

and we have jΨr = (jΨ)m−r. For all X ∈ Γ(Q), we have

p+(X) · Sr(F) ⊂ Sr+1(F) and p−(X) · Sr(F) ⊂ Sr−1(F),

where p±(X) = X∓iJ(X)
2

. We define the operator D̃tr by

D̃trΨ =

q∑

i=1

J(ei) · ∇eiΨ−
1

2
J(κ) ·Ψ.

The local expression of D̃tr is independant of the choice of the local frame
and by Green’s theorem [YT90], we prove that this operator is self-adjoint.

On a Kähler spin foliation, the operators Dtr and D̃tr satisfy:

[Ω, Dtr] = 2D̃tr, (3.5)

[Ω, D̃tr] = −2Dtr, (3.6)

[Ω, D2
tr] = 0, (3.7)

DtrD̃tr + D̃trDtr = 0, (3.8)

D̃2
tr = D2

tr. (3.9)

We should point out that Equations (3.7), (3.8) and (3.9) are true under the
assumptions that F is isoparametric and δBκ = 0. Now we define the two
operators D+ and D− by

D+ =
1

2
(Dtr − iD̃tr) and D− =

1

2
(Dtr + iD̃tr). (3.10)

Furthermore, Dtr splits into D+ and D−, and we have the two exact se-
quences:

Γ(Sm(F))
D

−

−→ . . .Γ(Sr(F))
D

−

−→ Γ(Sr−1(F))
D

−

−→ . . .Γ(S0(F)), (3.11)

Γ(S0(F))
D+
−→ . . .Γ(Sr(F))

D+
−→ Γ(Sr+1(F))

D+
−→ . . .Γ(Sm(F)). (3.12)

7



4 Eigenvalues of the transversal Dirac oper-

ator

In this section, we prove Kirchberg-type inequalities by using the transversal
Kählerian twistor operators on Kähler spin foliations. We refer to [Kir90],
[Kir92].

Definition 4.1 On a Kähler spin foliation, we define the transversal Kähle-

rian twistor operators by

P(r) : Γ(Sr(F))
∇tr

−→ Γ(Q∗ ⊗ Sr(F))
πr−→ Γ(kerMr),

where Mr is the transversal Clifford multiplication defined by

Mr : Γ(Q∗ ⊗ Sr(F)) −→ Γ(Sr−1(F))⊕ Γ(Sr+1(F))

X ⊗Ψr 7−→ p−(X) ·Ψr ⊕ p+(X) ·Ψr.

For all r ∈ {0, . . . , m} and Ψr ∈ Γ(Sr(F)), we have

P(r)Ψr =

q∑

i=1

e∗i ⊗ (∇eiΨr + arp−(ei) · D+Ψr + brp+(ei) · D−Ψr), (4.1)

where D± = D± + 1
2
p±(κ) with ar =

1
2(r+1)

and br =
1

2(m−r+1)
. For any

spinor field Ψr ∈ Γ(Sr(F)), we can easily prove

q∑

i=1

ei · P
(r)
ei

Ψr = 0. (4.2)

Remark 4.2 For any non zero eigenvalue λ of Dtr, there exists a spinor

field Ψ ∈ Γ(S(F)) called of type (r, r+1), such that DtrΨ = λΨ and Ψ =
Ψr + Ψr+1, with r ∈ {0, · · · , m − 1}. By using (3.10), (3.11) and (3.12)
it follows that D−Ψr = D+Ψr+1 = 0, D−Ψr+1 = λΨr, D+Ψr = λΨr+1 and

‖Ψr‖L2 = ‖Ψr+1‖L2.

Proof. Let ϕ be an eigenspinor of Dtr. There exists an r such that ϕr does
not vanish. Let Ψ = 1

λ
D−D+ϕr +D+ϕr, one can easily get that DtrΨ = λΨ.

Theorem 4.3 Let (M, gM ,F) be a compact Riemannian manifold with a

Kähler spin foliation F of codimension q = 2m and a bundle-like metric gM
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with κ ∈ Ω1
B(F) and δBκ = 0. Then any eigenvalue λ of the transversal Dirac

operator, satisfies

λ2 ≥
m+ 1

4m
K∇

0 . (4.3)

If Ψ is an eigenspinor of type (r, r + 1) associated with an eigenvalue λ
satisfying equality in (4.3), then r = m−1

2
, the foliation F is minimal and for

all X ∈ Γ(Q), the spinor Ψ satisfies

∇XΨ+
λ

2(m+ 1)
(X ·Ψ− iεJ(X) · Ψ̄) = 0, (4.4)

where ε = (−1)
m−1

2 , and Ψ̄ := (−1)r(Ψr − Ψr+1). As a consequence m is

odd and F is transversally Einstein with non negative constant transversal

curvature σ∇.

Proof. For all Ψr ∈ Γ(Sr(F)), using Identities (4.1) and (4.2), we have

|P(r)Ψr|
2 =

q∑

i=1

|P(r)
ei

Ψr|
2 =

q∑

i=1

(P(r)
ei

Ψr,∇eiΨr)

=

q∑

i=1

(∇eiΨr + arp−(ei) · D+Ψr

+brp+(ei) · D−Ψr,∇eiΨr).

Finally we obtain,

|P(r)Ψr|
2 = |∇trΨr|

2 − ar|D+Ψr|
2 − br|D−Ψr|

2. (4.5)

Let λ be an eigenvalue of Dtr and let Ψ an eigenspinor of type (r, r + 1).
Applying Equality (4.5) to Ψr, one gets

|P(r)Ψr|
2 = |∇trΨr|

2 − arλ
2|Ψr+1|

2 − arλℜ(Ψr+1, p+(κ) ·Ψr)

−
ar
4
|p+(κ) ·Ψr|

2 −
br
4
|p−(κ) ·Ψr|

2.

By the Schrödinger-Lichnerowicz formula and by the fact that Ψr and Ψr+1

have the same L2-norms, we get
∫

M

|P(r)Ψr|
2 +

ar
4

∫

M

|p+(κ) ·Ψr|
2 +

br
4

∫

M

|p−(κ) ·Ψr|
2 =

∫

M

((1− ar)λ
2 −

1

4
K∇

σ )|Ψr|
2 − arλ

∫

M

ℜ(Ψr+1, p+(κ) ·Ψr). (4.6)
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Similarly applying (4.5) to Ψr+1, we obtain
∫

M

|P(r+1)Ψr+1|
2 +

ar+1

4

∫

M

|p+(κ) ·Ψr+1|
2 +

br+1

4

∫

M

|p−(κ) ·Ψr+1|
2 =

∫

M

((1− br+1)λ
2 −

1

4
K∇

σ )|Ψr+1|
2 + br+1λ

∫

M

ℜ(Ψr+1, p+(κ) ·Ψr), (4.7)

where K∇
σ = σ∇+ |κ|2. In order to get rid the term λ

∫
M
ℜ(Ψr+1, p+(κ) ·Ψr),

since the l.h.s. of (4.6) and (4.7) are non negative, dividing (4.6) by ar and
(4.7) by br+1 then summing up, we find by substituting the values of ar and
br+1,

λ2 ≥
m+ 1

4m
K∇

0 .

Now, we discuss the limiting case of Inequality (4.3). Dividing (4.6) by ar
and (4.7) by br+1 then summing up as before, and substituting ar, br+1 and λ2

by their values, we easily deduce that κ = 0, P(r)Ψr = 0 and P(r+1)Ψr+1 = 0.
Hence by (4.6), we find that λ2 = 1

4(1−ar)
σ0 =

m+1
4m

σ0 where σ0 = inf
M

σ∇, then

r = m−1
2

andm is odd. It remains to prove that Ψ satisfies (4.4). For r = m−1
2

,
by definition of the Kählerian twistor operators, for all j ∈ {1, · · · , q}, we
obtain

∇ejΨr +
λ

m+ 1
p−(ej) ·Ψr+1 = 0,

and

∇ejΨr+1 +
λ

m+ 1
p+(ej) ·Ψr = 0.

Summing up the two equations, we get (4.4) for X = ej . Using Ricci identity
in (4.4), one easily proves that F is transversally Einstein. �

Theorem 4.4 Under the same conditions as in Theorem 4.3 for m even,

any eigenvalue λ of the transversal Dirac operator satisfies

λ2 ≥
m

4(m− 1)
K∇

0 . (4.8)

If Ψ is an eigenspinor of type (r, r+1) associated with an eigenvalue satisfying

equality in (4.8), then r = m
2
, the foliation F is minimal and Ψ satisfies for

all X ∈ Γ(Q),

∇XΨr+1 = −
λ

q
(X − iJX) ·Ψr. (4.9)

Proof. Let Ψ an eigenspinor of type (r, r+1) associated with any eigenvalue
λ of the transversal Dirac operator Dtr. Recalling Equalities (4.6) and (4.7),
we have

0 ≤

∫

M

((1− ar)λ
2 −

1

4
K∇

σ )|Ψr|
2 − arλ

∫

M

ℜ(Ψr+1, p+(κ) ·Ψr), (4.10)
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and

0 ≤

∫

M

((1− br+1)λ
2 −

1

4
K∇

σ )|Ψr+1|
2 + br+1λ

∫

M

ℜ(Ψr+1, p+(κ) ·Ψr). (4.11)

Hence if λ
∫
M
ℜ(Ψr+1, p+(κ) ·Ψr) ≤ 0, then by (4.11)

λ2 ≥
1

4(1− br+1)
K∇

0 ,

The antilinear isomorphism j sends Sr(F) to Sm−r(F). This allows the choice
of µr to be non negative (i.e. r ≥ m

2
) where µr is the eigenvalue associated

with Ψr. Then a careful study of the graph of the function 1
1−br+1

, yields (4.8).

On the other hand if λ
∫
M
ℜ(Ψr+1, p+(κ) ·Ψr) > 0. Applying Equation (4.5)

to the spinor jΨ, which is a spinor of type (m− (r + 1), m− r), we find the
same inequalities as (4.10) and (4.11), then

λ2 >
1

1− ar

K∇
0

4
.

As before we can choose µm−(r+1) ≥ 0 (i.e. r ≤ m
2
− 1). A careful study of

the graph of the function 1
1−ar

gives Inequality (4.8).
Now we discuss the limiting case of (4.8). As we have seen, it could not be
achieved if λ

∫
M
ℜ(Ψr+1, p+(κ) · Ψr) > 0, so only the other case should be

considered. By (4.7), one has

∫
M
|P(r+1)Ψr+1|

2 + ar+1

4

∫
M
|p+(κ) ·Ψr+1|

2

+ br+1

4

∫
M
|p−(κ) ·Ψr+1|

2 − br+1λ
∫
M
ℜ(Ψr+1, p+(κ) ·Ψr) =

(1− br+1)
∫
M
( m
4(m−1)

K∇
0 − 1

4(1−br+1)
K∇

σ )|Ψr+1|
2.

Since m
m−1

= inf
r≥m

2

1
1−br+1

, and the l.h.s. of (4) is non negative, we deduce

that κ = 0,Pr+1Ψr+1 = 0 and m
m−1

= 1
1−br+1

so r = m
2
. It remains to show

that Equation (4.9) holds. For this, take X = ej where {ej}j=1,··· ,q is a local
orthonormal frame. For r = m

2
, and by definition of the Kählerian twistor

operators, for all j ∈ {1, · · · , q}, we obtain

∇ejΨr+1 +
λ

q
(ej − iJej) ·Ψr = 0.

�
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