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Essential norm of Cesaro operators on
L? and Cesaro spaces

Thab Al Alam* Loic Gaillard T Georges Habib?
Pascal Lefevre § Fares Maalouf ¥

November 26, 2017

Abstract

In this paper, we consider the Cesaro-mean operator I' acting on some
Banach spaces of measurable functions on (0,1), as well as its discrete
version on some sequences spaces. We compute the essential norm of
this operator on LP([0,1]), for p € (1,4o00] and show that its value is
the same as its norm, namely p/(p — 1). The result also holds in the
discrete case. On Cesaro spaces, the essential norm of I' turns out to be
equal to 1. Lastly, we introduce the Miintz-Cesaro spaces and study some
of their geometrical properties. In this framework, we also compute the
essential norm of the Cesaro and multiplication operators restricted to
those Miintz-Cesaro spaces.

Key words: Cesaro spaces, Cesaro operator, Miintz spaces, compact operator,

essential norm, Multiplication operator.
Mathematics Subject Classification: 46E30, 47B07, 47B38.

1 Introduction

Throughout this paper, we denote by C = C([0, 1]) the space of continuous func-
tions on [0, 1] equipped with the supremum norm and by Cy the subspace of
C (resp. c¢) of functions vanishing at zero (resp. the space of convergent se-
quences). For p € [1,+00) and (€2, 1) a measure space, we denote as usual by
LP(u) = LP(Q, ) the Banach space of measurable functions f on 2 such that
[ £llp = (Jo |fIPdp)*/P < co. In particular when i is the Lebesgue measure on
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[0,1] (resp. v the counting measure on N), we just use LP (resp. £F). For p = oo,
we denote by L (resp. £°°) the space of essentially bounded measurable func-
tions on [0, 1] (resp. the space of bounded sequences) endowed with its usual
norm.

In this paper, we are interested in the Cesaro operator defined on the Lebesgue

and Cesaro spaces. Let p € [1,00]. The Cesaro function space Ces, is the set of
Lebesgue measurable complex functions f on [0, 1] such that

1 z P 1/p
I fllew = {/0 (513/0 f(t)|dt) dm} <oo forl<p<oo

Il = sup (2 [ 1701) <00 forp=ox,
0

z€]0,1] \ ¥

and

Similarly, the Cesaro sequence space ces,, is defined as the set of all complex
sequences u = (uy)g>1 such that

oo n p11l/p
1
||uHc(p) = lz (n Z |uk|> ] <oo whenl<p<oo
n=1 k=1

and
1 n
[ulle(oey = sup = Y |ux| < oo when p = oco.
n>1 M
e =
Note that Cesy is an L' (w)-space with the weight w(t) = log(), and that ces; =

{0} (see [AM, Theorem 1]). The Cesaro operator is the map I' : L}, .([0,1)) —
C((0,1)) defined for any function f by

I'(f)(z) = 916/: f(®)dt where x € (0,1).

It is clear that I' maps Ces, to L” and the corresponding operator will be
denoted by I'c(p). By the Hardy inequality, I' maps L” to itself if p > 1, and
the corresponding operator is denoted by I',. Note that I' does not preserve the
space L'. Similarly, we define the Cesaro sequence operator v on CN by

() = (;Zu>
k=1

By restriction to ¢ (resp. cesp), 7y defines an operator ~, : £ — (P (resp.
Ve(p) : COSp — £P).

n

The Cesaro operators and Cesaro spaces were already studied on many as-
pects, and lately the topic has received a particular interest, see for instance
[ABR], [CR], [AHLM] and the survey [AM]. A recent result from [CR] shows
that these operators are never compact when acting on the Cesaro spaces, and
in our paper, we study this default of compactness. Concretely, we compute
their essential norms, weak essential norms, as well as their n‘P-approximation
numbers. Recall that the essential norm ||T||. (resp. the weak essential norm



IT]|ew) of an operator T' is the distance from T to the set of compact (resp.
weakly compact) operators. The n*'-approximation number a,(T) of T is the
distance from T to the set of all bounded linear operators of rank at most n— 1.

In the same context, we consider the restriction of the Cesaro operators to the
Miintz spaces (see [M], [GuLu]). It turns out that the geometry of such spaces
plays a fundamental role to get the compactness in some cases. Recall that for
a Banach space F, the Miintz space M{ is the closure in E of the linear space
spanned by the monomials #*», where A = (\,)nen is an increasing sequence
of positive numbers satisfying the Miintz condition ), -, 1/, < oc.

This paper is divided into four parts. In Section 2, we show that the clas-
sical Miintz theorem holds for Cesaro spaces. Namely, the space MEESP is a
strict subspace of Ces, if and only if the Miintz condition holds (see Theorem
2.3). Moreover, we state a theorem ¢ la Clarkson-Erdis for those Miintz-Cesaro
spaces (see Proposition 2.7), as well as a bounded Bernstein-type inequality (see
Proposition 2.8). In Section 3, we state some general criteria for a lower esti-
mate of the essential norm of a bounded operator T : X — Y acting between
Banach spaces X and Y. We then specify our result when Y is an LP(u) space
or a C(K) space. We use these tools in the sequel. In Section 4, we first compute
the essential norm of the continuous Cesaro operator (resp. discrete) acting on
the Lebesgue space LP (resp. ¢P) for p € [1,+00]. We find that it is equal to
p = p/(p—1) for p €]1,4+00[ (see Theorems 4.1 and 4.2) while it is 1 when
p = 00 (Theorems 4.3 and 4.4). We also deduce the approximation numbers of
these operators. In the second part of Section 4, we study the Cesaro operators
defined on the Cesaro spaces Ces, and ces, and show in Theorem 4.7 that their
essential norms are all equal to 1. We also consider the restriction of those oper-
ators to the Miintz-Cesaro spaces My ™ for p € [1,+oc] and prove in Theorem
4.8 that the essential norm is 1 for p € [1,+00) and to % for p = co. The last
section is devoted to the study of the compactness of the multiplication operator
on the Cesaro function spaces, Ty, : Ces, — Ces,, defined by T, (f) = fv, for
p € [1,00] and ¢ € L>°. We prove that | Ty|le = ||#|lcc and, when one restricts
to the Miintz-Cesaro subspaces, Ty A : Mfes" — Ces,, satisfies | Ty alle = |¥(1)]
if ¢ is continuous at 1 (see Theorems 5.2 and 5.4).

2 Mintz theorem in Cesaro spaces

In this section, we show that the Miintz theorem holds in Cesaro spaces Ces, by
using the Miintz theorems in C and in L' (see [M], [BE]). Hence, we can define
the Miintz-Cesaro spaces and study some of their properties. We start with the
following lemma which shows that the Cesaro function spaces are embedded
into L1([0,a)), for a € (0,1). We will use this lemma to prove the density of the
continuous functions in the Cesaro function spaces.

Lemma 2.1. Letp € [1,+0o0], and 0 < a < b < 1. Then, the Cesaro function
spaces satisfy the following bounded inclusions

C C Ces, C L*([0,a]).



More precisely, for all f € Cesy,, we have

b p
st < g ([ ram@yan)” < o=miflen- 0

Moreover, if p =1, we have

I er o < g zy ) PO < s Wl e

We point out that when a is close to 1 (more precisely when a is larger than
some a,, depending on p only), the sharpest version of the previous inequalities
is obtained for b = 1.

Proof. For a continuous function f on [0, 1], we obviously have || f|lc(p) < || floc-
For the right side inclusion, we let p € [1,+00) and f € Ces, to estimate the

norms:
b 1 T
£ 118 ) z/ —/ \f(t)|d:c pdm

fm/ /ﬂf|m o

In the case p = 400, we obtain easily || f|[z1(j0,a)) < allfllc(oo) and this holds
also for a = 1. For p =1 and f € Ces;, we use Fubini’s theorem to obtain

1flew z/b l/xlf(t)\dt i
/Wf ar [
= [ ()fUW
> 10 (2) 1l goan.

The following proposition gives an interesting property of the Cesaro spaces.
We will need this property to state the Miintz theorem in these spaces.

/\

O

Proposition 2.2. For p € [1,+00), the space of continuous functions, as well
as Co, is dense in Ces,. The statement is false for p = 400 since the space
Ceso 18 not separable.

Proof. For p = 1, the first assertions are clear as Ces; is a weighted L'-space.
Now, we focus on the case where p € (1, 00). For this, we fix e > 0 and a function
f € Ces,. As T(|f]) € LP, then there exists a number § € (0, §) satisfying

26 1
/ (L([f)(x))Pdz < &P and / (L(|f])(z))Pdx < P .
0 1-5



By applying inequality (1) in Lemma 2.1 with @ = § et b = 24, we obtain

||f||L1(O6 < ﬁfp(/ ( (|f|)($))pdx) 1/p <2517,

Since the space of continuous functions on [d§,1 — 0] and vanishing at points §
and 1— 4 is dense in L'([§,1 — d]), there exists a continuous function ¢ on [0, 1]
such that

(1) ¢(t) =0 for any ¢t € [0,0] U [1 — §,1];
(@) If —ellrsis) < e

Then we get || f — ¢ll£1(0,1-6)) < 3§ "e=: ¢ This gives for any = € (0,1 — J]
the following

T(f - o) / 1 — ol

Hence, we compute
) 1-6
5=l = [ CUDPde+ [ U7 = ol)(e)yraes
1
| @i - e@yras
1-6

1-6 1 1-6 ©
dx 1 p
< P P - i —
sete /5 xP * /1—5 P </0 I = (e + /1—5 |f(t)|dt) e

E/p 1 1 T P
<P 4 —— — (¢
<&+ +/H — (e +/0 F(O)ldt)” da
3v Yde (!
< gPp P op( /P - T Pq
SePd e+ € /16xp+/176 (1f1)(w)7d )
3" 952\
< &P eP 4 9P P
SePt e +2((55) +2)

3]1
< (1+—+3P+2p)gp.
p—1

Therefore, we deduce that the space Cp is dense in Ces, as ¢ vanishes at the
point 0. We point out that in the case p = 1, the same proof works by using
inequality (2) with a = 6 et b = /9.

Finally, to check the non-separability of Ces,,, we just mention a short
argument to justify it: for the sequence of disjoint intervals (I,), given by

I, = ((n+1)” n,} the operator @ : /°° — Ces,, defined by

an n>2 § anI[I

embedds isomorphically £>° into a subspace of Cesy,. Indeed, we first observe
that for every a = (a,)n>2 we have

12(a)lleee) < [1®(a)llco < llalloo -



On the other hand, for any a = (a,)n>2, we have
1
[@(a)llc(o0) = supT(|2(a))()
n>2 n.

and for any n > 2,

1
F(|¢>(a)\)(%) - n'/o ’gakllk(t)‘dt
> Jan| g — w3 lalind
2 |an|n —T|L— 1 %.
We obtain that [|®(a)||c(e0) > % and this finishes the proof. O

Using the preceding proposition and the Miintz theorems in C and in LP, we
state a Miintz theorem for the Cesaro function spaces as follows:

Theorem 2.3. Let A = (M), be an increasing sequence of nonnegative real
numbers, 1 <p < 400 (resp. p=—+0o0). Then the following are equivalent:

(i) The space M(A) = span{z** : k € N} is dense in Ces, (resp. the space
span{l,z*0 2> ...} is dense in the closure of C in Ces,).

1
(i) The sequence A satisfies Z — = oo
k>1 Ak

Moreover, if A satisfies the Miintz condition >y 1/\; < +00, the sequence
(), is a minimal sequence in Ces, for any p € [1,+00]. In particular, for
any p € Ry such that u & A, we have dist(z#, M(A)) > 0.

Proof. Assume that A satisfies ), -, 1/A; = +00 and fix a continuous function
f on [0,1]. We first treat the case where p = +o0o0. By the Miintz theorem
on C, there exists a sequence of polynomials f, € span{l,xz*> z* ...} such
that ||fn — fllee = 0 when n — 4o00. Using the boundedness of the inclusion
C C Cesy, we get that ||f, — fllcp) — 0 when n — 4o0. Hence, the space
span{1, o g } is dense in the closure of the continuous functions in Ces,,.
Now for the case where p € [1,400), we take ¢ = p when p > 1 and any ¢ > 1
when p = 1. By the Miintz theorem in L?, we know that there exists a sequence
(fn)n € M(A) such that || f, — f|lq = 0 when n — +o00. Hence, we compute

1fn = Fllew) = ITUfn = fDllp < IT(fn = fDllg < ¢'llfn = fllg = 0.

In the last inequality, we use the well-known Hardy inequality. Finally, by
Proposition 2.2, we deduce the density.

For the “only if” part, we consider a sequence A satisfying > 1/, < 400
and we fix p € Ry \ A. For any a € (0,1) and for any Miintz polynomial



f e M(A), we write
" — fllew) = (1 —a)? ||2* — fllz1(0,q))
1
—a(l—a)} / l(au)” — f(aw)|du
0

1
> (1—a)ra*tt inf ||2* — .
> (1=t it e gl

According to the Miintz theorem in L', we have that iz\%f(A) |z — g|l1 > 0.
ge
Hence M (A) is not dense in Ces,,. O

Remark 2.4. Even if A satisfies the condition ) -, 1/, = +00, we need to
assume that 0 € A in order to approximate the constant functions by Miintz
polynomials in Cesy, because |1 — fllc() > [T(|1 = f|)(0)| = 1 if f € Co. But
this problem does not happen in the spaces Ces, when p € [1,+00). In other
words, thanks to Proposition 2.2, the space M(A) is dense in Ces, even when
Ao > 0.

Now, we can define the Miintz-Cesaro spaces as follows:

Definition 2.5. Let A = (\,),>0 C R4 be an increasing sequence satisfying
the Mintz condition 1
— < Ho0.
>3

n>1 n

For p € [1,400) (resp. p = 4+00), the classical Miintz space M} (resp. Mg°) is
defined as the closure of the space of Miintz polynomials M (A) in LP (resp. C).
In the same way, for p € [1,+00], we define the Miintz-Cesdaro space Mfes’” as
the closure of M(A) in Ces,. By Theorem 2.3, it is a strict subspace of Ces,.
Concretely, in the sequel, we shall always assume that the inequality, called
gap-condition,

ggQMJ—A@>0

is fulfilled in order to work with spaces of analytic functions (see Proposition
2.7 below).

Remark 2.6. The norms || . [|¢() and || . ||1 are equivalent on M (A). Indeed,
on one hand we have || f||c(o) > T'(|f])(1) = ||f]|1, for any function f € Cess.
On the other hand, by a bounded Bernstein-type inequality on M} (see [BE,
E.3 p. 178]) there exists a constant Cy/, € Ry such that for any f € M(A) we
have

A|ﬂmﬁ+ ﬁm}x4|ﬂMﬁ

1
Ifllcee)y £ sup  —
z€(1/2,1

zef0,1/2] T

1
< sup ()] 42 / F(8)]dt
] 0

" tefo,1/2
< (Cr2 +2) Il

Hence we get that M,(Ses“’ = M}, and the spaces have equivalent norms.



The next proposition is a version of the Clarkson-Erdos theorem (see [CE],[S])
for Miintz-Cesaro spaces. It is indeed a consequence of the Clarkson-Erdos
theorem in LP and in C.

Proposition 2.7. Let p € [1,+00) (resp. p = +00) and let A = (A\y)72, be an
increasing sequence of non-negative real numbers. Assume that A satisfies the
Miintz and the gap conditions. For a function f € Ces, (resp. f € zCesoc); the
following are equivalent:

(i) f € M.

(ii) There exist f € Cesy, with f = f a.e. on [0,1] and a sequence (an) of
complex numbers, such that

Yz € [0,1), j?(x) = i Ana.
n=0

Proof. The case of Mfes‘x’ is actually free by the Clarkson-Erdds theorem in M} .
Nevertheless we see below that the proof for Mfes” also holds for M/(\jes“’. For
the part (i) = (i), we consider a sequence of Miintz polynomials (fy,), € M(A)
which tends to f in C(p) when n — +oc0. By the Hardy inequality, we have

IT(fn) =T < ITAfn = FDllp = 1o = fllew)-

Since I'(f) is the limit in L? (resp. in C) of a sequence of Miintz polynomials, we
have that I'(f) € M%. By the Clarkson-Erdos theorem in LP (resp. in C) (see
for instance [BE, E.1 p. 311]), we know that there exists a sequence (b,) € C

which satisfies lim sup \bn|ﬁ <1, and that

Vo €[0,1), T(f)(x) = bpa’.

Now, we define the function f by f(x) = > bu(An + 1)z, Clearly, this
series converges uniformly on compacts subsets of [0, 1) because it has the same

radius of convergence as I'(f). Moreover, we have that T'(f)(z) = T'(f)(x) for
any x € (0,1) which gives that f = f almost everywhere.

To prove that (i) = (i), we follow the same lines as in [GuLu, Cor. 6.2.4].
For this, we let f € Ces, (resp. f € @CGSW) to be a function that satisfies
f(z) = 307 jana™ for x € [0,1). As the series converges for any z € [0,1),
we have lim sup |an|%n < 1. Given a function h on [0,1) and p € (0,1), we will
denote by h, the function defined by h,(t) = h(pt). For the sequence of partial
sums (f,,) € M(A) given by f,,,(t) = >_I"_ ant*, we define the corresponding
functions (fy,), and compute

+oo

A
QA |p7"
||fp_(fm)P||C(P) < Z | |

—+ '
n=m-+1 )\n + Lm o

Therefore, f, € Ml(\jes” for any p € (0,1). Now, we claim that lim,_,q ||f —
folle) = 0 which would give that f € MSCSF and finishes the proof of the



proposition. To check this, we let € > 0 and consider a continuous function g
satisfying || f — gllc(p) < €, when p is finite, and by assumption when p = +o0.
The existence of such a function is assured by Proposition 2.2. Now, for any
p € (0,1) and h € Ces,, the estimate ||k, < i%HhHC(p) gives

P

If = follew) < 1fp = gollew) + 19 = gollew) + I1f = gllew)

1
< (; +1)15 = gllow + g = ol

The uniform continuity of g on [0, 1] implies lim,_,1 ||g—¢,||cc = 0 and we obtain
as claimed that || f — f, () < 3¢ for p close enough to 1. Hence f € M. O

The following estimate is a bounded Bernstein-type inequality. To establish
such an estimate, we will use the analogue of the well known inequality in the
classical Miintz spaces.

Proposition 2.8. Letp € [1,+o0] and A = (A\,)n be a sequence of non-negative
numbers satisfying the Mintz and gap conditions. Then, for every e € (0,1),
there exists a constant c(e,\) depending only on & and A such that

1 l0,1-¢) < (e M) I fllces,
for every Miintz polynomial f € span {:1:’\0,:10’\1 , }

Proof. Let ¢ € (0,1) and fix two real numbers a,n € (0,1) such that a(1 —
1) > 1 — e. For any Miintz polynomial f € M(A), we know from the bounded
Bernstein inequality in M} (see [BE, E.3 p. 178]) that there exists a constant
Cp € R, that does not depend on f and a satisfying

1(fa) lljo,1-m) < Cyllfall1,

where f, is the function defined as in the proof of Proposition 2.7. Now, we
compute

1
[fllces, = (1 = a)? [ fllzr((0,a1)
1
= a(l = a)7 | fallx

a(l — a)%
T”(fa)/”[alfn]'

Y

By the choice of a and 7 above, we obtain the result with c(e, A) = % O
a(l—a)P

We finish this section with this last useful result. The proof follows the same

lines as in [AL, Cor. 2.5].

Corollary 2.9. Let A = (\,)22, be an increasing sequence of non-negative real
numbers satisfying the Mintz and gap conditions. For any bounded sequence
(fn)e, € Mfesz’, there exist f € Ces, and o subsequence (fy,, )72, converging
to f uniformly on every compact subset of [0,1).



Proof. Assume that (f,)n,>1 is a bounded sequence in MECS” and fix ¢ > 0.
If Ao > 0 then M(A) C Cp and from Proposition 2.8 and the mean value
theorem, the sequence (f,), is bounded and equicontinuous on the compact
interval [0,1 —¢]. If A\ = 0, then by the Miintz theorem in Ces, (Theorem 2.3),
there exists § > 0 such that

. )\0

seri oy B~ gllew =9

since A\ {A\o} also satisfies the Miintz condition. Now, we can write f, =
fn(0)tr + g, with g, € M(A\ {N\o}). With the previous estimate, we get
| f2(0)] <}l fallo)- We obtain that (f,), is bounded and equicontinuous on
[0,1 — €]. Using the Arzela-Ascoli theorem, we know that there exists an ex-
traction (ng)r such that (f,, ) converges uniformly on [0,1 — ¢]. By induction,
we can construct a sequence of infinite sets (S;),>1 of integers with N > S D
Sy D -+ such that (f,)nes; converges uniformly on [0,1 — %] Applying a di-
agonal method, we obtain an infinite set S such that (f,), converges uniformly
on every compact subset of [0,1) to a measurable function f when n — +oo
and n € S. Finally, Fatou’s lemma (twice if p < 400) allows to obtain that
Il fllc) < sup, ||fallc(p) which finishes the proof. O

3 General Lemmas for the essential norm

In this section, we will give some general criteria to compute the essential norm.
We first recall a result from [AHLM].

Definition 3.1. We say that a sequence (:Em) is a block-subsequence of

meN
(xn)n if there is a sequence of non empty finite subsets of integers (Im)

with max I,,, < min I,;,1+1, and ¢; € [0, 1] such that for all m € N,

Z ¢;j=1 and &, = Z CjT;.

J€Im J€Im

meN

Lemma 3.2. [AHLM, Lemma 3.1] Let X, Y be two Banach spaces, and T :
X =Y be a bounded operator. Let (xn)nEN be a normalized sequence in X and
a> 0.

(i) Assume that for any subsequence (:cg,(n))neN and any g € Y, we have
lim sup ||T(a:¥,(n)) - gH > . Then ||T||e > a.
n——+oo

(ii) Assume that for any block-subsequence (fnn) and any g € Y, we have

neN
limsup ||T(in) — g|| > a. Then ||T||e,w > .
n——+oo

Definition 3.3. Let (X,d) be a metric space and o« € R;. We say that a
sequence (), € X is a-separated if d(x,,, ;) > « for all n # m.

The following lemma is a consequence of Lemma 3.2. It will be used to find a
lower estimate for the essential norm for some operators.

Lemma 3.4. Let X,Y be two Banach spaces, T : X — Y a linear operator
and oo € Ry.

10



(i) If the range of the unit ball T(Bx) contains an a-separated sequence, then
Q
A

(ii) If the range of the unit ball T(Bx) contains a sequence (yn)n Such that

any block-subsequence (Ym)m is a-separated, then ||T||¢ v > %~

Proof. We prove only (i) since (4) is similar (and actually easier). Let (y,)n €
T(Bx) such that any block-subsequence (¥ )m of (yn)n is a-separated in Y.
Fix g€ Y, as n# m €N, we have

« S ||gn _gmH S H:?jn _gH + ”gm _gH'

_ a .
Therefore, there is at most one integer n € N such that ||g, — g|| < 3 which

yields limsup ||T'(z,,) — ¢g|| > %~ The result follows by Lemma 3.2 (47). O
n—oo

The following example shows that the lower estimate in Lemma 3.4 can be
sharp.

Example 3.5. The sequential Volterra operator v : #! — ¢ is defined by
n 1

v(x) = ( > .Z'k) for any x = (), € ¢'. We have |jv|. = 3
k=0 /n

Proof. We consider (e, ), the canonical basis of ¢! and for n € N we denote by
fn :=wv(ey). For a given n € N, we have f, = (fnr)r € v(Bp), where f,, , =0
it k <nand fo,rp =1if &k > n. Since (f,)n is 1-separated in ¢, Lemma 3.4

gives the lower bound. For the upper bound, we consider the rank-one operator

K : ' — ¢, defined by K = %][ ® Tr, where 1T is the constant sequence equal to

1 and Tr € (¢1)* is the trace functional. For any z € ¢!, we have

n o0 Th 1 n 400 ||5EH[1
(v — K)(x)||. = sup Zxkfzg = 5 sup Zﬂﬂk* Z x| < 2‘ .
" k=0 k=0 " k=0 k=n+1

Since K is compact, we get that ||v| < |lv—K]| < &. This finishes the proof. [

Definition 3.6. Let X be a Banach space. We say that P : X — R, is a
subnorm on X if P satisfies

(1) Vax,y € X, P(x +y) < P(x) + P(y) (triangle inequality) ;
(i1) Vo € X, P(z) < |la|.

Lemma 3.7. Let a € RT. Let X,Y be two Banach spaces, and T : X — Y a
linear operator. Let (Py)ren be a family of subnorms on'Y. Assume that:

) F Y, inf Py(g) = 0.
(i) For any g € , nf % (9) =0

(i) There exists a sequence (hy)n, € Bx such that

Vk e N, liminf Py(T(hy)) > a.

n—-+4+oo

Then ||T||e > a.
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Proof. Let S : X — Y be a compact operator, and € > 0. There exists an
extraction (n;); in N such that S(h,,) — g € Y. As infyen Pr(g) = 0, we set
ko € N such that Py, (g9) < e. Now, we set jo € N in a way that we have
simultaneously [|S(hy,;) — gl < e and Py, (T'(hy,;)) > o — ¢ for any j > jo. For

7 = jo, we have

1T = S| = [|T'(h,; ) — S(han,)l

> || T(hn;) = gll = 15 (hny) — 4l

> Pio(T(hny) — g) = [|S(hny) — 9|
> Pry(T(hn;)) — Pry(g) — €

> o — 3e.

~— ~—

As this holds for every € > 0 and every compact operator S, we thus get that
1T > a. O

In the following, we present a variant of the preceding lemma (it is actually a
direct consequence).

Lemma 3.8. Let o € RY. Let X,Y be two Banach spaces, and T : X — Y
be a linear operator. Let (Py)ken be a family of subnorms on'Y. Assume that:

(i) For any g €Y, lim Pi(g) =0.
k—+o0

(ii) There exists a sequence (hy)n € Bx such that

Vk e N, limsup Py (T'(hy)) > .

n—-+o0o

Then ||T||e > a.

Proof. By hypothesis, for every k > 1, there exists an extraction 6, : N — N
such that for any n € N such that n > k,

—_

P(T (hoy(m)) 2 @ = 2

By induction, we can also assume that (0 (k))y is increasing. Now consider the
subnorms Py = sup,,~ P, and the sequence h;, = (h(,»n(n)) in the unit ball of

X. On the one hand, we have that inf];;(g) = lim sup Px(g) = 0 for any g. On
the other hand, we write for any k&

liminf P(T'(hy)) > liminf P,(T(K,)) > o

n—-+oo n—-+o0o
Finally, Lemma 3.7 gives the conclusion. O
The following corollary will be particularly efficient when Y is an L? space.

Corollary 3.9. Let (Q,u) be a measure space, X be a Banach space and T :
X — LP(Q,u) be a linear operator. Assume that there exist a decreasing
sequence of measurable subsets (Ag)r of Q, a sequence (hy), in Bx, and a
number o > 0 such that:

(i) The sequence of Borel sets (Ay) satisfies u (ﬂ Ak> =0.
k

12



1
(i1) For any k € N, we have lim sup (/ |T(hn)|pdu> ">
n—+4oo Ap
Then ||T||le > a.

Proof. According to the monotone convergence theorem, the sequence of sub-
norms Py, : LP(Q, p) — Ry defined by Py(f) := || f||zr(a,,p)» converges point-
wise to 0 on LP(u). Then Lemma 3.8 gives the result. O

Definition 3.10. Let (E,d), (E',d') be two metric spaces, and f : E — F’
be a function. For a € RT and a € E, we say that f has a jump at the point a
with height at least « if

vr >0, §(f (B(a,r))) > «,
where §(A) denotes the diameter of A C F’.

The following result can be found in [AHLM]. Here we show that it is a partic-
ular case of Lemma 3.7.

Corollary 3.11. Let X be a Banach space, K be a metric compact space, and
T:X — C(K) be an operator. Assume that there exist a sequence (hy)n in
Bx, an element a € K and a function g : K — C such that:

(i) (T'(hpn))n converges pointwise to g.

(ii) g has a jump at the point a with height at least 2.

Then ||T||e > «.
Proof. We apply Lemma 3.7 for the sequence of subnorms (P ), on C(K) defined
by
) =20 (Bla. 1)
k C 2 ) L .
One can easily check that the assumptions of Lemma 3.8 are satisfied. O

Corollary 3.12. Let T : E — ¢ be a linear operator, and o € Rt. Assume
that there is a sequence (fn)n = ((fn,j)jen),, in T(Bg), such that for all k € N,
limsupd ({fn,;,J > k}) > 2. Then ||T|[e > a.

n— oo
Proof. We apply Lemma 3.8 for the sequence of subnorms (Py); on ¢ defined
by

Po((20)n) = %5({% > k).

We can also use Corollary 3.11, by seeing ¢ as a C(K)-space where K = N U
{o0}. O

The following lemma is a natural generalization of [CFT, Lemma 3.4] for all
p € [1,+00), and the proof can be easily adapted. However, we can also see this
result as a consequence of Lemma 3.7.
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Lemma 3.13. Let (2, 1) be a measure space, X be a Banach space andT : X —
L?(u) be a bounded operator. For a decreasing sequence of measurable subsets
A, C Q satisfying p(,, An) = 0, the sequence (Ry,), of projection operators is
defined by
o { L(n) — LP(Agp)
" o= fla,.

If for any n € N, the operator T — R, T is compact, then the essential norm of
T s given by

ITle = 1R T

lim
n—-+o00
Proof. Since for any = € X, (||R,T(z)|)» is a decreasing sequence, we get that
(|R.T||)n converges to a number « € R, when n — +oo. By the compactness
of (T — R, T), we clearly have |T|. < ||R,T|| for any n and hence | T||. < «.

For the lower bound estimate, we fix a sequence h,, € Bx which satisfies

1
1R T (Rl > B T| =

For k < n, we have ||RxT(hy)|lp = [|T(hn)llze(ap,p) = [1RnT(hy)llp. Hence we
apply Corollary 3.9 to the sequences (Ax)x and (hy ), to get ||T||e > a. O

The following proposition shows that for some classes of operators, the essential
norm depends only on the range of the unit ball.

Proposition 3.14. Let X,Y be two Banach spaces such that Y has a Schauder
basis (en)n. We consider the natural projections my : Y — span {ex; 0 < k < N}
defined by mn (3 pe o Trex) = Zf@v:o zrex, and Ry = I — wn. Assume that
IRN|| < 1, for any N € N. Then, for two bounded operators T,T' : X — Y
with T(Bx) = T'(Bx), we have

IT)le = IT"|le = lim [|[RNT.
N—+o0

Proof. Although the proof follows the spirit of the one of Lemma 3.13, we give
some details for the convenience of the reader.

Since (||R,T|)» is a decreasing sequence, (||R,T||)» converges to a number
a € Ry. On one hand, since w7 has finite rank, it is compact for each N and
we clearly have ||T||e < |T — #nT|| = |RnT|| for all N. Hence

|T||e < liminf |[RyT.
N—+o0

To get the lower bound estimate, we shall apply Lemma 3.8 with the subnorm
Pi(g) = ||Rx(g9)|l, where g € X. We clearly have lim Py (g) = 0 for every g € X.
By definition, for every n > 1, there exists h,, in the unit ball of X such that
IR (T (hu))|| = ||R.T|| — 1/n. It suffices now to notice that, for every fixed k
and every n > k, we have Py(T(hy)) > ||R.(T(hy))|| since R, Ry = R,, and R,
has norm 1. We get

limsup Py (T'(hy,)) > limsup || R, (T (hy))|| > c.

n—oo n—oo

With Lemma 3.8, we obtain that | 7] = lm ||[RyT].
N—+oco

Lastly, if T(Bx) = T"(Bx) then ||RNT| = ||RnT’| for every N. We con-
clude that | T|le = [|T"|e- O
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The following result is an analogue estimate of the previous results that gives a
lower bound of the distance between an operator T' with values in L'(p) to the
space of weakly compact operators.

Proposition 3.15. Let (Q, ) be a measure space, X be a Banach space and
T : X — LYQ,u) be a linear operator. Assume that there exist a number
a >0, a sequence (hy)y in the unit ball of X and a sequence of measurable sets

(An)n in Q with:
(i) u(Ar) — 0 when k — +oo.

(i) For any k € N, lim sup (/ |T(hn)\du) > a.
Ay

n—+o0o
Then, we have ||T||¢w > o.

Proof. By a standard diagonal argument, we may assume, without loss of gen-
erality, that for any k£ € N, lim_~i_nf (/ |T(hn)|d,u) >a. Let S: X — LY(Q, p)
n—+oo Ay

be a weakly compact operator. Since the set H = {S(h,),n € N} is bounded
and relatively weakly compact, then it is uniformly integrable [Wo, p.137]. That
means that for any € > 0, there exists 6. > 0 such that

u(B)SJsﬁ/ |S(hn)ldp < e, ¥neN.
B

But, for any € > 0 there exists k such that p(Ay) < é.. Therefore we compute
1T =S| = (T = S)(ha) L2 ()

2‘/‘|7%%4—Shddu
Ay

> [ (Thaldu— [ ISl
Apg Apg

> a—€¢.

Finally, we deduce ||T||e,.» > o which is the desired result. O

4 Essential norm of some Cesaro operators

In this section, we will compute the essential norm the Cesaro operator (discrete
and continuous) defined between different Banach spaces.

4.1 Cesaro operators on Lebesgue spaces

In the following, we shall compute the essential norm of the continuous Cesaro
operator I', : LP — LP and of the discrete Cesaro operator vy, : £ — (P for
p € (1,400]. We shall distinguish the case p finite and p = +o00. Of course, the
key information in the two following theorems concerns the essential norm. The
value of the operator norm of the continuous and discrete Cesaro operators is a
well known fact.
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Theorem 4.1. Let p € (1,400) and I'y, : L? — LP be the continuous Cesdro
operator. Then,

ITplle = 1Tl = #',

where p’ = p%l. In particular, we have a,(I'y) =p’ for any n € N.

Proof. Using the Hardy inequality (see [HLP, Th.327 p.240]), we have the upper
bound
ITplle < ITHl <P .

To prove the lower bound, we apply Corollary 3.9 to any sequence of subsets
A = 10,6;] (where ) is a decreasing sequence converging to 0) and to the

sequence (hy,), defined by h,(z) = (psn)%af%“" € Br» where ¢, — 0 as
n — 0o. By a straightforward computation, we have for any integer k € N,

O 1 ® 1 1 p 1. )PEn
oo = | ( / <pgn>pt—p+6ndt) dx_(m
0 0

x I%_an)p'

Therefore for any fixed k, we get li_)rn ITp(hn)llr(a,) = . This finishes the
n oo
proof. O

Theorem 4.2. Let p € (1,400), and v, : {7 — (P be the discrete Cesdro
operator. Then we have

”'}’pHe = ||'7p|| =7,

where p’ = p%r In particular, we have a,(v,) =’ for any n € N.

Proof. Using the Hardy inequality (see [HLP, Th. 326 p 239]), we have the
upper estimate

Iplle < vl < p'.
Now we prove the lower estimate. For ¢ > 0 and N € N, we consider the
sequence a(N) = (a%N))n € (P with

1
» N¢€
o) = )P N°

o ]I[N,+Oo)(n), n € N.
nr

The norm of ™) is estimated as:

nltPe Notoo

1 1
(N)||p — pe . ~ pe -
@' ™|} = peN gN peN /N e dx = 1.

By a simple computation, we have

0 ifn<N

(vp(a™)), =3 (eNP)r 1

n+1l S ppte

ifn>N.

Using the inequality between the Riemann series and the integral, we get

b b+1 1-8 _ ,1-8
1 1 (b+1) a
E > i —
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for any integer numbers a,b and any real § # 1. We estimate the norm of
Yp(a™) for e € (0,1/p) as

400 c n p
Wy — 5 PN 1
Il = 3 250 (3 =
=N

n=N

_n:N(n+1)p iie
1_\P
_ Z peNP= @y ([ (NN
(n+ 1)tFre (1 — ple)p n+1
+o00 L e
NPE \p N 7

> Z pe (') 1—p ( )

= (nA1)Hee (1—ple)r n+1

_ W)y Jio peNPe Z p 2eNPET
- (1 —p’e)? (n+ 1+p6 1+p6+776 ’
n=N

Comparing again with an integral (like in (3)), the last estimate reduces to

'p pe 2 p6+ﬁ76
@)z > —2 Ny al ~
P= (1-pe)p N+1 pet+ 5 —e¢ N+1

Letting N — oo and as ¢ — 0, we get J\;im 7 (a™)||, > p'. Now we apply
—00

Corollary 3.9 to the sets A, = NN [k, +00) and to the sequence (hy) = (a¥)).
Indeed, we clearly have that (| Ay = (). Moreover, for a fixed k € N, we have

||7p(a(N))||ev(Ak) = ||7p(a(N))||p

when N > k because the support of v, (a(™)) is included in NN [N, +00). Hence,
the essential norm of =, is equal to p’. O

Theorem 4.3. Let 'y, : L™ — L™ be the Cesaro function operator, we then
have

IPoclle,w = ITsolle = [[Pooll = 1.
In particular, we get that a,(T'ss) =1 for any n € N.

Proof. First it is clear that ||I's|le,w < [[Toclle < [Tl = 1. To prove the lower
bound, we will fix € € (0,1) and will define a sequence of functions (h,), in the
unit ball of L, such that any block-subsequence of T'o(hy,) will be (2 — 2¢)-
separated in L>°. Therefore Lemma 3.4 (i¢) will yield |Tsolle,w > 1 — €, which
will give the result. For this, we consider the sequence (hy,), € Br~ by the
following

-1 ifz<en

hn () = { 1 if >_5”.

The sequence H,, := ' (hy,) satisfies H,, = —1 on [0,e"] and H,(z) =
if x > &™. Let (ﬁm)m be a block-subsequence of (H,), defined by H, =

T — 2e"
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Z ¢;Hj (see Definition 3.1). For two integers k,{ with [ > k, we have
JE€EIm
k g
Hi(e ):1—2?21—25.
For any two integers numbers m, n with m < n, we set k = max I,,, and compute

”ﬁn - Em”oo > |ﬁn(5k) - ﬁm(gkﬂ

= ’ Z e Hy(e) — Z chj(ak)‘

lel, J€lIm
>1-2Y a- 3 o(-1)
lel, J€Im
=2 2e.
Thus, we get that ||I's||e,s > 1 and this finishes the proof. O

Theorem 4.4. Let vy, : £°° —> £ be the Cesaro sequence operator. We have

Yoo lleqw = II7oolle = ll7soll = 1.
In particular we have an(Yoo) = 1 for any n € N.

Proof. The upper estimate is clear, as ||Voolle,w < [[Voolle < |Vool| = 1. For the
lower bound, we follow the same idea as in the proof of Theorem 4.3. We fix

€ € (0,1) and we let  be a natural number with » > 1/e > 1. For n € N, we
(n)
— -1

consider the sequence a(™ € ¢ defined by a(™ = (alin))keN*, where a,, ' =
if £ < r", and a,(Cn) = 1if &k > ™. We denote by A™ = v, (a™) with
A = (AE"))Z-GN*. Then, we get
(n) _ A—l ifg <™

A= { ST >
Now, we consider a block-subsequence of A say (K(m))m, as in Definition 3.1
by

Alm) _ Z CjA(j).
J€Im

By the choice of (ay),, we have for two integers j, k with j < k, that
) J
AD 12D >0
T
Let m,n be two integers with m < n, and let k¥ = min I,,. We compute
A — Ao > AT — AT

— ‘ Z chq(ﬁj,;) — Z clAfnlk)

J€ILm lel,

>(1-2) Y ¢— > al-1)

JE€EIm lel,

=2 —2e.

Finally, by applying Lemma 3.4 (i7) we deduce ||Yoo|le,w > 1. O
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The operators I';, are not compact, but the situation is different when we restrict
them to a Miintz space M}. This is due to the geometric nature of these spaces.
We first state the following lemma.

Lemma 4.5. Let p,q € [1,400] satisfy p > q. Then the natural inclusion
ipg: MY — M{ is a compact operator.

Proof. The boundedness is clear. To check compactness, we consider a sequence
(fn)n in the unit ball of M¥. From [AL, Cor. 2.5], there exist a function g € M}
and an extraction (ny)x such that f,,, converges to g uniformly on every compact
subset of [0,1). For any § € (0,1), we compute

1-0 1
e =ol= [ V) =g+ [ 1£ (0 = a0

1 1_4a
0] + I fun —gllz 6" 2.

< |l fni =gl

In the second term, we use the Holder inequality. Clearly, the first Eerm qtends
to 0 by the uniform convergence, and the second one is less than 278" ». As
1-— % > 0, we get that f,, converges to g in M}, and thus iy 4 is compact. [

Next, we obtain the following property for the restrictions of the Cesaro opera-
tor.

Proposition 4.6. Let p € [1,+00], MY be a Mintz space and FI/,‘ : MY —
MY, f— T(f) be the restriction of the Cesaro operator. Then Fé\ s compact.

Proof. According to [AHLM, Prop. 4.2], the operator 'y : M} — Mg°, f
I(f) is bounded (but not compact). Then we obtain the factorization
A

4 P P
M, —— M,

Zp,ll Tloom

1
My ——= Mg
Ta

Therefore, Lemma 4.5 yields to the compactness of FI’}. O

4.2 Cesaro operators on Cesaro spaces

In this section, we study the Cesaro operators defined on Cesaro spaces to the
corresponding Lebesgue spaces. We shall also consider the restriction of those
operators to Miintz subspaces (see Definition 2.5). We note that for p € [1, +o0]
(resp. for p € (1,+00]) the Cesaro operators I'c(,) (resp. 7.(p)) are naturally
well defined and bounded, with norm 1. Moreover, they map isometrically the
set of positive functions (resp. sequences) to themselves. It is shown in [CR]
that these operators are not compact and we shall show below that they are
even far from being compact: their distance to compact operators is maximal.

Theorem 4.7. For any p € (1,+00), we have

(i) ITe@lle = Tow)ll = 1.
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(@) Ve lle = Ve I = 1.
(ii1) [Co)llew = ITe@lle = el = 1.
() Lo llew = ITote)lle = [Teoll = 1.
(V) e(oo)lesw = [1Ve(oo) lle = 7o)l = 1.
In particular, the approximation numbers of all these operators, are equal to 1.

Proof. Since [[Top)lle < [To@ll < 1, all we need to check is that the essential
norm is larger than 1. Let p € (1,+00), then we have I, = I'¢(;) o J,,, where
Jp 1 LP — Ces,, is the formal inclusion of L? in Ces,. It is easy to see that this
factorization implies

ITplle < [IPe)llellJpll-

Using the Hardy inequality ([HLP, Th. 327]) and Theorem 4.1, we obtain the
estimate p’ < p'||T¢(p)le, and thus we get (i). Following the same steps, we can
treat the sequential case by applying Theorem 4.2 and we obtain (i4). For the
point (iii), we clearly have

||FC(1)| ew S ”FC(I)”e < ||FC(1)|| <L

To prove the lower estimate for ||I'c(1)l|ew, We apply Proposition 3.15 for the
sets A, = [1 —1/n,1] and for the sequence of normalized functions (h,,) € Ces;
defined by hy,(x) = (A, +1)22*». The Lebesgue measure of the sets A,, decreases
to 0 when n — 400, and for any fixed k € N we have

A . 1\ Antl
ITo ()l (a0 = / (= / O+ D2t )da = 1— (1- )"

X

It then tends to 1 when n — +o0, which gives |I'c(1)[le,w > 1 as desired. To
prove (iv), we have as usual [|[T'c(oo)l|e,w < [Tc(oo)lle < [Te(ooyll <1, and as in
the proof of (i), Theorem 4.3 gives

||FC(oo)||e,w||J00|| > ||FC(oo) o Joone,w = ”Foone’w =1
In the same way, we treat the sequential case (v) with Theorem 4.4. O

Now we consider the restrictions of Cesaro-type operators to Miintz-Cesaro
spaces (see definition 2.5). Let A = (\,,)n>0 be an increasing sequence satisfying
the Miintz and gap-conditions. For p € [1, +00], we define the following operator

TS :{ My MY
P [ = T

Theorem 4.8. Let p € [1,+00). Then we have

(@) TG lle = 1.

. 1
(i) Ty lle = 5
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Proof. First, we prove (7). The operator Fo( ) is clearly well defined and bounded.

C
We have ||T'A (p)||.3 < ||TA (p)|| < |Pell < 1. Let us denote x,, : MAesp — LP,

f = T(f). We factorize x, through MY as follows
. A
Xp = Jp ° Ly
where j, : MY — L? is the inclusion of M¥ in LP. Hence, we obtain

IxXplle < ITE ) lle-lpll < ITE ) lles

and we just need to check that ||xp|le > 1. The operator y,, is valued in an L?
space and therefore we can apply Corollary 3.9 with Q = [0, 1], Ax = [1—1/k, 1],
a =1 and with the sequence of functions h, : t = (A, + 1)(pA\, + 1)%75’\". We
have for any fixed k € N,

x

! 1 p
P _ - An
”Xp(hn)HLp(Ak) = /l_l(p)\n + U(x /0 (An + 1)t dt) dz

k
1\ pPAn+1
—1- (1 - f) .
k

We obtain ||T'4 omlle = HXpH > 1 and the proof of (i) is complete.
Now we treat the case “p = 4+00”. For the upper estimate of the essential
norm, we factorize Fg( ) through M} as follows

]\4Ce§oc FC(OO

\/

where Jj : MECS“’ — M} is the restriction of the inclusion of Cesy in L' (see
Remark 2.6) and I'y : M} — Mg is the Cesaro operator between Miintz spaces.
By [AHLM, Thm. 4.3], we have that ||T's||c = 1/2, and thus we obtain

1
ITE oo lle < IIall-ITAlle < 5-

[\]

To get the lower estimate, we consider a subsequence (v,), C A satisfying
7"“ — 400 and denote ( fn)n € M{*> the sequence of normalized functions

deﬁned by fn(x) = (yn + 1)z, For m > n, we have

IT(fa) = T(fm)lloo = 27" — 27 ||
_ ( ,Y'IL )’Y"/(’Y"Li’}/") ( ’yn )'Y'm/(’Y'mf’Yn)
TYm Ym

_ (ﬁ)’yn/(’vm—%) (1 B 77”)
TYm Ym

n/( n - n)
Z( Tn )“/ Yn4+1—7% (17 Yn )
Tn+1 Yn+1

As this term tends to 1 when n — +o0o, we get (i) from Lemma 3.4. O

21



The previous result implies that the operators I‘/C‘(p) are never compact. Now we
focus on the particular case where A is lacunary to obtain more spemﬁc results.
Recall that a sequence (), is called lacunary if it satisfies inf,,>o =% Antl 5

Theorem 4.9. Let p € [1,+00). If A = (M) is a lacunary sequence, then
the operator Fé(p) : Mfes” — MY is an isomorphism. Actually, there exist two
constant Cy,Cy € R such that for any b = (b,), € co we have

cl(z AHP)‘I’ <| ;bnw o S C’z(%: lfgli)

Proof. Using the Gurariy-Macaev theorem in L? (see [GuLu, Th. 9.3.3]), there
exist two positive numbers d; and ds such that

w (3 5 <oty < (3150

for any function g € M(A) with the form g(t) = Y, a,t**. Therefore, for any
function f € M(A) defined by f(t) =3, bat*", we get from the one hand

O <15 < [ ([ S i) e
-|

b |P
zl'

n n

since Y, |by[t* € M(A). On the other hand, as T'(f) € M(A) we write

b P
- | 5
et = 2 5 5
[bn[”
( ) Z )\1+p
Hence, we find the claimed estimates. In particular, the operator I‘g(p) is one-

to-one, with a closed range. Since Fg(p) (M(A)) = M(A), it has a dense range
in M¥ and therefore I‘é(p) is an isomorphism. O

Remark 4.10. Note that the Gurariy-Macaev theorem in L' and Remark 2.6
imply that MECS‘” is isomorphic to ¢! (in the case where A is lacunary). Hence,

we get b
>\’!L ~ bin
H ;b"t Clo0) zn: A’

where the underlying constants depend only on A. Moreover, even in the la-

cunary case, I' cannot be an isomorphism between Mfes"" and Mg° since the

spaces are not isomorphic. A natural question that arises in this context: Is

T" an isomorphism between Mfes” and M} for any Miintz sequence A and any
€ [1,+00)?
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5 Multiplication operators on Cesaro function
spaces

In this section, we study the compactness and compute the essential norm of
the multiplication operator Ty, : f — f1 on the Cesaro function spaces, for a
measurable bounded function  on [0, 1]. We also consider its restriction to the
Miintz-Cesaro space. The starting point in this part is the following result:

Proposition 5.1. [AMR, Theorem 2.1] Let p € [1,400] and assume that i is
a measurable function on [0,1]. Then the following are equivalent:

(i) The multiplication operator Ty, : Ces, — Cesp, f +— f1 is well defined.
(ii) The operator Ty, is bounded.

(i1i) The function v is essentially bounded on [0, 1].

Moreover, in this case we have ||Ty|| = ||9||oo-

Formally, this result was proved when p is finite. Nevertheless, the proof can
be easily adapted for p = +00. We can use our previous ideas to compute the
essential norm of the multiplication operators.

Theorem 5.2. Let ¢ € L*°([0,1]), p € [1,+0o0] and the multiplication operator
Ty : Cesp([0,1]) = Cesp([0,1]); f — fvo. Then we have

ITplle = 1% lloo-

Proof. As usual, we have ||Ty||e < || Ty|| = ||¢]| by Proposition 5.1, and hence
we just need to check that ||Tylle > ||¢|loo- For € > 0, we define the set

Ae ={t € (0,1}, [¥(B)] = [[¥]loc — €}

Let p be the Lebesgue measure. As p(A.) > 0, then at least one of the two sets
[0,3] N A: or [3,1] N A. has a strictly positive measure. Assume that it is the
first one, and put

B =inf{z € [0,1/2], u([z,1/2] N A) = 0}.
The number 3 satisfies 8 € (0,1). In the other case, we define
B =sup{z € [1/2,1], n([1/2,2] N A.) = 0},

and 4’ is also in (0,1). Now we consider an increasing sequence (a,) which

tends to 8 when n — +oo, and define the sets J, = [an, any1) N A. for any

integer n € N. From the definition of 3, there exist infinitely many sets J,, with

a positive Lebesgue measure. Up to an extraction, we can assuni[e that they all
Jn

1L, lom)

satisfy u(J,) > 0. We then set the normalized functions f, = € Cesp.

Assume first that p is finite. For n < m, we have
T n) T m P :/ / ‘ m ’dt
1T (fn) = To ) O T - )'d

> ([9le —<)” /ﬁ G (ﬁiéhbmf)) W)
=P (e ) ) 5
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On the other hand, we have

! P Uda
P z @
1, 16w = /an (xu([(),x] N Jn)) dx + p(Jn)? o

xP

and since a, — 8 < 1, we easily obtain

li p(tn) </1 da:)*%
m ——F = — .
n—=+oo |1y, [lc@p) g TP

Hence there exists ng € N such that for any m > n > ny we have

1Ty (fn) — Ty (fm)llew) = 2 =) (¥l — ).

This holds for any € > 0 and Lemma 3.4 gives ||Tyle > [|¥||oc. This concludes
the proof when p is finite. Assume now that p = +o00 and fix again two integers
n, m with n < m,

L, () 1,.()
ITuh) = Tolimlleeo = s & [ ol a
oy I, L,
L.() | 1, (1)
Z ||w||oo _ up / n + m dt
( 9 sw o e )

For any k € N, the set Jj, satisfies inf(Jy) > ay, and this gives

1
117, ey < aikM(Jk)'

Thus, we get

ami1 |
ITuld) = ol 2 (e =2 [ (7200 4 el

A1
B B 1 w(n) | p(Im)
= (¥l )m+1(|\]IJ [ ||]IJm||>
> (9l — )22

Asm,n — 400 with n < m, we have a,, am, ami1 — 5 > 0. Hence, there exists
no € N such that the sequence (T'(f1))n>n, 1S (2 —€)(||¥]|cc — €)-separated, and
we deduce the lower estimate by applying Lemma 3.4. O

Now we are interested in the restriction of the multiplication operators to the
Miintz subspaces of Ces,.

Lemma 5.3. Let p € [1,400], A = (An)n be a sequence satisfying the Miintz

and gap conditions, ¥ € L be a function such that lim1 19X 17llc = 0. Then
a—

the restriction of the multiplication operator to the Muintz-Cesaro space Ty A :

MSES" — Ces,, defined by Ty (f) = f1p is compact.

esp

Proof. Let (f,)n be a sequence in the unit ball of Mj(\j and € > 0. Since ) is
continuous and (1) = 0, there exists 6 € (0, 1) such that |¢(t)| < e for almost
every t € [1 — 4,1]. By Corollary 2.9, there ex1st a function f in the unit ball

24



of Ces, and a subsequence (fy,)r that converges uniformly to f on [0,1 — ¢].
Assume first that p = 400, then we have

ITo(Fn) = To(Dllciy = sup / [ 0) = PO (0)|at)
1;6(0,1]

s /|fnk FO)L o)) }

< ”dJHOOHf"k - f||[0,175]
1 x
N CY I SURY(CIE)

< Nl = Fllgo 1 sy el = Fllooe)

Since (fy, ) converges uniformly to f on the compact set [0, 1 — d] and both f,,,
and f have norm less than 1, we obtain

Jim [T(fue) = T () ooy < 22,

and so Ty A is a compact operator on ME(OO).

Assume now that p is finite, we have
1 1 T
7o) = To Dy = [ (5 [ 1m0 = FLo(011) o
1-6 1 T p
<[ G [t i) as
p

1 1 1-6 1 =
+ ‘/1_5 (1_5/0 |f’ﬂk - f||¢(t)|dt+€g A—(S |f’ﬂk - f|dt> dﬁ,

as |[¢(t)| < e when t > 1 — 4. On the other hand, for any < 1 — 4, we have

1 xT
o [ 150 = PO < Wl o = o1y

Using the estimate (A + B)P? < 2P(AP 4 BP) for A, B > 0, we find

2P0
7o) = T ey < 1908 e = £l (1 7 —g57)

1 1 T »
4+ PP /1_5 (5 /1_6|fnk —f|dt) dz
S C”wHOCHfTLk - fH[O,lf(;] + 2p+1<€p

Since || fn, — flljo,1—5) = 0 when k — +o0, we deduce that Ty (fn,) — Ty (f) in
Ces, when k£ — +oo and hence T} A is compact on Mf(p). O

Note that the assumption on 1 in Theorem 5.3 is satisfied if ¢ is continuous at
the point 1 and satisfies ¢(1) =0
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Theorem 5.4. Let A be an increasing sequence satisfying the Miintz and gap-
conditions, p € [1,400], ¥ € L™ and Ty A : Mf(p) — Ces,, be the multiplication
operator defined in Lemma 5.5. If ¥ is continuous at the point 1, then we have

1Tgalle = (D).
Proof. For any n € N, we let 1, = 9(t) f,,(t) where

1 if t €[0,1 -1
fn(t)Z{ n(l—t) ifte[l—211]

is a continuous function with f, (1) = 0. Since ¥, (1) = 0, we know from Lemma
5.3 that T}y, A is compact for any n. Hence,

1Ty.alle < NTya = Ty, all < M9 = tnlloo < llll1-11

n’

| = b)),

as 1 is continuous at 1. To get the lower estimate, we will apply Lemma 3.4. For
this, we let £ > 0. Since v is continuous at 1, there exists 6 € (0, 1) such that for
any t € [1 —0,1], we have |[1(t)] > (1 —¢)|¢p(1)]. Assume first that p = +oo and

consider a subsequence (), C A which satisfies 11111 Wﬁ;ﬁ = +00. We define
n—+oco In

the norm-one functions (¢, ), € MS®™* by ¢n(z) = (Yo +1)27". Applying [AA,
Lemma 3.1] for the polynomials p(x) = g(z) = z, there exists ng € N such that

1
[enlls + llemllr < (1 +6)/1 S |on(t) = pm (t)]dt,

for any m > n > ng. One can also check this estimate by a straightforward
computation of ||¢, — @1, using the assumption % — +o0 when n — +o0.
We get '

1T () — Tolm) oo = IT (002 — m)]) 1
= s / (on (1) — o (0) (1) dt
> / 12t~ )t
> 2 (1)l

By Lemma 3.4, we find ||Tyalle > |w(1)|1+€
deduce ||Tiy,all = |1(1)] in this case. Assume now that p is ﬁmte. We will follow
the method of the proof of [GL2]. Let v = (v, )nen be a subsequence of A which
satisfies

6
VneN, vup1+1> (v +1).
We set a sequence of disjoints intervals Jy = (ag, i) with

1
(v +1)2

1

) and ﬁk:exp(—m).

ak:exp(—

The numbers oy, By, satisfy for any k € N; oy, < 8 < agq1 < By < --- . For
k € N, we define o (t) = (yn + 1)(pyn + 1)1/Pt7%. The sequence (¢y)), € Mf(p)
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is normalized, and each function ¢y is concentrated on the interval Ji in the
following sense: if a < b < aj, we have

=

b
/ r(t)dt = (7 — @) (e + 1)

< oy +1)7
<exp(— (M +1)2)(ph+1)7 =0,

when k& — +o00. On the other hand, if 8, < ¢ < d, we write

=

d
/ p(t)dt = (1 — ) (4 1)

< (1= B ) (v + 1)7

(pye +1)
= 1)

S =

— 0,

when k — +oo. Here, we use the estimate 1 —exp(—u) < « when u € (0,1). We
also have

Vi

or(ar) = (v + 1)7 (i + Dexp (— —2—) =0,
(v +1)2
when k — 400, and
1
+1)» +1
(1= Bo)pn(n) < D O D

(vk +1)3

when k& — +00. We define ¢, to be the maximum between these four quantities.
Clearly ()i tends to 0 when k — +o00. Therefore, for any k € N, we compute

Bkl

1= {lekllE, /Oak (F(cpk)(a:))pd:z:+/a xp(/oak @k(t)dtJr/O: <pk(t)dt>pdx

+ /B (T (gw)(@)) dx

k

B q @ P
§a§+/ x—p(ekJr/ cpk(t)dt) dx + €}

k k

B 1 B p
~ — pr(t)dt) dz,
/a xP (/ak ( )

k

when k — +00. Now we fix ng such that a,, > 1—4. Then for any m > n > nog
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we have

ITyl0n) = ool = | T(eHon = onl)@pde

. /a"" (% /: 9] on — (pm|)pda:+/jm (i /j [Ylen — soml)pdx

m

> w1l —s>( / B ([ euttyie—2) aa
+ /aim 171”</(le Pm(t)dt — 5n>pdx>

~2[p(D)[(1 —e),

when n,m — 400 with n < m, and we deduce the lower estimate for ||Ti A |le-
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