NONDEGENERACY OF POSITIVE SOLUTIONS TO NONLINEAR HARDY-SOBOLEV EQUATIONS

FRÉDÉRIC ROBERT

ABSTRACT. In this note, we prove that the kernel of the linearized equation around a positive energy solution in \mathbb{R}^n , $n \geq 3$, to $-\Delta W - \gamma |x|^{-2}V =$ $|x|^{-s}W^{2^*(s)-1}$ is one-dimensional when $s + \gamma > 0$. Here, $s \in [0,2), 0 \leq \gamma < (n-2)^2/4$ and $2^*(s) = 2(n-s)/(n-2)$.

We fix $n \ge 3$, $s \in [0,2)$ and $\gamma < \frac{(n-2)^2}{4}$. We define $2^*(s) = 2(n-s)/(n-2)$. We consider a nonnegative solution $W \in C^2(\mathbb{R}^n \setminus \{0\}) \setminus \{0\}$ to

(1)
$$-\Delta W - \frac{\gamma}{|x|^2} W = \frac{W^{2^\star(s)-1}}{|x|^s} \text{ in } \mathbb{R}^n \setminus \{0\}.$$

Due to the abundance of solutions to (1), we require in addition that W is an energy solution, that is $W \in D_1^2(\mathbb{R}^n)$, where $D_1^2(\mathbb{R}^n)$ is the completion of $C_c^{\infty}(\mathbb{R}^n)$ for the norm $u \mapsto ||\nabla u||_2$. Linearizing (1) yields to consider

$$K := \left\{ \varphi \in D_1^2(\mathbb{R}^n) / -\Delta \varphi - \frac{\gamma}{|x|^2} \varphi = (2^*(s) - 1) \frac{W^{2^*(s)-2}}{|x|^s} \varphi \text{ in } D_1^2(\mathbb{R}^n) \right\}$$

Equation (1) is conformally invariant in the following sense: for any r > 0, define

$$W_r(x) := r^{\frac{n-2}{2}} W(rx) \text{ for all } x \in \mathbb{R}^n \setminus \{0\},\$$

then, as one checks, $W_r \in C^2(\mathbb{R}^n \setminus \{0\})$ is also a solution to (1), and, differentiating with respect to r at r = 1, we get that

$$-\Delta Z - \frac{\gamma}{|x|^2} Z = (2^*(s) - 1) \frac{W^{2^*(s)-2}}{|x|^s} Z \text{ in } \mathbb{R}^n \setminus \{0\},\$$

where

$$Z := \frac{d}{dr} W_r|_{r=1} = \sum_i x^i \partial_i W + \frac{n-2}{2} W \in D_1^2(\mathbb{R}^n).$$

Therefore, $Z \in K$. We prove that this is essentially the only element:

Theorem 0.1. We assume that $\gamma \geq 0$ and that $\gamma + s > 0$. Then $K = \mathbb{R}Z$. In other words, K is one-dimensional.

Such a result is useful when performing Liapunov-Schmidt's finite dimensional reduction. When $\gamma = s = 0$, the equation (1) is also invariant under the translations $x \mapsto W(x - x_0)$ for any $x_0 \in \mathbb{R}^n$, and the kernel K is of dimension n + 1 (see Rey [6] and also Bianchi-Egnell [1]). After this note was completed, we learnt that Dancer-Gladiali-Grossi [4] proved Theorem 0.1 in the case s = 0, and that their proof can be extended to our case, see also Gladiali-Grossi-Neves [5].

Date: December 29th 2016.

²⁰¹⁰ Mathematics Subject Classification: 35J20, 35J60, 35J75.

FRÉDÉRIC ROBERT

This note is devoted to the proof of Theorem 0.1. Since $\gamma + s > 0$, it follows from Chou-Chu [3], that there exists r > 0 such that $W = \lambda^{\frac{1}{2^*(s)-2}} U_r$, where

$$U(x) := \left(|x|^{\frac{2-s}{n-2}\alpha_{-}(\gamma)} + |x|^{\frac{2-s}{n-2}\alpha_{+}(\gamma)} \right)^{-\frac{n-2}{2-s}}.$$

with

$$\epsilon := \sqrt{\frac{(n-2)^2}{4} - \gamma} \text{ and } \alpha_{\pm}(\gamma) := \frac{n-2}{2} \pm \sqrt{\frac{(n-2)^2}{4} - \gamma}.$$

As one checks, $U \in D_1^2(\mathbb{R}^n) \cap C^{\infty}(\mathbb{R}^n \setminus \{0\})$ and

(2)
$$-\Delta U - \frac{\gamma}{|x|^2}U = \lambda \frac{U^{2^{\gamma}(s)-1}}{|x|^s} \text{ in } \mathbb{R}^n \setminus \{0\}, \text{ with } \lambda := 4\frac{n-s}{n-2}\epsilon^2.$$

Therefore, proving Theorem 0.1 reduces to prove that \tilde{K} is one-dimensional, where

$$\tilde{K} := \left\{ \varphi \in D_1^2(\mathbb{R}^n) / -\Delta \varphi - \frac{\gamma}{|x|^2} \varphi = (2^*(s) - 1)\lambda \frac{U^{2^*(s) - 2}}{|x|^s} \varphi \text{ in } D_1^2(\mathbb{R}^n) \right\}$$

I. Conformal transformation.

We let $\mathbb{S}^{n-1} := \{x \in \mathbb{R}^n / \sum x_i^2 = 1\}$ be the standard (n-1)-dimensional sphere of \mathbb{R}^n . We endow it with its canonical metric can. We define

$$\left\{ \begin{array}{cccc} \Phi: & \mathbb{R}\times\mathbb{S}^{n-1} & \mapsto & \mathbb{R}^n\setminus\{0\} \\ & & (t,\sigma) & \mapsto & e^{-t}\sigma \end{array} \right.$$

The map Φ is a smooth conformal diffeomorphism and $\Phi^* \operatorname{Eucl} = e^{-2t}(dt^2 + \operatorname{can})$. On any Riemannian manifold (M, g), we define the conformal Laplacian as $L_g := -\Delta_g + \frac{n-2}{4(n-1)}R_g$ where $\Delta_g := \operatorname{div}_g(\nabla)$ and R_g is the scalar curvature. The conformal invariance of the Laplacian reads as follows: for a metric $g' = e^{2\omega}g$ conformal to g ($\omega \in C^{\infty}(M)$), we have that $L_{g'}u = e^{-\frac{n+2}{2}\omega}L_g(e^{\frac{n-2}{2}\omega}u)$ for all $u \in C^{\infty}(M)$. It follows from this invariance that for any $u \in C_c^{\infty}(\mathbb{R}^n \setminus \{0\})$, we have that

$$(-\Delta u) \circ \Phi(t,\sigma) = e^{\frac{n+2}{2}t} \left(-\partial_{tt}\hat{u} - \Delta_{\operatorname{can}}\hat{u} + \frac{(n-2)^2}{4}\hat{u} \right) (t,\sigma)$$

for all $(t, \sigma) \in \mathbb{R} \times \mathbb{S}^{n-1}$, where $\hat{u}(t, \sigma) := e^{-\frac{n-2}{2}t}u(e^{-t}\sigma)$ for all $(t, \sigma) \in \mathbb{R} \times \mathbb{S}^{n-1}$. In addition, as one checks, for any $u, v \in C_c^{\infty}(\mathbb{R}^n \setminus \{0\})$, we have that

$$\int_{\mathbb{R}^n} (\nabla u, \nabla v) \, dx = \int_{\mathbb{R} \times \mathbb{S}^{n-1}} \left(\partial_t \hat{u} \partial_t \hat{v} + (\nabla' \hat{u}, \nabla' \hat{v})_{\operatorname{can}} + \frac{(n-2)^2}{4} \hat{u} \hat{v} \right) \, dt \, d\sigma$$

(3) := $B(\hat{u}, \hat{v})$

where we have denoted $\nabla' \hat{u}$ as the gradient on \mathbb{S}^{n-1} with respect to the σ coordinate. We define the space H as the completion of $C_c^{\infty}(\mathbb{R} \times \mathbb{S}^{n-1})$ for the norm $\|\cdot\|_H := \sqrt{B(\cdot, \cdot)}$. As one checks, $u \mapsto \hat{u}$ extends to a bijective isometry $D_1^2(\mathbb{R}^n) \to H$.

The Hardy-Sobolev inequality asserts the existence of $K(n, s, \gamma) > 0$ such that $\left(\int_{\mathbb{R}^n} \frac{|u|^{2^{\star}(s)}}{|x|^s} dx\right)^{\frac{2}{2^{\star}(s)}} \leq K(n, s, \gamma) \int_{\mathbb{R}^n} \left(|\nabla u|^2 - \frac{\gamma}{|x|^2}u^2\right) dx$ for all $u \in C_c^{\infty}(\mathbb{R}^n \setminus \{0\})$. Via the isometry $D_1^2(\mathbb{R}^n) \simeq H$, this inequality rewrites

$$\left(\int_{\mathbb{R}\times\mathbb{S}^{n-1}} |v|^{2^{\star}(s)} dt d\sigma\right)^{\frac{2}{2^{\star}(s)}} \leq K(n,s,\gamma) \int_{\mathbb{R}\times\mathbb{S}^{n-1}} \left((\partial_t v)^2 + |\nabla' v|_{\operatorname{can}}^2 + \epsilon^2 v^2 \right) dt d\sigma,$$
for all $v \in H$. In particular, $v \in L^{2^{\star}(s)}(\mathbb{R}\times\mathbb{S}^{n-1})$ for all $v \in H$.

for all $v \in H$. In particular, $v \in L^{2^{\star}(s)}(\mathbb{R} \times \mathbb{S}^{n-1})$ for all $v \in H$.

We define $H_1^2(\mathbb{R})$ (resp. $H_1^2(\mathbb{S}^{n-1})$) as the completion of $C_c^{\infty}(\mathbb{R})$ (resp. $C^{\infty}(\mathbb{S}^{n-1})$) for the norm

$$u \mapsto \sqrt{\int_{\mathbb{R}} (\dot{u}^2 + u^2) \, dx} \left(\text{resp. } u \mapsto \sqrt{\int_{\mathbb{S}^{n-1}} (|\nabla' u|_{\text{can}}^2 + u^2) \, d\sigma} \right).$$

Each norm arises from a Hilbert inner product. For any $(\varphi, Y) \in C_c^{\infty}(\mathbb{R}) \times C^{\infty}(\mathbb{S}^{n-1})$, define $\varphi \star Y \in C_c^{\infty}(\mathbb{R} \times \mathbb{S}^{n-1})$ by $(\varphi \star Y)(t, \sigma) := \varphi(t)Y(\sigma)$ for all $(t, \sigma) \in \mathbb{R} \times \mathbb{S}^{n-1}$. As one checks, there exists C > 0 such that

(4)
$$\|\varphi \star Y\|_{H} \le C \|\varphi\|_{H^{2}_{1}(\mathbb{R})} \|Y\|_{H^{2}_{1}(\mathbb{S}^{n-1})}$$

for all $(\varphi, Y) \in C_c^{\infty}(\mathbb{R}) \times C^{\infty}(\mathbb{S}^{n-1})$. Therefore, the operator extends continuously from $H_1^2(\mathbb{R}) \times H_1^2(\mathbb{S}^{n-1})$ to H, such that (4) holds for all $(\varphi, Y) \in H_1^2(\mathbb{R}) \times H_1^2(\mathbb{S}^{n-1})$.

Lemma 1. We fix $u \in C_c^{\infty}(\mathbb{R} \times \mathbb{S}^{n-1})$ and $Y \in H_1^2(\mathbb{S}^{n-1})$. We define

$$u_Y(t) := \int_{\mathbb{S}^{n-1}} u(t,\sigma) Y(\sigma) \, d\sigma = \langle u(t,\cdot), Y \rangle_{L^2(\mathbb{S}^{n-1})} \text{ for all } t \in \mathbb{R}$$

Then $u_Y \in H_1^2(\mathbb{R})$. Moreover, this definition extends continuously to $u \in H$ and there exists C > 0 such that

$$||u_Y||_{H^2_1(\mathbb{R})} \le C ||u||_H ||Y||_{H^2_1(\mathbb{S}^{n-1})}$$
 for all $(u, Y) \in H \times H^2_1(\mathbb{S}^{n-1})$

Proof of Lemma 1: We let $u \in C_c^{\infty}(\mathbb{R} \times \mathbb{S}^{n-1})$, $Y \in H_1^2(\mathbb{S}^{n-1})$ and $\varphi \in C_c^{\infty}(\mathbb{R})$. Fubini's theorem yields:

$$\int_{\mathbb{R}} \left(\partial_t u_Y \partial_t \varphi + u_Y \varphi \right) \, dt = \int_{\mathbb{R} \times \mathbb{S}^{n-1}} \left(\partial_t u \partial_t (\varphi \star Y) + u \cdot (\varphi \star Y) \right) \, dt d\sigma$$

Taking $\varphi := u_Y$, the Cauchy-Schwartz inequality yields

$$\begin{aligned} \|u_Y\|_{H^2_1(\mathbb{R})}^2 \\ &\leq \sqrt{\int_{\mathbb{R}\times\mathbb{S}^{n-1}} \left((\partial_t u)^2 + u^2 \right) dt d\sigma} \times \sqrt{\int_{\mathbb{R}\times\mathbb{S}^{n-1}} \left((\partial_t (u_Y \star Y))^2 + (u_Y \star Y)^2 \right) dt d\sigma} \\ &\leq C \|u\|_H \|u_Y \star Y\|_H \leq C \|u\|_H \|u_Y\|_{H^2_1(\mathbb{R})} \|Y\|_{H^2_1(\mathbb{S}^{n-1})}, \end{aligned}$$

and then $||u_Y||_{H^2_1(\mathbb{R})} \leq C ||u||_H ||Y||_{H^2_1(\mathbb{S}^{n-1})}$. The extension follows from density. \Box

II. Transformation of the problem. We let $\varphi \in \tilde{K}$, that is

$$-\Delta \varphi - \frac{\gamma}{|x|^2} \varphi = (2^*(s) - 1)\lambda \frac{U^{2^*(s)-2}}{|x|^s} \varphi \text{ weakly in } D_1^2(\mathbb{R}^n).$$

Since $U \in C^{\infty}(\mathbb{R}^n \setminus \{0\})$, elliptic regularity yields $\varphi \in C^{\infty}(\mathbb{R}^n \setminus \{0\})$. Moreover, the correspondence (3) yields

(5)
$$-\partial_{tt}\hat{\varphi} - \Delta_{\operatorname{can}}\hat{\varphi} + \epsilon^2\hat{\varphi} = (2^*(s) - 1)\lambda\hat{U}^{2^*(s) - 2}\hat{\varphi}$$

weakly in H. Note that since $\hat{\varphi}, \hat{U} \in H$ and H is continuously embedded in $L^{2^{\star}(s)}(\mathbb{R} \times \mathbb{S}^{n-1})$, this formulation makes sense. Since $\varphi \in C^{\infty}(\mathbb{R}^n \setminus \{0\})$, we get that $\hat{\varphi} \in C^{\infty}(\mathbb{R} \times \mathbb{S}^{n-1}) \cap H$ and equation (5) makes sense strongly in $\mathbb{R} \times \mathbb{S}^{n-1}$. As one checks, we have that

$$\hat{U}(t,\sigma) = \left(e^{\frac{2-s}{n-2}\epsilon t} + e^{-\frac{2-s}{n-2}\epsilon t}\right)^{-\frac{n-2}{2-s}} \text{ for all } (t,\sigma) \in \mathbb{R} \times \mathbb{S}^{n-1}.$$

In the sequel, we will write $\hat{U}(t)$ for $\hat{U}(t,\sigma)$ for $(t,\sigma) \in \mathbb{R} \times \mathbb{S}^{n-1}$.

The eigenvalues of $-\Delta_{\operatorname{can}}$ on \mathbb{S}^{n-1} are

$$0 = \mu_0 < n - 1 = \mu_1 < \mu_2 < \dots$$

We let $\mu \geq 0$ be an eigenvalue for $-\Delta_{\operatorname{can}}$ and we let $Y = Y_{\mu} \in C^{\infty}(\mathbb{S}^{n-1})$ be a corresponding eigenfunction, that is

$$-\Delta_{\operatorname{can}} Y = \mu Y$$
 in \mathbb{S}^{n-1} .

We fix $\psi \in C_c^{\infty}(\mathbb{R})$ so that $\psi \star Y \in C_c^{\infty}(\mathbb{R} \times \mathbb{S}^{n-1})$. Multiplying (5) by $\psi \star Y$, integrating by parts and using Fubini's theorem yields

$$\int_{\mathbb{R}} \left(\partial_t \hat{\varphi}_Y \partial_t \psi + (\mu + \epsilon^2) \hat{\varphi}_Y \psi \right) \, dt = \int_{\mathbb{R}} (2^*(s) - 1) \lambda \hat{U}^{2^*(s) - 2} \hat{\varphi}_Y \psi \, dt,$$

where $\hat{\varphi}_Y \in H^2_1(\mathbb{R}) \cap C^\infty(\mathbb{R})$. Then

$$A_{\mu}\hat{\varphi}_{Y} = 0$$
 with $A_{\mu} := -\partial_{tt} + (\mu + \epsilon^{2} - (2^{\star}(s) - 1)\lambda \hat{U}^{2^{\star}(s) - 2})$

where this identity holds both in the classical sense and in the weak $H_1^2(\mathbb{R})$ sense. We claim that

(6)
$$\hat{\varphi}_Y \equiv 0$$
 for all eigenfunction Y of $\mu \ge n-1$

We prove the claim by taking inspiration from Chang-Gustafson-Nakanishi ([2], Lemma 2.1). Differentiating (2) with respect to i = 1, ..., n, we get that

$$-\Delta \partial_i U - \frac{\gamma}{|x|^2} \partial_i U - (2^*(s) - 1)\lambda \frac{U^{2^*(s)-2}}{|x|^s} \partial_i U = -\left(\frac{2\gamma}{|x|^4}U + \frac{s\lambda}{|x|^{s+2}}U^{2^*(s)-1}\right) x_i$$

On $\mathbb{R} \times \mathbb{S}^{n-1}$, this equation reads

$$-\partial_{tt}\partial_{\hat{i}}\hat{U} - \Delta_{\operatorname{Can}}\partial_{\hat{i}}\hat{U} + \left(\epsilon^{2} - (2^{\star}(s) - 1)\lambda\hat{U}^{2^{\star}(s) - 2}\right)\partial_{\hat{i}}\hat{U} = -\sigma_{i}e^{t}\left(2\gamma\hat{U} + s\lambda\hat{U}^{2^{\star}(s) - 1}\right)$$

Note that $\hat{\partial_i U} = -V \star \sigma_i$, where $\sigma_i : \mathbb{S}^{n-1} \to \mathbb{R}$ is the projection on the x_i 's and

$$V(t) := -e^{-\frac{n-2}{2}t}U'(e^{-t}) = e^{(1+\epsilon)t} \left(\alpha_+(\gamma) + \alpha_-(\gamma)e^{2\frac{2-s}{n-2}\epsilon t}\right) \left(1 + e^{2\frac{2-s}{n-2}\epsilon t}\right)^{-\frac{n-s}{2-s}} > 0$$

for all $t \in \mathbb{R}$. Since $-\Delta_{\operatorname{can}}\sigma_i = (n-1)\sigma_i$ (the σ_i 's form a basis of the second eigenspace of $-\Delta_{\operatorname{can}}$), we then get that

$$A_{\mu}V \ge A_{n-1}V = e^t \left(2\gamma \hat{U} + s\lambda \hat{U}^{2^*(s)-1}\right) > 0 \text{ for all } \mu \ge n-1 \text{ and } V > 0.$$

Note that for $\gamma > 0$, we have that $\alpha_{-}(\gamma) > 0$, and that for $\gamma = 0$, we have that $\alpha_{-}(\gamma) = 0$. As one checks, we have that

(i)
$$\left\{ (\gamma > 0 \text{ and } \epsilon > 1) \text{ or } \left(\gamma = 0 \text{ and } s < \frac{n}{2} \right) \right\} \Rightarrow V \in H_1^2(\mathbb{R})$$

(ii) $\left\{ (\gamma > 0 \text{ and } \epsilon \le 1) \text{ or } \left(\gamma = 0 \text{ and } s \ge \frac{n}{2} \right) \right\} \Rightarrow V \notin L^2((0, +\infty))$

Assume that case (i) holds: in this case, $V \in H_1^2(\mathbb{R})$ is a distributional solution to $A_{\mu}V > 0$ in $H_1^2(\mathbb{R})$. We define $m := \inf\{\int_{\mathbb{R}} \varphi A_{\mu}\varphi dt\}$, where the infimum is taken on $\varphi \in H_1^2(\mathbb{R})$ such that $\|\varphi\|_2 = 1$. We claim that m > 0. Otherwise, it follows from Lemma 3 below that the infimum is achieved, say by $\varphi_0 \in H_1^2(\mathbb{R}) \setminus \{0\}$ that is a weak solution to $A_{\mu}\varphi_0 = m\varphi_0$ in \mathbb{R} . Since $|\varphi_0|$ is also a minimizer, and due to the comparison principle, we can assume that $\varphi_0 > 0$. Using the self-adjointness of A_{μ} , we get that $0 \ge m \int_{\mathbb{R}} \varphi_0 V dt = \int_{\mathbb{R}} (A_{\mu}\varphi_0) V dt = \int_{\mathbb{R}} (A_{\mu}V)\varphi_0 dt > 0$, which is a

contradiction. Then m > 0. Since $A_{\mu}\varphi_{Y} = 0$, we then get that $\varphi_{Y} \equiv 0$ as soon as $\mu \ge n-1$. This ends case (i).

Assume that case (ii) holds: we assume that $\varphi_Y \neq 0$. It follows from Lemma 4 that $V(t) = o(e^{-\alpha|t|})$ as $t \to -\infty$ for all $0 < \alpha < \sqrt{\epsilon^2 + n - 1}$. As one checks with the explicit expression of V, this is a contradiction when $\epsilon < \frac{n-2}{2}$, that is when $\gamma > 0$. Then we have that $\gamma = 0$ and $\epsilon = \frac{n-2}{2}$. Since $\frac{n}{2} \leq s < 2$, we have that n = 3. As one checks, $(\mu + \epsilon^2 - (2^*(s) - 1)\lambda \hat{U}^{2^*(s)-2}) > 0$ for $\mu \geq n - 1$ as soon as n = 3 and $s \geq 3/2$. Lemma 4 yields $\varphi_Y \equiv 0$, a contradiction. So $\varphi_Y \equiv 0$, this ends case (ii).

These steps above prove (6). Then, for all $t \in \mathbb{R}$, $\hat{\varphi}(t, \cdot)$ is orthogonal to the eigenspaces of μ_i , $i \geq 1$, so it is in the eigenspace of $\mu_0 = 0$ spanned by 1, and therefore $\hat{\varphi} = \hat{\varphi}(t)$ is independent of $\sigma \in \mathbb{S}^{n-1}$. Then

$$-\hat{\varphi}'' + (\epsilon^2 - (2^{\star}(s) - 1)\lambda \hat{U}^{2^{\star}(s)-2})\hat{\varphi} = 0 \text{ in } \mathbb{R} \text{ and } \hat{\varphi} \in H^2_1(\mathbb{R}).$$

It follows from Lemma 2 that the space of such functions is at most one-dimensional. Going back to φ , we get that \tilde{K} is of dimension at most one, and then so is K. Since $Z \in K$, then K is one dimensional and $K = \mathbb{R}Z$. This proves Theorem 0.1.

III. Auxiliary lemmas.

Lemma 2. Let $q \in C^0(\mathbb{R})$. Then

 $\dim_{\mathbb{R}} \{ \varphi \in C^2(\mathbb{R}) \cap H^2_1(\mathbb{R}) \text{ such that } - \ddot{\varphi} + q\varphi = 0 \} \leq 1.$

Proof of Lemma 2: Let F be this space. Fix $\varphi, \psi \in F \setminus \{0\}$: we prove that they are linearly dependent. Define the Wronskian $W := \varphi \dot{\psi} - \dot{\varphi} \psi$. As one checks, $\dot{W} = 0$, so W is constant. Since $\varphi, \dot{\varphi}, \psi, \dot{\psi} \in L^2(\mathbb{R})$, then $W \in L^1(\mathbb{R})$ and then $W \equiv 0$. Therefore, there exists $\lambda \in \mathbb{R}$ such that $(\psi(0), \dot{\psi}(0)) = \lambda(\varphi(0), \dot{\varphi}(0))$, and then, classical ODE theory yields $\psi = \lambda \varphi$. Then F is of dimension at most one.

Lemma 3. Let $q \in C^0(\mathbb{R})$ be such that there exists A > 0 such that $\lim_{t \to \pm \infty} q(t) = A$, and define

$$m := \inf_{\varphi \in H_1^2(\mathbb{R}) \setminus \{0\}} \frac{\int_{\mathbb{R}} \left(\dot{\varphi}^2 + q\varphi^2\right) dt}{\int_{\mathbb{R}} \varphi^2 dt}$$

Then either m > 0, or the infimum is achieved.

Note that in the case $q(t) \equiv A$, m = A and the infimum is not achieved. Proof of Lemma 3: As one checks, $m \in \mathbb{R}$ is well-defined. We let $(\varphi_i)_i \in H_1^2(\mathbb{R})$ be a minimizing sequence such that $\int_{\mathbb{R}} \varphi_i^2 dt = 1$ for all i, that is $\int_{\mathbb{R}} (\dot{\varphi}_i^2 + q\varphi_i^2) dt = m + o(1)$ as $i \to +\infty$. Then $(\varphi_i)_i$ is bounded in $H_1^2(\mathbb{R})$, and, up to a subsequence, there exists $\varphi \in H_1^2(\mathbb{R})$ such that $\varphi_i \rightharpoonup \varphi$ weakly in $H_1^2(\mathbb{R})$ and $\varphi_i \rightarrow \varphi$ strongly in $L^2_{loc}(\mathbb{R})$ as $i \to +\infty$. We define $\theta_i := \varphi_i - \varphi$. Since $\lim_{t \to \pm\infty} (q(t) - A) = 0$ and $(\theta_i)_i$ goes to 0 strongly in L^2_{loc} , we get that $\lim_{i \to +\infty} \int_{\mathbb{R}} (q(t) - A) \theta_i^2 dt = 0$. Using the weak convergence to 0 and that $(\varphi_i)_i$ is minimizing, we get that

$$\int_{\mathbb{R}} \left(\dot{\varphi}^2 + q\varphi^2 \right) dt + \int_{\mathbb{R}} \left(\dot{\theta}_i^2 + A\theta_i^2 \right) dt = m + o(1) \text{ as } i \to +\infty.$$

Since $1 - \|\varphi\|_2^2 = \|\theta_i\|_2^2 + o(1)$ as $i \to +\infty$ and $\int_{\mathbb{R}} \left(\dot{\varphi}^2 + q\varphi^2\right) dt \ge m\|\varphi\|_2^2$, we get

$$m\|\theta_i\|_2^2 \ge \int_{\mathbb{R}} \left(\dot{\theta}_i^2 + A\theta_i^2\right) dt + o(1) \text{ as } i \to +\infty$$

If $m \leq 0$, then $\theta_i \to 0$ strongly in $H_1^2(\mathbb{R})$, and then $(\varphi_i)_i$ goes strongly to $\varphi \neq 0$ in H_1^2 , and φ is a minimizer for m. This proves the lemma. \Box

FRÉDÉRIC ROBERT

Lemma 4. Let $q \in C^0(\mathbb{R})$ be such that there exists A > 0 such that $\lim_{t \to \pm \infty} q(t) = A$ and q is even. We let $\varphi \in C^2(\mathbb{R})$ be such that $-\ddot{\varphi} + q\varphi = 0$ in \mathbb{R} and $\varphi \in H^2_1(\mathbb{R})$.

- If $q \ge 0$, then $\varphi \equiv 0$.
- We assume that there exists V ∈ C²(ℝ) such that
 -V̈ + qV > 0, V > 0 and V ∉ L²((0, +∞)).
 Then either φ ≡ 0 or V(t) = o(e^{-α|t|}) as t → -∞ for all 0 < α < √A.

Proof of Lemma 4: We assume that $\varphi \neq 0$. We first assume that $q \geq 0$. By studying the monotonicity of φ between two consecutive zeros, we get that φ has at most one zero, and then $\ddot{\varphi}$ has constant sign around $\pm \infty$. Therefore, φ is monoton around $\pm \infty$ and then has a limit, which is 0 since $\varphi \in L^2(\mathbb{R})$. The contradiction follows from studying the sign of $\ddot{\varphi}$, φ . Then $\varphi \equiv 0$ and the first part of Lemma 4 is proved.

We now deal with the second part and we let $V \in C^2(\mathbb{R})$ be as in the statement. We define $\psi := V^{-1}\varphi$. Then, $-\ddot{\psi} + h\dot{\psi} + Q\psi = 0$ in \mathbb{R} with $h, Q \in C^0(\mathbb{R})$ and Q > 0. Therefore, by studying the zeros, $\dot{\psi}$ vanishes at most once, and then $\psi(t)$ has limits as $t \to \pm \infty$. Since $\varphi = \psi V$, $\varphi \in L^2(\mathbb{R})$ and $V \notin L^2(0, +\infty)$, then $\lim_{t\to +\infty} \psi(t) = 0$. We claim that $\lim_{t\to -\infty} \psi(t) \neq 0$. Otherwise, the limit would be 0. Then ψ would be of constant sign, say $\psi > 0$. At the maximum point t_0 of ψ , the equation would yield $\ddot{\psi}(t_0) > 0$, which contradicts the maximum. So the limit of ψ at $-\infty$ is nonzero, and then $V(t) = O(\varphi(t))$ as $t \to -\infty$.

We claim that φ is even or odd and φ has constant sign around $+\infty$. Since $t \mapsto \varphi(-t)$ is also a solution to the ODE, it follows from Lemma 2 that it is a multiple of φ , and then φ is even or odd. Since $\dot{\psi}$ changes sign at most once, then ψ changes sign at most once, then ψ changes sign at most twice. Therefore $\varphi = \psi V$ has constant sign around $+\infty$.

We fix 0 < A' < A and we let $R_0 > 0$ such that q(t) > A' for all $t \ge R_0$. Without loss of generality, we also assume that $\varphi(t) > 0$ for $t \ge R_0$. We define $b(t) := C_0 e^{-\sqrt{A't}} - \varphi(t)$ for all $t \in \mathbb{R}$ with $C_0 := 2\varphi(R_0)e^{\sqrt{A'R_0}}$. We claim that $b(t) \ge 0$ for all $t \ge R_0$. Otherwise $\inf_{t\ge R_0} b(t) < 0$, and since $\lim_{t\to +\infty} b(t) = 0$ and $b(R_0) > 0$, then there exists $t_1 > R_0$ such that $\ddot{b}(t_1) \ge 0$ and $b(t_1) < 0$. However, as one checks, the equation yields $\ddot{b}(t_1) < 0$, which is a contradiction. Therefore $b(t) \ge 0$ for all $t \ge R_0$, and then $0 < \varphi(t) \le C_0 e^{-\sqrt{A't}}$ for $t \to +\infty$. Lemma 4 follows from this inequality, φ even or odd, and $V(t) = O(\varphi(t))$ as $t \to -\infty$.

References

- [1] G. Bianchi and H. Egnell, A note on Sobolev inequality, J. Funct. Anal. 100 (1991), 18-24.
- [2] S.-M. Chang, S. Gustafson, K. Nakanishi, and T.-P. Tsai, Spectra of linearized operators for NLS solitary waves, SIAM J. Math. Anal. 39 (2007/08), no. 4, 1070–1111.
- K.-S. Chou and C.-W. Chu, On the best constant for a weighted Sobolev-Hardy inequality, J. London Math. Soc. (2) 48 (1993), no. 1, 137–151.
- [4] N. Dancer, F. Gladiali, and M. Grossi, On the Hardy-Sobolev equation, Proc. Roy. Soc. Edinburgh Sect. A. In press.
- [5] F. Gladiali, M. Grossi, and S. L. N. Neves, Nonradial solutions for the Hénon equation in R^N, Adv. Math. 249 (2013), 1–36.
- [6] O. Rey, The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal. 89 (1990), no. 1, 1–52.

Frédéric Robert, Institut Élie Cartan, Université de Lorraine, BP 70239, F-54506 Vandœuvre-lès-Nancy, France

E-mail address: frederic.robert@univ-lorraine.fr

 $\mathbf{6}$