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Abstract. This note is devoted to the construction of the Green’s function
for coercive operators like −∆ − (γ|x|−2 + h) on a smooth domain Ω with

singularity 0 ∈ ∂Ω. We prove existence and asymptotics when Ω is a bounded

domain. We also prove existence and asymptotics when Ω is the half-space
Rn
− and h ≡ 0.
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1. Main result

Let Ω be a smooth bounded domain of Rn, n ≥ 3, such that 0 ∈ ∂Ω. The model
space for such domains is Rn− := {x = (x1, ..., xn) ∈ Rn/ x1 < 0}. The Hardy
inequality for the half-space is

inf
u∈H1

0 (Rn−)\{0}

∫
Rn−
|∇u|2 dx∫

Rn−
u2

|x|2 dx
=
n2

4
,

where, for any domain Ω ⊂ Rn, H1
0 (Ω) is the completion of C∞c (Ω) for the norm

u 7→ ‖∇u‖2. We refer to Ghoussoub-Robert [1] for discussions and further references
on such Hardy inequalities. We fix h ∈ L∞(Ω) and γ ∈ R. We assume that the
operator −∆− (γ|x|−2 + h) is coercive, that is there exists c > 0 such that∫

Ω

(
|∇u|2 −

(
γ

|x|2
+ h

)
u2

)
dx ≥ c

∫
Ω

u2 dx
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for all u ∈ H1
0 (Ω). It follows from the proof of Proposition 3.1 in Ghoussoub-Robert

[1] that a necessary condition for coercivity is that γ ≤ n2/4.

Definition 1. Let Ω be a smooth bounded domain of Rn, n ≥ 3, such that 0 ∈ ∂Ω.
We fix γ < n2/4 and h ∈ C0,θ(Ω), θ ∈ (0, 1) such that −∆−(γ|x|−2 +h) is coercive.
We say that G : Ω×Ω \ {(x, x)/ x ∈ Ω} is a Green’s function for −∆− γ|x|−2 − h
if

• For any p ∈ Ω, Gp := G(p, ·) ∈ L1(Ω).

• For all f ∈ C∞c (Ω) and all p ∈ Ω, then

ϕ(p) =

∫
Ω

Gp(x)f(x) dx.

where ϕ ∈ H1
0 (Ω) ∩ C0(Ω) is the unique solution to

−∆ϕ−
(

γ

|x|2
+ h(x)

)
ϕ = f in Ω ; ϕ|∂Ω = 0.

Our main result is the following:

Theorem 1 (Existence). Let Ω be a smooth bounded domain of Rn such that

0 ∈ ∂Ω. We fix γ < n2

4 . We let h ∈ C0,θ(Ω) be such that −∆ − γ|x|−2 − h is

coercive. Then there exists a Green’s function for −∆− γ|x|−2 − h. Moreover,

(a) The Green’s function G is unique, Gp ∈ C2,θ(Ω \ {0, p}) and Gp > 0 for all
p ∈ Ω.

(b) For all p ∈ Ω and all η ∈ C∞c (Rn \ {p}), we have that ηGp ∈ H1
0 (Ω).

(c) For all f ∈ L
2n
n+2 (Ω) ∩ Lq(Ω \Bδ(0)) for all δ > 0 and some q > n/2, then for

any p ∈ Ω, we have that

(1) ϕ(p) =

∫
Ω

Gp(x)f(x) dx.

where ϕ ∈ H1
0 (Ω) ∩ C0(Ω) is the unique solution to

(2) −∆ϕ−
(

γ

|x|2
+ h(x)

)
ϕ = f in Ω ; ϕ|∂Ω = 0,

In particular,

(3)


−∆Gp −

(
γ
|x|2 + h(x)

)
Gp = 0 in Ω \ {p}

Gp > 0 in Ω \ {p}
Gp = 0 in ∂Ω \ {0}

Theorem 2 (Asymptotics). Let Ω be a smooth bounded domain of Rn such that

0 ∈ ∂Ω. We fix γ < n2

4 . We let h ∈ C0,θ(Ω) be such that −∆ − γ|x|−2 − h is

coercive. Let G be the Green’s function for −∆− γ|x|−2 − h. Then

• For all p ∈ Ω \ {0}, there exists c0(p) > 0 such that

(4) Gp(x) ∼x→0 c0(p)
d(x, ∂Ω)

|x|α−(γ)
and Gp(x) ∼x→p

1

(n− 2)ωn−1|x− p|n−2

where

α−(γ) :=
n

2
−
√
n2

4
− γ and α+(γ) :=

n

2
+

√
n2

4
− γ.

• There exists c > 0 such that
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(5) c−1Hp(x) < Gp(x) < cHp(x) for x ∈ Ω− {0, p}.
where

(6) Hp(x) :=

(
max{|p|, |x|}
min{|p|, |x|}

)α−(γ)

|x− p|2−n min

{
1,
d(x, ∂Ω)d(p, ∂Ω)

|x− p|2

}
.

and
(7)

|∇Gp(x)| ≤ c
(

max{|p|, |x|}
min{|p|, |x|}

)α−(γ)

|x−p|1−n min

{
1,
d(p, ∂Ω)

|x− p|

}
for x ∈ Ω−{0, p}.

This note is devoted to the proof of Theorems 1 and 2. We also prove (Theorem
3) the existence and asymptotic behavior for the Green’s function of the unbounded
domain Rn− when h ≡ 0. The pointwise control (5) will be seen as a consequence
of infinitesimal convergence results for the Green’s function when x → p, namely
Theorems 4, 5 and 6.

The note is organized as follows. In Section 2, we prove the existence of the Green’s
function (Theorem 1). In Section 3, we prove the upper bound in (5). In Section
4, we prove the existence of the Green’s function on the half-space Rn−. Section 5
is devoted to the proof of the asymptotic behavior of the Green’s function when
x → p, namely in the neighborhood of the diagonal. The pointwise controls in
Theorem 2 are proved in Section 6. The last section is an Appendix for the proof
of a technical lemma.

Notations: In the sequel, C(a, b, c), C1(a, b, ...)... will denote a constant depending
only on a, b, c. The notation C, c, ... will sometimes denote different constants from
line to line, and even in the same line. In order to simplify notations, we will often
drop the dependence in the domain Ω and the dimension n ≥ 3. If F : A×B → R
is a fonction, then for any x ∈ A, we define Fx : B → R by Fx(y) := F (x, y) for all
y ∈ B. Finally, we will write Diag(A) := {(x, x)/ x ∈ A} for any set A.

2. Proof of Theorem 1

Fix δ0 > 0 such that Bδ0(0) ⊂ Ω. We let ηε(x) := η̃(ε−1|x|) for all x ∈ Rn and
ε > 0, where η̃ ∈ C∞(R) is nondecreasing and such that η̃(t) = 0 for t < 1 and
η̃(t) = 1 for t > 1. It follows from Lemma 1 (see the Appendix) and the coercivity
of −∆−

(
γ|x|−2 + h

)
that there exists ε0 > 0 and c > 0 such that such that for all

ϕ ∈ H1
0 (Ω) and ε ∈ (0, ε0),∫

Ω

(
|∇ϕ|2 −

(
γηε
|x|2

+ h(x)

)
ϕ2

)
dx ≥ c

∫
Ω

ϕ2 dx.

As a consequence, there exists c > 0 such that for all ϕ ∈ H1
0 (Ω) and ε ∈ (0, ε0),

(8)

∫
Ω

(
|∇ϕ|2 −

(
γηε
|x|2

+ h(x)

)
ϕ2

)
dx ≥ c‖ϕ‖2H1

0
.

Let Gε > 0 be the Green’s function of −∆ −
(
γηε|x|−2 + h

)
on Ω with Dirich-

let boundary condition. The existence follows from the coercivity and the C0,θ

regularity of the potential for any ε > 0 (see Robert [3]). In particular, we have
that

(9)

{
−∆Gε(x, ·)−

(
γηε
|·|2 + h

)
Gε(x, ·) = 0 in Ω \ {x}

Gε(x, ·) = 0 on ∂Ω
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Step 1: Integral bounds for Gε. We claim that for all δ > 0 and 1 < q < n
n−2

and δ′ ∈ (0, δ), there exists C(δ, q) > 0 and C(δ, δ′) > 0 such that

(10) ‖Gε(x, ·)‖Lq(Ω) ≤ C(δ, q) and ‖Gε(x, ·)‖
L

2n
n−2 (Ω\Bδ′ (x))

≤ C(δ, δ′)

for all x ∈ Ω, |x| > δ. We prove the claim. We fix f ∈ C∞c (Ω) and let ϕε ∈ C2,θ(Ω)
be the solution to the boundary value problem

(11)

{
−∆ϕε −

(
γηε
|x|2 + h(x)

)
ϕε = f in Ω

ϕε = 0 on ∂Ω

Multiplying the equation by ϕε, integrating by parts on Ω, using (8) and Hölder’s
inequality, we get that ∫

Ω

|∇ϕε|2 dx ≤ C‖f‖ 2n
n+2
‖ϕε‖ 2n

n−2

where C > 0 is independent of ε, f and ϕε. The Sobolev inequality ‖ϕ‖ 2n
n−2
≤

C‖∇ϕ‖2 for ϕ ∈ H1
0 (Ω) then yields

‖ϕε‖ 2n
n−2
≤ C‖f‖ 2n

n+2

where C > 0 is independent of ε, f and ϕε. Fix p > n/2 and δ ∈ (0, δ0) and
δ1, δ2 > 0 such that δ1 + δ2 < δ, and x ∈ Ω such that |x| > δ. It follows from
standard elliptic theory that

|ϕε(x)| ≤ ‖ϕε‖C0(Bδ1 (x))

≤ C

(
‖ϕε‖

L
2n
n−2 (Bδ1+δ2

(x))
+ ‖f‖Lp(Bδ1+δ2

(x))

)
≤ C

(
‖f‖

L
2n
n+2 (Ω)

+ ‖f‖Lp(Bδ1+δ2
(x))

)
where C > 0 depends on p, δ, δ1, δ2, γ and ‖h‖∞. Therefore, Green’s representation
formula yields

(12)

∣∣∣∣∫
Ω

Gε(x, ·)f dy
∣∣∣∣ ≤ C (‖f‖L 2n

n+2 (Ω)
+ ‖f‖Lp(Bδ1+δ2

(x))

)
for all f ∈ C∞c (Ω). It follows from (12) that∣∣∣∣∫

Ω

Gε(x, ·)f dy
∣∣∣∣ ≤ C · ‖f‖Lp(Ω)

for all f ∈ C∞c (Ω) where p > n/2. It then follows from duality arguments that
for any q ∈ (1, n/(n − 2)) and any δ > 0, there exists C(δ, q) > 0 such that
‖Gε(x, ·)‖Lq(Ω) ≤ C(δ, q) for all ε < ε0 and x ∈ Ω \Bδ(0).

Let δ′ ∈ (0, δ) and δ1, δ2 > 0 such that δ1 + δ2 < δ′. We get from (12) that

(13)

∣∣∣∣∫
Ω

Gε(x, ·)f dy
∣∣∣∣ ≤ C‖f‖L 2n

n+2 (Ω\Bδ′ (x))

for all f ∈ C∞c (Ω \ Bδ′(x)). Here again, a duality argument yields (10), which
proves the claim in Step 1.

Using the same method, we can get an improvement of the control, the cost being
the integrability exponent q. When q ∈ (1, n/(n − 1)), we get that p > n. Then,
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‖ϕε‖C1(Bδ1 (x)∩Ω) is controled by the Lp and L
2n
n+2 norms. Moreover, |ϕε(x)| ≤

‖ϕε‖C0(Bδ1 (x)∩Ω)d(x, ∂Ω). The argument above then yields

(14) ‖Gε(x, ·)‖Lq(Ω) ≤ C(δ, q)d(x, ∂Ω) for q ∈
(

1,
n

n− 1

)
.

Step 2: Convergence of Gε. Fix x ∈ Ω \ {0}. For 0 < ε < ε′, since Gε(x, ·),
Gε′(x, ·) are C2 outside x, (9) yields

−∆(Gε(x, ·)−Gε′(x, ·))−
(
γηε
| · |2

+ h

)
(Gε(x, ·)−Gε′(x, ·)) =

γ(ηε − ηε′)
| · |2

Gε′(x, ·)

in the strong sense. The coercivity (8) then yields Gε(x, ·) ≥ Gε′(x, ·) for 0 < ε < ε′

if γ ≥ 0, and the reverse inequality if γ < 0. It then follows from the integral bound
(10) and elliptic regularity that there exists G(x, ·) ∈ C2,θ(Ω \ {0, x}) such that

(15) lim
ε→0

Gε(x, ·) = G(x, ·) ≥ 0 in C2,θ
loc (Ω− {0, x}).

In particular, G is symmetric and

(16) −∆G(x, ·)−
(

γ

| · |2
+ h

)
G(x, ·) = 0 in Ω \ {x} and G(x, ·) = 0 on ∂Ω.

Moreover, passing to the limit ε → 0 in (10), (14) and using elliptic regularity, we
get that for all δ > 0, 1 < q < n

n−2 and δ′ ∈ (0, δ), there exist C(δ, q) > 0 and

C(δ, δ′) > 0 such that for all x ∈ Ω, |x| > δ,

(17) ‖G(x, ·)‖Lq(Ω) ≤ C(δ, q) and ‖G(x, ·)‖
L

2n
n−2 (Ω\Bδ′ (x))

≤ C(δ, δ′)

and

(18) ‖G(x, ·)‖Lq(Ω) ≤ C(δ, q)d(x, ∂Ω) for q ∈
(

1,
n

n− 1

)
.

In particular, for any x ∈ Ω \ {0}, G(x, ·) ∈ Lk(Ω) for all 1 < k < n/(n − 2) and

G(x, ·) ∈ L2n/(n−2)(Ω \ Bδ(x)) for all δ > 0. Moreover, for any f ∈ L
2n
n+2 (Ω) ∩

Lq(Ω \ Bδ(0)) for all δ > 0 with q > n/2, let ϕε ∈ H1
0 (Ω) be such that (11) holds.

It follows from elliptic theory that ϕε ∈ C0,τ (Ω \ {0}) for some τ ∈ (0, 1) and that
for all δ1 > 0, there exists C(δ1) > 0 such that ‖ϕε‖C0,τ (Ω\Bδ1 (0)) ≤ C(δ1). We fix

x ∈ Ω\{0}. Passing to the limit ε→ 0 in the Green identity ϕε(x) =
∫

Ω
Gε(x, ·)f dy

yields

(19) ϕ(x) =

∫
Ω

G(x, ·)f dy for all x ∈ Ω \ {0}

where ϕ ∈ H1
0 (Ω) ∩ C0(Ω \ {0}) is the only weak solution to{

−∆ϕ−
(

γ
|x|2 + h(x)

)
ϕ = f in Ω

ϕ = 0 on ∂Ω

Since G(x, ·) ≥ 0, (16) and the strong comparison principle yield G(x, ·) > 0. These
points prove that G is a Green’s function for the operator and that (c) holds.

We prove point (b). We fix η ∈ C∞c (Rn − {x}) such that η(y) = 1 when y ∈ Bδ(0)
for some δ > 0. Then ηGε(x, ·) ∈ C2,θ(Ω) ∩ H1

0 (Ω). It follows from (9) and (15)
that

−∆(ηGε(x, ·))−
(
γηε
| · |2

+ h

)
(ηGε(x, ·)) = 1Bδ(0)cfε in Ω
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where ‖fε‖C0(Ω) ≤ C for some C > 0 and all ε > 0. Therefore, with the coercivity

(8) and the convergence (15), we get that

c‖ηGε(x, ·)‖2H1
0
≤
∫

Ω\Bδ(0)

fεηGε(x, ·) dy ≤ C

for all ε > 0. Reflexivity yields convergence of (ηGε(x, ·)) in H1
0 (Ω)∩L2(Ω) as ε→ 0

up to extraction. The convergence in C2 and uniqueness then yields ηG(x, ·) ∈
H1

0 (Ω) and ηGε(x, ·) → ηG(x, ·) in H1
0 (Ω) as ε → 0. The case of a general η is a

direct consequence. This proves point (b).

We are now left with proving uniqueness. We let G′ be another Green’s function.
We fix x ∈ Ω and we define Hx := Gx − G′x. Then Hx ∈ L1(Ω) and for any
f ∈ C∞c (Ω), we have that

∫
Ω
Hxf dy = 0. Approximating a compactly supported

function by smooth fonctions with compact support, we get that this equality holds
for all f ∈ C0

c (Ω). Integration theory then yields Hx ≡ 0, and then G′x ≡ Gx. This
proves uniqueness. This finishes the proof of (a).

This proves existence and uniqueness of the Green’s function and Theorem 1.

3. Theorem 2: proof of the upper bound in (5)

The behavior (4) is a consequence of the classification of solutions to harmonic
equations and Theorem 4.1 in Ghoussoub-Robert [1].

In the proof, we will often use sub- and super-solutions to the linear problem. The
following existence result is contained in Proposition 4.3 of [1]:

Proposition 1. Let Ω be a smooth domain and h ∈ C0(Ω) be a continuous fonction.

We fix γ < n2

4 and α ∈ {α−(γ), α+(γ)}. Then, there exist r > 0, and uα, uα ∈
C∞(Ω \ {0}) such that

(20)


uα, uα = 0 on ∂Ω ∩Br(0)

−∆uα −
(

γ
|x|2 + h

)
uα > 0 in Ω ∩Br(0)

−∆uα −
(

γ
|x|2 + h

)
uα < 0 in Ω ∩Br(0).

Moreover, for some τ > 0, we have that, as x→ 0, x ∈ Ω,

(21) uα(x) = uα(x)(1 +O(|x|τ )) =
d(x, ∂Ω)

|x|α
(1 +O(|x|τ )).

Step 3: Upper bound for G(x, y) when one variable is far from 0.

Step 3.1: It follows from (16), elliptic theory, (18) and (17) that for any δ > 0,
there exists C(δ) > 0 such that

(22) 0 < G(x, y) ≤ C(δ)d(y, ∂Ω)d(x, ∂Ω) for x, y ∈ Ω s.t. |x|, |y| > δ, |x− y| > δ.

Step 3.2: We claim that for any δ > 0, there exists C(δ) > 0 such that
(23)

|x− y|n−2G(x, y) ≤ C(δ) min

{
1,
d(x, ∂Ω)d(y, ∂Ω)

|x− y|2

}
for x, y ∈ Ω s.t. |x|, |y| > δ.

Indeed, with no loss of generality, we can assume that δ ∈ (0, δ0). Let Ωδ be a
smooth domain of Rn be such that Ω \B3δ/4(0) ⊂ Ωδ ⊂ Ω \Bδ/2(0). We fix x ∈ Ω

such that |x| > δ. Let Hx be the Green’s function for −∆ −
(

γ
|x|2 + h(x)

)
in Ωδ
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with Dirichlet boundary condition. Classical estimates (see [3]) yield the existence
of C(δ) > 0 such that

|x− y|n−2Hx(y) ≤ C(δ) min

{
1,
d(x, ∂Ω)d(y, ∂Ω)

|x− y|2

}
for all x, y ∈ Ωδ.

It is easy to check that
−∆(Gx −Hx)−

(
γ
|·|2 + h

)
(Gx −Hx) = 0 weakly in Ωδ

Gx −Hx = 0 on (∂Ωδ) \B3δ/4(0)
Gx −Hx = Gx on (∂Ωδ) ∩B3δ/4(0).

Regularity theory then yields that Gx −Hx ∈ C2,θ(Ωδ). It follows from (22) that
Gx(y) ≤ C1(δ)d(y, ∂Ω)d(x, ∂Ω) on (∂Ωδ) ∩ B3δ/4(0) for |x| > δ. The comparison
principle then yields Gx(y)−Hx(y) ≤ C1(δ)d(y, ∂Ω)d(x, ∂Ω) for y ∈ Ωδ and |x| > δ.
The above bound for Hx and (22) then yields (23).

Step 3.3: We now claim that for any 0 < δ′ < δ, there exists C(δ, δ′) > 0 such that
(24)

|y|α−(γ)G(x, y) ≤ C(δ, δ′)d(y, ∂Ω)d(x, ∂Ω) for x, y ∈ Ω s.t. |x| > δ > δ′ > |y|.
We let δ1 ∈ (0, δ′) that will be fixed later. We use (22) to deduce that Gx(y) ≤
C(δ, δ1)d(x, ∂Ω)d(y, ∂Ω) for all x ∈ Ω \Bδ(0) and y ∈ ∂Bδ1(0) ∩ Ω. Since δ1 < |x|,
we have that{

−∆Gx −
(

γ
|x|2 + h

)
Gx = 0 in Ω ∩Bδ1(0)

0 ≤ Gx ≤ C(δ, δ1)d(y, ∂Ω)d(x, ∂Ω) on ∂(Ω ∩Bδ1(0)) \ {0}.
We choose a supersolution uα−(γ) as in (20) of Proposition 1. It follows from
(21) and (22) that for δ1 > 0, there exists C(δ, δ1) > 0 such that Gx(z) ≤
C(δ, δ1)d(x, ∂Ω)uα−(z) for all z ∈ ∂(Ω ∩Bδ1(0)). It then follows from the compar-
ison principle that Gx(y) ≤ C(δ, δ1)d(x, ∂Ω)uα−(y) for all y ∈ (Ω ∩ Bδ1(0)) \ {0}.
Combining this with (22) and (20), we obtain (24).

Note that by symmetry, we also get that for any 0 < δ′ < δ, there exists C(δ, δ′) > 0
such that
(25)

|x|α−(γ)G(x, y) ≤ C(δ, δ′)d(x, ∂Ω)d(y, ∂Ω) for x, y ∈ Ω s.t. |y| > δ > δ′ > |x|.

Step 4: Upper bound for G(x, y) when both variables approach 0.

We claim first that for all c1, c2, c3 > 0, there exists C(c1, c2, c3) > 0 such that
for x, y ∈ Ω such that c1|x| < |y| < c2|x| and |x− y| > c3|x|, we have

(26) |x− y|n−2G(x, y) ≤ C(c1, c2, c3)
d(x, ∂Ω)d(y, ∂Ω)

|x|2
.

When one of the variables stays far from 0, (26) is a consequence of (22). We now
consider a chart at 0, that is δ0 > 0, 0 ∈ V ⊂ Rn and ϕ : B2δ0(0) → V a smooth
diffeomorphism such that ϕ(0) = 0 and

(27) ϕ(B2δ0(0) ∩ Rn−) = ϕ(U) ∩ Ω and ϕ(B2δ0(0) ∩ ∂Rn−) = ϕ(U) ∩ ∂Ω.

Without loss of generality, we can assume that dϕ0 : Rn → Rn = IdRn . In partic-
ular, we have that

(28) |ϕ(X)| = (1 +O(|X|))|X| for all X ∈ B3δ0/2(0).
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We fix X ∈ Rn− such that 0 < |X| < 3δ0/2. We define

H(z) := Gϕ(X)(ϕ(|X|z)) for z ∈ Bδ0/|X|(0) \
{

0,
X

|X|

}
,

so that

−∆gXH −

 γ(
|ϕ(|X|z|)
|X|

)2 + |X|2h(ϕ(|X|z))

H = 0 in Bδ0/|X|(0) \
{

0,
X

|X|

}
.

where gX := (ϕ?Eucl)X is the pulled-back metric of the Euclidean metric Eucl via
the chart ϕ at the point X. Since H > 0, it follows from the Harnack inequality
on the boundary (see Proposition 6.3 in Ghoussoub-Robert [1]) that for all R > 0
large enough and r > 0 small enough, there exist δ1 > 0 and C > 0 independent of
|X| < 3δ0/2 such that

H(z)

|z1|
≤ CH(z′)

|z′1|
for all z, z′ ∈ (BR(0) ∩ Rn−) \

(
Br(0) ∪Br

(
X

|X|

))
,

which, via the chart ϕ, yields

(29)
Gx(y)

d(y, ∂Ω)
≤ C Gx(y′)

d(y′, ∂Ω)
for all y, y′ ∈ Ω∩BR|x|/2(0)\

(
B2r|x|(0) ∪B2r|x|(x)

)
.

for all x ∈ Ω such that |x| < δ0. We let W be a smooth domain of Rn such that for
some λ > 0 small enough, we have

(30) Bλ(0) ∩ Ω ⊂W ⊂ B2λ(0) ∩ Ω and Bλ(0) ∩ ∂W = Bλ(0) ∩ ∂Ω.

We choose a subsolution uα+(γ) as in (20) of Proposition 1. It follows from (21)

and (22) that for |x| < δ2 small

Gx(z) ≥ C(R)|x|α+(γ)

(
inf

y∈Ω∩∂BR|x|(0)

Gx(y)

d(y, ∂Ω)

)
uα+(γ)(z) for all z ∈W∩∂BR|x|/3(0).

Since −∆Gx − (γ| · |−2 + h)Gx = 0 outside 0, it follows from coercivity and the
comparison principle that

Gx(z) ≥ c|x|α+(γ)

(
inf

y∈Ω∩∂BR|x|(0)

Gx(y)

d(y, ∂Ω)

)
uα+(γ)(z) for all z ∈W \BR|x|/3(0).

We fix z0 ∈W \ {0}. Then for δ3 small enough, when |x| < δ3, it follows from (25)
and the Harnack inequality (29) that there exists C > 0 independent of x such that

Gx(y) ≤ C|x|−α+(γ)−α−(γ)d(x, ∂Ω)d(y, ∂Ω) for all y ∈ BR|x|(0)\
(
Br|x|(0) ∪Br|x|(x)

)
Taking r > 0 small enough and R > 0 large enough, we then get (26) for |x| < δ3.
The general case for arbitrary x ∈ Ω \ {0} then follows from (23). This prove (26).

Step 4.2: We claim that for all c1, c2 > 0, there exists C(c1, c2) > 0 such that

(31) |x− y|n−2G(x, y) ≤ C(c1, c2) min

{
1,
d(x, ∂Ω)d(y, ∂Ω)

|x− y|2

}
for all x, y ∈ Ω s.t. c1|x| < |y| < c2|x|. To prove (31), we distinguish three cases:

Case 1: We assume that

(32) |x| ≤ C1d(x, ∂Ω) with C1 > 1.
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We define

H(z) := |x|n−2Gx(x+ |x|z) for z ∈ B1/C1
(0) \ {0}.

Note that this definition makes sense since for such z, x+ |x|z ∈ Ω. We then have

that H ∈ C2(B1/(2C1)(0) \ {0}) and

−∆H −

 γ∣∣∣ x|x| + z
∣∣∣2 + |x|2h(x+ |x|z)

H = δ0 weakly in B1/(2C1)(0).

We now argue as in the proof of (23). From (26), we have that |H(z)| ≤ C for all
z ∈ ∂B1/(2C1)(0) where C is independent of x ∈ Ω \ {0} satisfying (32). Let Γ0 be

the Green’s function of −∆−
(

γ

| x|x|+z|2
+ |x|2h(x+ |x|z)

)
at 0 on B1/(2C1)(0) with

Dirichlet boundary condition. Therefore, H − Γ0 ∈ C2(B1/(2C1)(0)) and, via the
comparison principle, it is bounded by its supremum on the boundary. Therefore
|z|n−2H(z) ≤ C for all B1/(2C1)(0) \ {0} where C is independent of x ∈ Ω \ {0}
satisfying (32). Scaling back and using (26), we get |x − y|n−2Gx(y) ≤ C for
all x, y ∈ Ω \ {0} such that c1|x| < |y| < c2|x| and (32) holds. This proves
(31) if d(x, ∂Ω)d(y, ∂Ω) ≥ |x − y|2. If d(x, ∂Ω)d(y, ∂Ω) < |x − y|2, we get that
d(x, ∂Ω) < 2|x−y|, and then (32) yields |x| ≤ 2C1|x−y|, and (31) is a consequence
of (26).

This ends the proof of (31) in Case 1.

Case 2: By symmetry, (31) also holds when |y| ≤ C1d(y, ∂Ω).

Case 3: We assume that d(x, ∂Ω) ≤ C−1
1 |x| and d(y, ∂Ω) ≤ C−1

1 |y|. We consider a
chart at 0, that is δ0 > 0, 0 ∈ V ⊂ Rn and ϕ : B2δ0(0) → V a smooth diffeomor-
phism such that ϕ(0) = 0 and that (27) and (28) hold. We fix x′ ∈ Rn−1 such that
0 < |x′| < 3δ0/2.

We assume that r ≤ c0|x′|. We define

Hy(z) := rn−2Gϕ((0,x′)+ry)(ϕ((0, x′) + rz)) for y, z ∈ Bδ0/(2r)(0) ∩ Rn− \ {0}.

We then have that Hy ∈ C2(BR0
(0) ∩ Rn− \ {0, y}) and

−∆grHy−

 γ(
|ϕ((0,x′)+rz)

r

)2 + r2h(ϕ((0, x′) + rz))

Hy = δy weakly in BR0
(0)∩Rn−,

where gr := (ϕ?Eucl)(0,x′)+rz is the pulled-back metric of the Euclidean metric
Eucl via the chart ϕ at the point (0, x′) + rz. We now argue as in the proof of
(23). From (26), we have that |Hy(z)| ≤ C for all z ∈ ∂BR0(0) ∩ Rn− where C is
independent of y ∈ BR0/2(0) and r ∈ (0, δ0/4). Let Γy be the Green’s function of

−∆gr−

(
γ(

|ϕ((0,x′)+rz)
r

)2 + r2h(ϕ((0, x′) + rz))

)
at y on Bc0/2(0)∩Rn− with Dirichlet

boundary condition. Therefore, Hy−Γy ∈ C2(Bc0/2(0) ∩ Rn−) and, via the compar-
ison principle, it is bounded by its supremum on the boundary. It follows from (26)
and elliptic estimates for Γy (see for instance [3]) that |Hy−Γy|(z) ≤ C|y1| · |z1| for
z ∈ ∂(Bc0/2(0) ∩ Rn−) and y ∈ Bc0/4(0) ∩ Rn−. Applying elliptic estimates, we then
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get that |Hy − Γy|(z) ≤ C|y1| · |z1| for z ∈ Bc0/2(0) ∩ Rn− and y ∈ Bc0/4(0) ∩ Rn−,
and since

Γy(z) ≤ C|z − y|2−n min

{
1,
|y1| · |z1|
|y − z|2

}
for all y, z ∈ Bc0/2(0) ∩ Rn−

(see [3]), we get that

|z − y|n−2Hy(z) ≤ C min

{
1,
|y1| · |z1|
|y − z|2

}
for all y, z ∈ Bc0/2(0) ∩ Rn−

where C is independent of x′ ∈ Bδ0/2(0) \ {0}. This yields

(33) |rz − ry|n−2Gϕ((0,x′)+ry)(ϕ((0, x′) + rz)) ≤ C min{1, |y1| · |z1|
|y − z|2

}

for |x′| < δ0/3, r ≤ c0|x′| and |y|, |z| ≤ c0/4.

We now prove (31) in the last case. We fix x ∈ Ω \ {0} such that |x| < δ0/3.
We assume that d(x, ∂Ω) ≤ C−1

1 |x| , d(y, ∂Ω) ≤ C−1
1 |y| and |x − y| ≤ ε0|x|. We

let (x1, x
′), (y1, y

′) ∈ Bδ0(0) be such that x = ϕ(x1, x
′) and y = ϕ(y1, y

′). Taking
the norm |(x1, x

′)| = |x1|+ |x′|, we define r := max{d(x, ∂Ω), |x− y|}. Using that
|X|/2 ≤ |ϕ(X)| ≤ 2|X| for X ∈ Bδ0(0), up to taking ε0 > 0 small and C1, c0 > 1
large enough, we get that∣∣∣x1

r

∣∣∣ ≤ c0
4
,

∣∣∣∣(y1

r
,
y′ − x′

r

)∣∣∣∣ ≤ c0
4

and r ≤ c0|x′|.

Therefore, (33) applies and we get (31) in Case 3.

We are now in position to conclude. Inequality (31) is a consequence of Cases 1, 2,
3, (23) and (26). This ends the proof of (31).

Step 4.3: We now show that there exists C > 0 such that
(34)

|y|α−(γ)|x|α+(γ)G(x, y) ≤ Cd(x, ∂Ω)d(y, ∂Ω) for x, y ∈ Ω such that |y| < 1

2
|x|.

The proof goes essentially as in (24). For |x| < δ with δ > 0 small, we have that

−∆Gx −
(

γ

| · |2
+ h

)
Gx = 0 in H1(Ω ∩B|x|/3(0)) ∩ C2(Ω ∩B|x|/3(0) \ {0}).

It follows from (26) that Gx(y) ≤ C|x|−nd(x, ∂Ω)d(y, ∂Ω) in Ω ∩ ∂B|x|/3(0). We
choose a supersolution uα−(γ) as in (20) of Proposition 1. It follows from (21) and
(26) that there exists C > 0 such that

Gx(y) ≤ C|x|−α+(γ)d(x, ∂Ω)uα−(γ)(y) for all y ∈ Ω ∩ ∂B|x|/3(0).

The comparison principle yields that this inequality holds on Ω ∩B|x|/3(0).

Step 4.4: By symmetry, we conclude that there exists C > 0 such that

(35) |x|α−(γ)|y|α+(γ)G(x, y) ≤ Cd(x, ∂Ω)d(y, ∂Ω) for x, y ∈ Ω s.t. |x| < 1

2
|y|.

Step 5: Finally, it follows from (34), (35) and (31) that there exists c > 0 such
that

(36) G(x, y) ≤ c
(

max{|y|, |x|}
min{|y|, |x|}

)α−(γ)

|x− y|2−n min

{
1,
d(x, ∂Ω)d(y, ∂Ω)

|x− y|2

}
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for all x, y ∈ Ω, x 6= y. This proves the upper bound in (5) of Theorem 2. The
lower-bound and the control of the gradient will be proved in Section 6.

4. Green’s function for −∆− γ|x|−2 on Rn−
In this section, we prove the following:

Theorem 3. Fix γ < n2

4 . For all p ∈ Rn− \ {0}, there exists Gp ∈ L1(Rn−) such
that

(i) ηGp ∈ H2
1,0(Rn−) for all η ∈ C∞c (Rn − {p}),

(ii) For all ϕ ∈ C∞c (Rn−), we have that

(37) ϕ(p) =

∫
Rn−

Gp(x)

(
−∆ϕ− γ

|x|2
ϕ

)
dx,

Moreover, if Gp, G
′
p satisfy (i) and (ii) and are positive, then there exists C ∈ R

such that Gp(x)−G′p(x) = C|x1| · |x|−α−(γ) for all x ∈ Rn− \ {0, p}.

In particular, there exists one and only one function Gp = G(p, ·) > 0 such that (i)
and (ii) hold with Gp = Gp and

(iii) Gp(x) = O

(
|x1|
|x|α+(γ)

)
as |x| → +∞.

We say that G is the Green’s function for −∆−γ|x|−2 on Rn− with Dirichlet bound-
ary condition.

In addition, G satisfies the following properties:

• For all p ∈ Rn \ {0}, there exists c0(p), c∞(p) > 0 such that

(38) Gp(x) ∼x→0
c0(p)|x1|
|x|α−(γ)

and Gp(x) ∼x→∞
c∞(p)|x1|
|x|α+(γ)

and

(39) Gp(x) ∼x→p
1

(n− 2)ωn−1|x− p|n−2
.

• There exists c > 0 independent of p such that

(40) c−1Hp(x) ≤ Gp(x) ≤ cHp(x)

where

(41) Hp(x) :=

(
max{|p|, |x|}
min{|p|, |x|}

)β−(γ)

|x− p|2−n min

{
1,
|x1| · |p1|
|x− p|2

}
Proof of Theorem 3: We shall again proceed with several steps.

Step 1: Construction of a positive kernel at a given point: For a fixed
p0 ∈ Rn \ {0}, we show that there exists Gp0 ∈ C2(Rn− \ {0, p0}) such that

(42)


−∆Gp0 −

γ
|x|2Gp0 = 0 in Rn− \ {0, p0}

Gp0 > 0

Gp0 ∈ L
2n
n−2 (Bδ(0) ∩ Rn−) with δ := |p0|/4

Gp0 satisfies (ii) with p = p0.
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Indeed, let η̃ ∈ C∞(R) be a nondecreasing function such that 0 ≤ η̃ ≤ 1, η̃(t) = 0

for all t ≤ 1 and η̃(t) = 1 for all t ≥ 2. For ε > 0, set ηε(x) := η̃
(
|x|
ε

)
for all x ∈ Rn.

We let Ω1 be a smooth bounded domain of Rn such that Rn− ∩ B1(0) ⊂ Ω1 ⊂
Rn− ∩B3(0). We define ΩR := R ·Ω1 so that Rn− ∩BR(0) ⊂ ΩR ⊂ Rn− ∩B3R(0). We
argue as in the proof of (8) to deduce that the operator −∆ − γηε

|x|2 is coercive on

ΩR and that there exists c > 0 independent of R, ε > 0 such that∫
ΩR

(
|∇ϕ|2 − γηε

|x|2
ϕ2

)
dx ≥ c

∫
ΩR

|∇ϕ|2 dx for all ϕ ∈ C∞c (ΩR).

Consider R, ε > 0 such that R > 2|p0| and ε < |p0|
6 , and let GR,ε be the Green’s

function of −∆ − γηε
|x|2 in ΩR with Dirichlet boundary condition. We have that

GR,ε > 0 since the operator is coercive.

Fix R0 > 0 and q′ ∈ (1, n
n−2 ), then by arguing as in the proof of (10), we get that

there exists C = C(γ, p0, q
′, R0) such that

(43) ‖GR,ε(p0, ·)‖Lq′ (BR0
(0)∩Rn−) ≤ C for all R > R0 and 0 < ε <

|p0|
6
,

and

(44) ‖GR,ε(p0, ·)‖
L

2n
n−2 (Bδ0 (0)∩Rn−)

≤ C for all R > R0 and 0 < ε <
|p0|
6
,

where δ := |p0|/4. Arguing again as in Step 2 of the proof of Theorem 1, there
exists Gp0 ∈ C2(Rn− \ {0, p0}) such that

(45)


GR,ε(p0, ·)→ Gp0 ≥ 0 in C2

loc(Rn− \ {0, p0}) as R→ +∞, ε→ 0
−∆Gp0 −

γ
|x|2Gp0 = 0 in Rn− \ {0, p0}

Gp0 ≡ 0 on ∂Rn− \ {0}
Gp0 ∈ L

2n
n−2 (Bδ(0) ∩ Rn−)

and ηGp0 ∈ H1
0 (Rn−) for all η ∈ C∞c (Rn \ {p0}). Fix ϕ ∈ C∞c (Rn−). For R > 0 large

enough, we have that ϕ(p0) =
∫
Rn−

GR,ε(p0, ·)(−∆ϕ − γηε|x|−2ϕ) dx. The integral

bounds above yield x 7→ Gp0(x)|x|−2 ∈ L1
loc(Rn−). Therefore, we get

(46) ϕ(p0) =

∫
Rn−

Gp0(x)

(
−∆ϕ− γ

|x|2
ϕ

)
dx for all ϕ ∈ C∞c (Rn−).

As a consequence, Gp0 > 0.

Step 2: Asymptotic behavior at 0 and p0 for solutions to (42). It fol-
lows from Theorem 6.1 in Ghoussoub-Robert [1] that either Gp0 behaves like |x1| ·
|x|−α−(γ) or |x1| · |x|−α+(γ) at 0. Since Gp0 ∈ L

2n
n−2 (Bδ(0) ∩ Rn−) for some small

δ > 0 and α−(γ) < n
2 < α+(γ), we get that there exists c0 > 0 such that

(47) lim
x→0

Gp0(x)

|x1| · |x|−α−(γ)
= c0.

Since Gp0 is positive and smooth in a neighborhood of p0, it follows from (46) and
the classification of solutions to harmonic equations that

(48) Gp0(x) ∼x→p0
1

(n− 2)ωn−1|x− p0|n−2
.
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Step 3: Asymptotic behavior at ∞ for solutions to (42): We let

G̃p0(x) :=
1

|x|n−2
Gp0

(
x

|x|2

)
for all x ∈ Rn− \

{
0,

p0

|p0|2

}
,

be the Kelvin’s transform of G. We have that

−∆G̃p0 −
γ

|x|2
G̃p0 = 0 in Rn− \

{
0,

p0

|p0|2

}
; G̃ ≡ 0 on ∂Rn− \ {p0}.

Since G̃p0 > 0, it follows from Theorem 6.1 in [1] that there exists c1 > 0 such that

either G̃p0(x) ∼x→0 c1
|x1|
|x|α−(γ)

or G̃p0(x) ∼x→0 c1
|x1|
|x|α+(γ)

.

Coming back to Gp0 , we get that

(49) either Gp0(x) ∼|x|→∞ c1
|x1|
|x|α+(γ)

or Gp0(x) ∼|x|→∞ c1
|x1|
|x|α−(γ)

.

Assuming we are in the second case, for any c ≤ c1, we define

Ḡc(x) := Gp0(x)− c |x1|
|x|α−(γ)

in Rn− \ {0, p0},

which satisfy −∆Ḡc − γ
|x|2 Ḡc = 0 in Rn− \ {0, p0}. It follows from (49) and (48)

that for c < c1, Ḡc > 0 around p0 and ∞. Using that ηḠc ∈ H1
0 (Rn−) for all

η ∈ C∞c (Rn \ {p0}), it follows from the coercivity of −∆ − γ|x|−2 that Ḡc > 0 in
Rn− \ {0, p0} for c < c1. Letting c → c1 yields Ḡc1 ≥ 0, and then Ḡc1 > 0. Since

Ḡc1(x) = o(|x1| · |x|−α−(γ)) as |x| → ∞, another Kelvin transform and Theorem
6.1 in [1] yield |x1|−1|x|α+(γ)Ḡc1(x) → c2 > 0 as |x| → ∞ for some c2 > 0. Then
there exists c3 > 0 such that

(50) lim
x→0

Ḡc1(x)

|x1| · |x|−β−(γ)
= c3 > 0 and lim

x→∞

Ḡc1(x)

|x1| · |x|−α+(γ)
= c2.

Since x 7→ |x1|·|x|−α−(γ) ∈ H2
1,loc(Rn), we get that ϕ(p) =

∫
Rn−

Ḡc1(x)
(
−∆ϕ− γ

|x|2ϕ
)
dx

for all ϕ ∈ C∞c (Rn−).

Step 4: Uniqueness: Let G1, G2 > 0 be 2 functions such that (i), (ii) hold for
p := p0, and set H := G1 − G2. It follows from Steps 2 and 3 that there exists
c ∈ R such that H ′(x) := H(x)− c|x1| · |x|−α−(γ) satisfies

(51) H ′(x) =x→0 O
(
|x1| · |x|−α−(γ)

)
and H ′(x) =|x|→∞ O

(
|x1| · |x|−α+(γ)

)
.

We then have that ηH ′ ∈ H1
0 (Rn−) for all η ∈ C∞c (Rn \ {p0}) and∫

Rn−
H ′(x)

(
−∆ϕ− γ

|x|2
ϕ

)
dx = 0 for all ϕ ∈ C∞c (Rn−).

The ellipticity of the Laplacian then yields H ′ ∈ C∞(Rn− \ {0}). The pointwise
bounds (51) yield that H ′ ∈ H1

0 (Rn−). Multiplying −∆H ′ − γ
|x|2H

′ = 0 by H ′,

integrating by parts and the coercivity yield H ′ ≡ 0, and therefore, (G1−G2)(x) =
c|x1| · |x|−α−(γ) for all x ∈ Rn−. This proves uniqueness.

Step 5: Existence. It follows from Steps 2 and 3 that, up to substracting a
multiple of x 7→ |x1| · |x|−α−(γ), there exists a unique function Gp0 > 0 satisfying
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(i), (ii) and the pointwise control (iii). Moreover, (47), (48) and (50) yield (38) and
(39). As a consequence, (40) holds with p = p0.

For p ∈ Rn \ {0}, consider ρp : Rn− → Rn− a linear isometry fixing Rn− such that
ρp(

p0
|p0| ) = p

|p| , and define

Gp(x) :=

(
|p0|
|p|

)n−2

Gp0
((

ρ−1
p

(
|p0|
|p|

x

)))
for all x ∈ Rn \ {0, p}.

As one checks, Gp > 0 satisfies (i), (ii), (iii), (38), (39) and (40).

The definition of Gp is independent of the choice of ρp. Indeed, for any linear
isometry ρp0 : Rn− → Rn− fixing p0 and Rn−, Gp0 ◦ ρ−1

p0 satisfies (i), (ii), (iii), and

therefore Gp0 ◦ ρ−1
p0 = Gp0 . The argument goes similarly of any isometry fixing p.

5. Behavior at infinitesimal scale

We prove three convergence theorems to get a comprehensive behavior of the
Green’s function

Theorem 4. Let Ω be a smooth bounded domain of Rn such that 0 ∈ ∂Ω. We fix

γ < n2

4 . We let h ∈ C0,θ(Ω) be such that −∆− γ|x|−2−h is coercive. Let G be the

Green’s function of −∆− γ|x|−2 − h with Dirichlet boundary condition on ∂Ω. Let
(xi)i ∈ Ω and (ri)i ∈ (0,+∞) be such that

lim
i→+∞

ri = 0 and lim
i→+∞

d(xi, ∂Ω)

ri
= +∞.

Then, for all X,Y ∈ Rn such that X 6= Y , we have that

lim
i→+∞

rn−2
i G(xi + riX,xi + riY ) =

1

(n− 2)ωn−1
|X − Y |2−n

Moreover, the convergence holds in C2
loc((Rn)2 \Diag(Rn)).

We now deal with the case when the points approach the boundary. For any
x0 ∈ ∂Ω, there exists δ0 > 0, x0 ∈ V ⊂ Rn and ϕ : Bδ0(0) → V a smooth
diffeomorphism such that ϕ(0) = x0 and

(52) ϕ(B2δ0(0) ∩ Rn−) = ϕ(U) ∩ Ω and ϕ(B2δ0(0) ∩ ∂Rn−) = ϕ(U) ∩ ∂Ω.

Without loss of generality, we can assume that dϕ0 : Rn → Rn = IdRn .

Theorem 5. Let Ω be a smooth bounded domain of Rn such that 0 ∈ ∂Ω. We fix

γ < n2

4 . We let h ∈ C0,θ(Ω) be such that −∆− γ|x|−2−h is coercive. Let G be the

Green’s function of −∆− γ|x|−2 − h with Dirichlet boundary condition on ∂Ω. Let
(xi)i ∈ ∂Ω and (ri)i ∈ (0,+∞) and x0 ∈ ∂Ω be such that

lim
i→+∞

ri = 0, lim
i→+∞

xi = x0 ∈ ∂Ω and lim
i→+∞

|xi|
ri

= +∞.

We let ϕ be a chart at x0 as in (52). We define x′i ∈ Rn−1 such that xi = ϕ(0, x′i).
Then, for all X,Y ∈ Rn− such that X 6= Y , we have that

lim
i→+∞

rn−2
i G(ϕ ((0, x′i) + riX) , ϕ ((0, x′i) + riY )) =

1

(n− 2)ωn−1

(
|X − Y |2−n − |X − Y ∗|2−n

)
where (Y1, Y

′)∗ = (−Y1, Y
′) for (Y1, Y

′) ∈ R × Rn−1. Moreover, the convergence
holds in C2

loc((Rn−)2 \Diag(Rn−)}).
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Theorem 6. Let Ω be a smooth bounded domain of Rn such that 0 ∈ ∂Ω. We fix

γ < n2

4 . We let h ∈ C0,θ(Ω) be such that −∆− γ|x|−2−h is coercive. Let G be the

Green’s function of −∆− γ|x|−2 − h with Dirichlet boundary condition on ∂Ω. Let
(ri)i ∈ (0,+∞) be such that limi→+∞ ri = 0. We let ϕ be a chart at 0 as in (52).
Then, for all X,Y ∈ Rn− \ {0} such that X 6= Y , we have that

lim
i→+∞

rn−2
i G(ϕ (riX) , ϕ (riY )) = G(X,Y )

where G(X,Y ) = GX(Y ) is the Green’s function for −∆ − γ|x|−2 on Rn− with

Dirichlet boundary condition. Moreover, the convergence holds in C2
loc((Rn−\{0})2\

Diag(Rn− \ {0})).

Proof of Theorem 4: We let (ri)i ∈ (0,+∞) and (xi)i ∈ Ω as in the statement of
the Theorem. For any X,Y ∈ Rn, X 6= Y , we define

Gi(X,Y ) := rn−2
i G(xi + riX,xi + riY )

for all i ∈ N. Since ri = o(d(xi, ∂Ω)) as i→ +∞, for any R > 0, there exists i0 ∈ N
such that this definition makes sense for any X,Y ∈ BR(0). Equation (3) yields

(53) −∆Gi(X, ·)−

 γ∣∣∣xiri + ·
∣∣∣2 + r2

i h(xi + ri·)

Gi(X, ·) = 0 in BR(0) \ {X}.

The pointwise control (36) writes

(54) 0 < Gi(X,Y ) ≤ c
(

max{|xi + riX|, |xi + riY |}
min{|xi + riX|, |xi + riY |}

)α−(γ)

|X − Y |2−n

for all X,Y ∈ BR(0) such that X 6= Y . Since 0 ∈ ∂Ω, we have that d(xi, ∂Ω) ≤ |xi|,
and therefore ri = o(|xi|) as i→ +∞. Equation (53) and inequality (54) yield

−∆Gi(X, ·) + θi(X, ·)Gi(X, ·) = 0 in BR(0) \ {X}.
where θi → 0 uniformly in C0

loc((Rn)2) and 0 < Gi(X,Y ) ≤ c|X − Y |2−n for all
X,Y ∈ BR(0) such that X 6= Y . It then follows from standard elliptic theory that,
up to a subsequence, there exists G∞(X, ·) ∈ C2(Rn \ {X}) such that Gi(X, ·) →
G∞(X, ·) ≥ 0 in C2

loc(Rn \ {X}) and

−∆G∞(X, ·) = 0 in Rn\{X} and G∞(X,Y ) ≤ c|X−Y |2−n for X,Y ∈ Rn, X 6= Y.

It then follows from the classification of positive harmonic functions that there
exists λ > 0 such that G∞(X,Y ) = λ|X − Y |2−n for all X,Y ∈ Rn, X 6= Y .

We let ϕ ∈ C∞c (Rn). We define ϕi(x) := ϕ(r−1
i (x − xi)) for x ∈ Ω (this makes

sense for i large enough). It follows from (2) that

ϕi(xi + riX) =

∫
Ω

G(xi + riX, y)

(
−∆ϕi(y)−

(
γ

|y|2
+ h(y)

)
ϕi(y)

)
dy.

Via a change of variable, and passing to the limit, we get that

ϕ(X) =

∫
Rn
G∞(X,Y ) (−∆ϕ(Y )) dy.

Since G∞(X,Y ) = λ|X−Y |2−n, we get that λ = 1/((n−2)ωn−1). Since the limit is
unique, the convergence holds without extracting a subsequence. The convergence
in C2

loc((Rn)2 \Diag(Rn)) follows from the symmetry of G and elliptic theory. �
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Proof of Theorem 5: The proof goes as in the proof of Theorem 4, except that we
have to take a chart due to the closeness of the boundary. We let (ri)i ∈ (0,+∞),
(xi)i ∈ ∂Ω and x0 ∈ ∂Ω as in the statement of the Theorem. We let ϕ be a chart at
x0 as in (52) (in particular dϕ0 = IdRn) and we set x′i ∈ Rn such that xi = ϕ(0, x′i).
In particular, limi→+∞ x′i = 0. For any X,Y ∈ Rn−, X 6= Y , we define

Gi(X,Y ) := rn−2
i G(ϕ ((0, x′i) + riX) , ϕ ((0, x′i) + riY ))

for all i ∈ N. Here again, provided X,Y remain in a given compact set, the
definition of Gi makes sense for large i. Equation (3) then rewrites
(55)

−∆giGi(X, ·)− θ̂iGi(X, ·) = 0 in BR(0)∩Rn− \ {X} ; Gi(X, ·) ≡ 0 on ∂Rn− ∩BR(0)

where

θ̂i(Y ) :=
γ∣∣∣ϕ((0,x′i)+riY )

ri

∣∣∣2 + r2
i h(ϕ((0, x′i) + riY ))

and gi = ϕ?Eucl((0, x′i)+ri·) is the pull-back of the Euclidean metric. In particular,
since dϕ0 = IdRn , we get that gi → Eucl in C2

loc(Rn). Since ri = o(|xi|), we get
that ri = o(|x′i|) as i → +∞, and, using again that dϕ0 = IdRn , we get that

θ̂i → 0 uniformly in BR(0) ∩ Rn−. The pointwise control (36) rewrite Gi(X,Y ) ≤
c|X − Y |2−n for all X,Y ∈ Rn−, X 6= Y . With the same arguments as above, we

get that for any X ∈ Rn−, there exists G∞(X, ·) ∈ C2(Rn− \ {X}) such that

lim
i→+∞

Gi(X, ·) = G∞(X, ·) in C2
loc(Rn− \ {X})

with

 −∆G∞(X, ·) = 0 in Rn− \ {X}
G∞(X, ·) ≥ 0
G∞(X, ·) ≡ 0 on ∂Rn− \ {X}

and

ϕ(X) =

∫
Rn−

G∞(X, ·)(−∆ϕ) dY for all ϕ ∈ C∞c (Rn−).

with 0 ≤ G∞(X,Y ) ≤ c|X − Y |2−n for all X,Y ∈ Rn−, X 6= Y . Define

ΓRn−(X,Y ) =
1

(n− 2)ωn−1

(
|X − Y |2−n − |X − Y ∗|2−n

)
.

As one checks (see for instance [3]), ΓRn− satisfies the same properties as G∞. We

set f := G∞(X, ·) − ΓRn−(X, ·). As one checks, f ∈ C∞(Rn− \ {X}), −∆f = 0

in the distribution sense in Rn−, |f | ≤ C|X − ·|2−n in Rn− \ {X} and f∂Rn− = 0.

Hypoellipticity yields f ∈ C∞(Rn−). Multiplying −∆f by f and integrating by
parts, we get that f ≡ 0, and then G∞(X, ·) = ΓRn−(X, ·). As above, this proves the

convergence without any extraction. The convergence in C2
loc((Rn−)2 \ Diag(Rn−))

follows from the symmetry of G and elliptic theory. �

Proof of Theorem 6: Here again, the proof is similar to the two preceding proofs.
We let (ri)i ∈ (0,+∞) such that limi→+∞ ri = 0. We let ϕ be a chart at 0 as in
(52) (in particular dϕ0 = IdRn). For any X,Y ∈ Rn− \ {0}, we define

Gi(X,Y ) := rn−2
i G(ϕ (riX) , ϕ (riY ))
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for all i ∈ N. Equation (3) rewrites

−∆giGi(X, ·)−

 γ∣∣∣ϕ(ri·)
ri

∣∣∣2 + r2
i h(ϕ(ri·))

Gi(X, ·) = 0 in BR(0) ∩ Rn− \ {0, X}.

with Gi(X, ·) ≡ 0 on BR(0) ∩ ∂Rn−, where gi = ϕ?Eucl(ri·) is the pull-back of
the Euclidean metric. In particular, since dϕ0 = IdRn , we get that gi → Eucl in
C2
loc(Rn). The pointwise control (36) writes

0 ≤ Gi(X,Y ) ≤ C
(

max{|X|, |Y |}
min{|X|, |Y |}

)α−(γ)

|X − Y |2−n for X,Y ∈ Rn−, X 6= Y.

It then follows from elliptic theory that Gi(X, ·)→ G∞(X, ·) in C2
loc(Rn− \ {0, X}).

In particular, G∞(X, ·) vanishes on ∂Rn− \ {0} and
(56)

0 ≤ G∞(X,Y ) ≤ C
(

max{|X|, |Y |}
min{|X|, |Y |}

)α−(γ)

|X − Y |2−n for X,Y ∈ Rn−, X 6= Y.

Moreover, passing to the limit in Green’s representation formula, we get that

ϕ(X) =

∫
Rn−

G∞(X,Y )

(
−∆ϕ− γ

|Y |2
ϕ

)
dY for all ϕ ∈ C∞c (Rn−).

Since G(x, ·) is locally in H1
0 (Ω) (see (b) in Theorem 1), we get that (ηGi(X, ·))i is

uniformly bounded inH2
1,0(Rn−) for all η ∈ C∞c (Rn\{X}). Up to another extraction,

we get weak convergence in H2
1,0(Rn−), and then ηG∞(X, ·) ∈ H2

1,0(Rn−) for all
η ∈ C∞c (Rn \ {X}). It then follows from Theorem 3 and (56) that G∞(X, ·) = GX
is the unique Green’s function of −∆ − γ|x|−2 on Rn− with Dirichlet boundary
condition. Here again, the convergence in C2 follows from elliptic theory. �

6. A lower bound for the Green’s function

We let Ω, γ, h be as in Theorems 1 and 2. We let G be the Green’s function for
−∆− (γ|x|−2 + h) on Ω with Dirichlet boundary condition. We let (xi), (yi)i∈N be
such that xi, yi ∈ Ω and xi 6= yi for all i ∈ N. We also assume that there exists
x∞, y∞ ∈ Ω such that

lim
i→+∞

xi = x∞ and lim
i→+∞

yi = y∞

and that there exists c1, c2 such that

lim
i→+∞

G(xi, yi)

H(xi, yi)
= c1 ∈ [0,+∞] and lim

i→+∞

|∇Gxi(yi)|
Γ(xi, yi)

= c2 ∈ [0,+∞]

where H(x, y) is defined in (6) and

Γ(x, y) :=

(
max{|x|, |y|}
min{|x|, |y|}

)α−(γ)

|x− y|1−n min

{
1,
d(x, ∂Ω)

|x− y|

}
for x, y ∈ Ω, x 6= y. Note that c1 < +∞ by (36). We claim that

(57) 0 < c1 and 0 ≤ c2 < +∞
The lower bound in (5) and the upper bound in (7) both follow from (57).

This section is devoted to proving (57). We distinguish several cases:
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Case 1: x∞ 6= y∞, x∞, y∞ ∈ Ω. As one checks, we then have that limi→+∞G(xi, yi) =
G(x∞, y∞) > 0. Therefore, we get that c1 ∈ (0,+∞). Concerning the gradient,
limi→+∞ |∇Gxi(yi)| = |∇Gx∞(y∞)| ≥ 0 and this yields c2 < +∞. This proves (57)
in Case 1.

Case 2: x∞ ∈ Ω and y∞ ∈ ∂Ω \ {0}. Since x∞, y∞ are distinct and far
from 0, we have that G(xi, yi) = d(yi, ∂Ω) (−∂νGx∞(y∞) + o(1)) as i → +∞,
where ∂νGx∞(y∞) is the normal derivative of Gx∞ > 0 at the boundary point
y∞. Hopf’s Lemma then yields ∂νGx∞(y∞) < 0. As one checks, we have that
H(xi, yi) = (c + o(1))d(yi, ∂Ω) as i → +∞. This then yields 0 < c1 < +∞.
Concerning the gradient, we get that limi→+∞ |∇Gxi(yi)| = |∇Gx∞(y∞)| ≥ 0 and
limi→+∞ Γ(xi, yi) ∈ (0,+∞), which yields c2 < +∞. This proves (57) in Case 2.

Case 3: x∞ ∈ Ω and y∞ = 0 ∈ ∂Ω. It follows from Case 2 above that there exists
c > 0 such that Gxi(y) ≥ cd(y, ∂Ω)|y|−α−(γ) for all y ∈ ∂(Ω∩Br0(0)). We take the
subsolution uα−(γ) defined in Proposition 1. With (21), there exists c′ > 0 such

that Gxi(y) ≥ c1uα−(γ)(y) for all y ∈ ∂(Ω ∩ Br0(0)). Since Gxi is locally in H1
0

around 0, the comparison principle and (21) yields Gxi(y) ≥ c”d(y, ∂Ω)|y|−α−(γ)

for all y ∈ Ω ∩Br0(0). This yields c1 > 0.

We deal with the gradient. We let ϕ be a chart at 0 as in (52) and we define

Gi(y) := r
α−(γ)−1
i Gxi(ϕ(riy)) for y ∈ Rn− ∩B2(0)

with ri → 0. It follows from (36) thatGi(y) ≤ C|y1|·|y|−α−(γ) for all y ∈ Rn−∩B2(0).

It follows from (3) that −∆giGi−
(
γ| · |2 + o(1)

)
Gi = 0 in Rn− ∩B2(0) where gi :=

ϕ?Eucl(ri·) and o(1)→ 0 in L∞loc(Rn). Elliptic regularity then yields |∇Gi(y)| ≤ C
for y ∈ Rn− ∩ B3/2(0). We now let ri := |ỹi| where yi := ϕ(ỹi), so that ri → 0.

We the have that |∇Gi(ỹi/ri)| ≤ C, which rewrites |∇Gxi(yi)| ≤ C|yi|−α−(γ). By
estimating Γ(xi, yi), we then get that c2 < +∞. This proves (57) in Case 3.

Case 4: x∞ 6= y∞, x∞, y∞ ∈ ∂Ω \ {0}. Since x∞, y∞ are distinct and far from 0,
we have that G(xi, yi) = d(yi, ∂Ω)d(xi, ∂Ω)

(
∂νx∂νyGx∞(y∞) + o(1)

)
as i → +∞,

where ∂νx is the normal derivative along the first coordinate, and ∂νy is the normal
derivative along the second coordinate. Since y 7→ Gx(y) is positive for x, y ∈ Ω,
x 6= y, and solves (3), Hopf’s maximum principle yields −∂νyG(x, y∞) > 0 for
x ∈ Ω. Moreover, it follows from the symmetry of G that −∂νyG(x, y∞) > 0
solves also (3). Another application of Hopf’s principle yields ∂νx∂νyGx∞(y∞) > 0.
Estimating independently H(xi, yi), we get that 0 < c1 < +∞.

We deal with the gradient. We have that |∇yGxi(yi)| = |∇y(Gxi −Gx̃i)(yi)| where
x̃i ∈ ∂Ω is the projection of xi on ∂Ω. The C2−control then yields |∇yGxi(yi)| ≤
Cd(xi, ∂Ω). Estimating independently Γ(xi, yi), we get that c2 < +∞. This proves
(57) in Case 4.

Case 5: x∞ 6= y∞, x∞ ∈ ∂Ω \ {0} and y∞ = 0. It follows from Cases 2 and
4 that Gxi(y) ≥ Cd(xi, ∂Ω)d(yi, ∂Ω) for all y ∈ ∂(B|x∞|/2(0) ∩ Ω). Using a sub-

solution as in Case 3, we get that Gxi(y) ≥ cd(xi, ∂Ω)d(y, ∂Ω)|y|−α−(γ) for all
y ∈ ∂(B|x∞|/2(0) ∩ Ω). This yields 0 < c1.

For the gradient estimate, we choose a chart ϕ around y∞ = 0 as in (52), and we let

ri := |ỹi| → 0 where yi = ϕ(ỹi)we define Gi(y) := r
α−(γ)−1
i Gxi(ϕ(riy))/d(xi, ∂Ω)

for y ∈ Rn−∩B2(0) where ri → 0 . The pointwise control (36) and equation (3) yields
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the convergence of (Gi) in C1
loc(Rn− ∩B2(0) \ {0}) as i→ +∞. The boundedness of

|∇Gi| yields c2 < +∞. This proves (57) in Case 5.

Since G is symmetric, it follows from Cases 1 to 5 that (57) holds when x∞ 6= y∞.

We now deal with the case x∞ = y∞, which rewrites limi→+∞ |xi − yi| = 0. Via
a rescaling, we are essentially back to the case x∞ 6= y∞ via the convergence
Theorems 4, 5 and 6.

Case 6: |xi−yi| = o(d(xi, ∂Ω)) as i→ +∞. We set ri := |xi−yi| → 0 as i→ +∞
and we define

Gi(Y ) := rn−2
i G(xi, xi + riY ) for Y ∈ Ω− xi

ri
\ {0}.

It follows from Theorem 4 that Gi → cn| · |2−n in C2
loc(Rn \ {0}) as i → +∞,

with cn := ((n − 2)ωn−1)−1. We define Yi := yi−xi
|yi−xi| , and we then get that |yi −

xi|n−2G(xi, yi) = Gi(Yi) → cn as i → +∞. Estimating H(xi, yi) (and noting that
d(xi, ∂Ω) ≤ |xi − 0| = |xi|), we get that 0 < c1 < +∞.

The convergence of the gradient yields |∇Gi(Yi)| ≤ C for all i. With the original
function G and points xi, yi, this yields c2 < +∞. This proves (57) in Case 6.

Case 7: d(xi, ∂Ω) = O(|xi − yi|) and |xi − yi| = o(|xi|) as i → +∞. Then
limi→+∞ xi = x∞ ∈ ∂Ω. We let ϕ be a chart at x∞ as in (52) such that dϕ0 = IdRn .
We let xi = ϕ(xi,1, x

′
i) and yi = ϕ(yi,1, y

′
i) where (xi,1, x

′
i), (yi,1, y

′
i) ∈ (−∞, 0) ×

Rn−1 are going to 0 as i → +∞. In particular d(xi, ∂Ω) = (1 + o(1))|xi,1| and
d(yi, ∂Ω) = (1 + o(1))|yi,1| as i → +∞. We define ri := |(yi,1, y′i) − (xi,1, x

′
i)|. In

particular ri = (1 + o(1))|xi − yi| as i → +∞. The hypothesis of Case 7 rewrite
xi,1 = O(ri) and ri = o(|(xi,1, x′i)|). Consequently, we have that yi,1 = O(ri) and
ri = o(|x′i|) as i→ +∞. We define

Gi(X,Y ) := rn−2
i G(ϕ ((0, x′i) + riX) , ϕ ((0, x′i) + riY ))

for X,Y ∈ Rn− such that X 6= Y . It follows from Theorem 5 that

lim
i→+∞

Gi(X,Y ) = cn
(
|X − Y |2−n − |X − Y ∗|2−n

)
:= Ψ(X,Y )

for all X,Y ∈ Rn−, X 6= Y , and this convergence holds in C2
loc. We define Xi :=

(r−1
i xi,1, 0) and Yi := (r−1

i yi,1, r
−1
i (y′i−x′i)): the definition of ri yields Xi → X∞ ∈

Rn− and Yi → Y∞ ∈ Rn− as i→ +∞. Therefore, we get that

|xi − yi|n−2G(xi, yi) = (1 + o(1))Gi(Xi, Yi)→ Ψ(X∞, Y∞)

as i→ +∞, and

(58) |X∞,1| = lim
i→+∞

|xi,1|
ri

= lim
i→+∞

d(xi, ∂Ω)

ri
.

Case 7.1: X∞,1 6= 0 and Y∞,1 6= 0. We then get that limi→+∞ |xi−yi|n−2G(xi, yi) =
Ψ(X∞, Y∞) > 0. Moreover, it follows from (58) that d(xi, ∂Ω)d(yi, ∂Ω) = (c +
o(1))|xi−yi|2 as i→ +∞ for some c > 0. Since |xi| = (1+o(1))|yi| as i→ +∞ (this
follows from the assumption of Case 7), we get that limi→+∞ |xi−yi|n−2H(xi, yi) ∈
(0,+∞). Then 0 < c1 < +∞.
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Case 7.2: X∞,1 6= 0 and Y∞,1 = 0. Then Yi,1 → 0 as i → +∞, and then,
there exists (τi)i ∈ (0, 1) such that Gi(Xi, Yi) = Yi,1∂Y1Gi(Xi, (τiYi,1, Y

′
i )). Letting

i→ +∞ and using the convergence of Gi in C1, we get that

|xi − yi|n−2G(xi, yi) = (1 + o(1))Gi(Xi, Yi) = Yi,1∂Y1
Gi(Xi, τiYi)

=
d(yi, ∂Ω)

|xi − yi|
(−∂Y1

Ψ(X∞, Y∞) + o(1))

as i → +∞. As one checks, ∂Y1
Ψ(X∞, Y∞) < 0. Arguing as in Case 7.1, we get

that 0 < c1 < +∞.
Case 7.3: X∞,1 = Y∞,1 = 0. As in Case 7.2, there exists (τi)i, (σi)i ∈ (0, 1) such
that Gi(Xi, Yi) = Yi,1Xi,1∂Y1∂X1Gi((σiXi,1, X

′
i)Xi, (τiYi,1, Y

′
i )). We conclude as

above, noting that ∂Y1
∂X1

Ψ(X∞, Y∞) > 0. Then 0 < c1 < +∞.

The gradient estimate is proved as in Cases 1 to 6. This proves (57) in Case 7.

Case 8: d(xi, ∂Ω) = O(|xi − yi|), |xi| = O(|xi − yi|) and |yi| = O(|xi − yi|)
as i → +∞. In particular, x∞ = y∞ = 0. We take a chart at 0 as in Case 7,
and we define (xi,1, x

′
i), (yi,1, y

′
i) similarly. We define ri := |(yi,1, y′i) − (xi,1, x

′
i)| =

(1 + o(1))|xi − yi| as i→ +∞. We define

Gi(X,Y ) := rn−2
i G(ϕ (riX) , ϕ (riY ))

for X,Y ∈ Rn−. It follows from Theorem 6 that Gi → G in C2
loc((Rn− \ {0})2 \

Diag(Rn− \ {0})), where G is the Green’s function for −∆− γ| · |−2 in Rn−. Then

|xi − yi|n−2G(xi, yi) = (1 + o(1))Gi(Xi, Yi) = G(X∞, Y∞) + o(1)

as i→ +∞.

Case 8.1: We assume that X∞,1 6= 0 and Y∞,1 6= 0. Then we get 0 < c1 < +∞ as
in Case 7.1.

Case 8.2: We assume that X∞ ∈ Rn− and Y∞ ∈ ∂Rn− \ {0} or X∞, Y∞ ∈ ∂Rn− \
{0}. Then we argue as in Cases 7.2 and 7.3 to get 0 < c1 < +∞ provided
{∂Y1
G(X∞, Y∞) < 0 if X∞ ∈ Rn− and Y∞ ∈ ∂Rn−} and {∂Y1

∂X1
G(X∞, Y∞) >

0 if X∞, Y∞ ∈ ∂Rn−}. So we are just left with proving these two inequalities.

We assume that X∞ ∈ Rn−. It follows from Theorem 3 that G(X∞, ·) > 0 is a
solution to (−∆ − γ| · |−2)G(X∞, ·) = 0 in Rn− − {X∞}, vanishing on ∂Rn− \ {0}.
Hopf’s maximum principle then yields −∂Y1

G(X∞, Y∞) > 0 for Y∞ ∈ ∂Rn− \ {0}.
We fix Y∞ ∈ ∂Rn− \ {0}. For X ∈ Rn−, we then define H(X) := −∂Y1

G(X,Y∞) > 0
by the above argument. Moreover, (−∆−γ| · |−2)H = 0 in Rn−, vanishing on ∂Rn− \
{0, Y∞}. Hopf’s maximum principle then yields−∂X1

H(X∞) = ∂Y1
∂X1
G(X∞, Y∞) >

0 for X∞, Y∞ ∈ ∂Rn− \ {0}
Case 8.3: we assume that X∞ = 0 or Y∞ = 0. Since |X∞ − Y∞| = 1, without loss
of generality, we can assume that X∞ 6= 0. It follows from Cases 8.1 and 8.2 that
there exists C > 0 such that

(59) C−1 d(xi, ∂Ω)

|xi|n−α−(γ)

d(y, ∂Ω)

|y|α−(γ)
≤ Gxi(y) ≤ C d(xi, ∂Ω)

|xi|n−α−(γ)

d(y, ∂Ω)

|y|α−(γ)

for all y ∈ ∂(B|xi|/2(0)∩Ω). We let uα−(γ) be the sub-solution given by Proposition

1. Arguing as in Case 3, it then follows from the comparison principle that (59)
holds for y ∈ B|xi|/2(0) ∩ Ω. Since |yi| = o(|xi|), we then get that (59) holds with
y := yi. Estimating H(xi, yi), we then get that 0 < c1 < +∞.
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The gradient estimate is proved as in Cases 1 to 6. This proves (57) in Case 8.

Since G is symmetric, it follows from Cases 7 and 8 that (57) holds when x∞ = y∞.

Conclusion: We then get that (57) holds, which proves the initial claim. As noted
previously, the lower bound in (5) and the upper bound in (7) both follow from
these results. This ends the proof of Theorem 1.

7. Appendix: A technical eigenvalue Lemma

Lemma 1. Let Ω ⊂ Rn, n ≥ 3, be a smooth bounded domain. Let (Vk)k : Ω → R
and V∞ : Ω→ R be measurable functions and let (xk)k ∈ Ω be a sequence of points.
We assume that

i) limk→+∞ Vk(x) = V∞(x) for a.e. x ∈ Ω,
ii) There exists C > 0 such that |Vk(x)| ≤ C|x− xk|−2 for all k ∈ N and x ∈ Ω.

iii) limk→+∞ xk = 0 ∈ ∂Ω.
iv) For some γ0 < n2/4, there exists δ > 0 such that |Vk(x)| ≤ γ0|x−xk|−2 for all

k ∈ N and x ∈ Bδ(0) ⊂ Ω.
v) The first eigenvalue λ1(−∆ + Vk) is achieved for all k ∈ N.

Then

lim
k→+∞

λ1(−∆ + Vk) = λ1(−∆ + V∞).

Proof of Lemma 1: We first claim that (λ1(−∆ + Vk))k is bounded. Indeed, fix
ϕ ∈ H1

0 (Ω) \ {0} and use the Hardy inequality to write for all k ∈ N,

λ1(−∆+Vk) ≤
∫

Ω
(|∇ϕ|2 + Vkϕ

2) dx∫
Ω
ϕ2 dx

≤
∫

Ω
(|∇ϕ|2 + C|x− xk|−2ϕ2) dx∫

Ω
ϕ2 dx

:= M < +∞

For the lower bound, we have for any ϕ ∈ H1
0 (Ω),∫

Ω

(|∇ϕ|2 + Vkϕ
2) dx =

∫
Ω

|∇ϕ|2 dx+

∫
Bδ(0)

Vkϕ
2 dx+

∫
Ω\Bδ(0)

Vkϕ
2 dx

≥
∫

Ω

|∇ϕ|2 dx− γ0

∫
Bδ(0)

|x− xk|−2ϕ2 dx

−4Cδ−2

∫
Ω\Bδ(0)

ϕ2 dx

≥
(
1− 4γ0/n

2
) ∫

Ω

|∇ϕ|2 dx− 4Cδ−2

∫
Ω

ϕ2 dx.(60)

Since γ0 < n2/4, we then get that λ1(−∆+Vk) ≥ −4Cδ−2 for large k, which proves
the lower bound.

Up to a subsequence, we can now assume that (λ1(−∆ + Vk))k converges as k →
+∞. We now show that

(61) lim inf
k→+∞

λ1(−∆ + Vk) ≥ λ1(−∆ + V∞).

For k ∈ N, we let ϕk ∈ H1
0 (Ω) be a minimizer of λ1(−∆+Vk) such that

∫
Ω
ϕ2
k dx = 1.

In particular,

(62) −∆ϕk + Vkϕk = λ1(−∆ + Vk)ϕk weakly in H1
0 (Ω).

Inequality (60) above yields the boundedness of (ϕk)k in H1
0 (Ω). Up to a sub-

sequence, we let ϕ ∈ H1
0 (Ω) such that, as k → +∞, ϕk ⇀ ϕ weakly in H1

0 (Ω),
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ϕk → ϕ strongly in L2(Ω) (then
∫

Ω
ϕ2 dx = 1) and ϕk(x) → ϕ(x) for a.e. x ∈ Ω.

Letting k → +∞ in (62), the hypothesis on (Vk) allow us to conclude that

−∆ϕ+ V∞ϕ = lim
k→+∞

λ1(−∆ + Vk)ϕ weakly in H1
0 (Ω).

Since
∫

Ω
ϕ2 dx = 1 and we have extracted subsequences, we then get (61).

Finally, we prove the reverse inequality. For ε > 0, let ϕ ∈ H1
0 (Ω) be such that∫

Ω
(|∇ϕ|2 + V∞ϕ

2) dx∫
Ω
ϕ2 dx

≤ λ1(−∆ + V∞) + ε.

We have

λ1(−∆ + Vk) ≤ λ1(−∆ + V∞) + ε+

∫
Ω
|Vk − V∞|ϕ2 dx∫

Ω
ϕ2 dx

.

The hypothesis of Lemma 1 allow us to conclude that
∫

Ω
|Vk − V∞|ϕ2 dx → 0 as

k → +∞. Therefore lim supk→+∞ λ1(−∆ + Vk) ≤ λ1(−∆ + V∞) + ε for all ε > 0.
Letting ε→ 0, we get the reverse inequality and the conclusion of Lemma 1. �
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