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Abstract. Given a closed manifold (Mn, g), n ≥ 3, Olivier Druet [7] proved
that a necessary condition for the existence of energy-bounded blowing-up

solutions to perturbations of the equation

∆gu + h0u = u
n+2
n−2 , u > 0 in M

is that h0 ∈ C1(M) touches the Scalar curvature somewhere when n ≥ 4 (the

condition is different for n = 6). In this paper, we prove that Druet’s condition
is also sufficient provided we add its natural differentiable version. For n ≥ 6,

our arguments are local. For the low dimensions n ∈ {4, 5}, our proof requires

the introduction of a suitable mass that is defined only where Druet’s condition
holds. This mass carries global information both on h0 and (M, g).

1. Introduction and main results

Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3 without
boundary and h0 ∈ Cp(M), 1 ≤ p ≤ ∞. We consider the equation

(1) ∆gu+ h0u = u2?−1, u > 0 in M,

where ∆g := −divg(∇) is the Laplace–Beltrami operator and 2? := 2n
n−2 . We inves-

tigate the existence of families (hε)ε>0 ∈ Cp(M) and (uε)ε>0 ∈ C2(M) satisfying

(2) ∆guε + hεuε = u2?−1
ε , uε > 0 in M for all ε > 0,

and such that hε → h0 in Cp(M) and maxM uε →∞ as ε→ 0. We say that (uε)ε
blows up at some point ξ0 ∈M as ε→ 0 if for all r > 0, limε→0 maxBr(ξ0) uε = +∞.
Druet [7, 9] obtained the following necessary condition for blow-up:

Theorem 1.1 (Druet [7, 9]). Let (M, g) be a compact Riemannian manifold of
dimension n ≥ 4. Let h0 ∈ C1(M) be such that ∆g + h0 is coercive. Assume that
there exist families (hε)ε>0 ∈ C1(M) and (uε)ε>0 ∈ C2(M) satisfying (2) and such
that hε → h0 strongly in C1(M) and uε ⇀ u0 weakly in L2?(M). Assume that (uε)ε
blows-up. Then there exists ξ0 ∈M such that (uε)ε blows up at ξ0 and

(3) (h0 − cn Scalg) (ξ0) = 0 if n 6= 6 and (h0 − cn Scalg −2u0) (ξ0) = 0 if n = 6.

Furthermore, if n ∈ {4, 5}, then u0 ≡ 0.

Here cn := n−2
4(n−1) and Scalg is the Scalar curvature of (M, g). This result does

not hold in dimension n = 3. Indeed, Hebey–Wei [15] constructed examples of
blowing-up solutions to (2) on the standard sphere (S3, g0), which are bounded in
L2?(S3) but do not satisfy (3).
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This paper is concerned with the converse of Theorem 1.1 in dimensions n ≥ 4.
For the sake of clarity, we state separately our results in the cases u0 ≡ 0 in
dimension n ≥ 4 (Theorem 1.2) and u0 > 0 in dimension n ≥ 6 (Theorem 1.3):

Theorem 1.2. Let (M, g) be a compact Riemannian manifold of dimension n ≥ 4.
Let h0 ∈ Cp(M), 1 ≤ p ≤ ∞, be such that ∆g + h0 is coercive. Assume that there
exists a point ξ0 ∈M such that

(4) (h0 − cn Scalg) (ξ0) = |∇ (h0 − cn Scalg) (ξ0)| = 0.

Then there exist families (hε)ε>0 ∈ Cp(M) and (uε)ε>0 ∈ C2(M) satisfying (2) and
such that hε → h0 strongly in Cp(M), uε ⇀ 0 weakly in L2?(M) and (uε)ε blows
up at ξ0.

For convenience, for every h0, u0 ∈ C0(M), we define

(5) ϕh0
:= h0 − cn Scalg and ϕh0,u0

:=

{
h0 − cn Scalg if n 6= 6

h0 − 2u0 − cn Scalg if n = 6.

Theorem 1.3. Let (M, g) be a compact Riemannian manifold of dimension n ≥ 6.
Let h0 ∈ Cp(M), 1 ≤ p ≤ ∞, be such that ∆g + h0 is coercive. Assume that there
exist a solution u0 ∈ C2(M) of (1) and a point ξ0 ∈M such that

(6) ϕh0,u0
(ξ0) = |∇ϕh0,u0

(ξ0)| = 0.

Then there exist families (hε)ε>0 ∈ Cp(M) and (uε)ε>0 ∈ C2(M) satisfying (2) and
such that hε → h0 strongly in Cp(M), uε ⇀ u0 weakly in L2?(M) and (uε)ε blows
up at ξ0.

Compared with Theorem 1.1, we have assumed here that condition (3) is also
satisfied at order 1. However, this stronger condition is actually expected to be
necessary for the existence of blowing-up solutions (see Theorem 14.1 in the last
section of this paper and the discussion in Druet [9, Section 2.5]). Note that we do
not make any nondegeneracy assumptions, neither on the solution u0, nor on the
critical point ξ0.

We refer to Section 2 for examples of functions h0 and u0 satisfying the assump-
tions of Theorem 1.3. Recently, Premoselli–Thizy [23] obtained a beautiful example
of blowing-up solutions showing that in dimension n ∈ {4, 5}, condition (4) may
not be satisfied at all blow-up points.

When h0 ≡ cn Scalg, that is when (1) is the Yamabe equation, several examples
of blowing-up solutions have been obtained. In the perturbative case, that is when
hε 6≡ cn Scalg, examples of blowing-up solutions have been obtained by Druet–
Hebey [10], Esposito–Pistoia–Vétois [12], Morabito–Pistoia–Vaira [22], Pistoia–
Vaira [24] and Robert–Vétois [27]. In the nonpertubative case hε ≡ cn Scalg, we
refer to Brendle [3] and Brendle–Marques [4] regarding the non-compactness of
Yamabe metrics. When solutions blow-up not only pointwise but also in energy,
the function ϕh0

may not vanish (see Chen–Wei–Yan [5] for n ≥ 5 and Vétois–
Wang [32] for n = 4).

When there does not exist any blowing-up solutions to the equations (2), then
equation (1) is stable. We refer to the survey of Druet [9] and the book of Hebey [14]
for exhaustive studies of the various concepts of stability. Stability also arises in
the Lin–Ni–Takagi problem (see for instance del Pino–Musso–Roman–Wei [6] for a
recent reference on this topic). In Geometry, stability is linked to the problem of
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compactness of the Yamabe equation (see Schoen [29, 30], Li–Zhu [20], Druet [8],
Marques [21], Li–Zhang [18,19], Khuri–Marques–Schoen [16]).

Let us give some general considerations about the proofs. Theorem 1.1 yields
local information on blow-up points. It is essentially the consequence of the concen-
tration of the L2–norm of the solutions at one of the blow-up points when n ≥ 4.
However, in our construction, the problem may be both local and global. Indeed,
we reduce the problem to finding critical points of a functional defined on a finite-
dimensional space. The first term in the asymptotic expansion of the reduced
functional is local. This is due to the L2–concentration of the standard bubble in
the definition of our ansatz. The second term in the expansion plays a decisive role
for obtaining critical points. For the high dimensions n ≥ 6, this term is also local
(see e.g. (54)). However, for n ∈ {4, 5}, the second term is global and we are then
compelled to introduce a suitable notion of mass, which carries global information
on h0 and (M, g), and to add a corrective term to the standard bubble (see (100))
in order to obtain a reasonable expansion (see e.g. (113)). Unlike the case where
n = 3 or h0 ≡ cn Scalg, the mass is not defined at all points in the manifold, but
only at the points where the condition (6) is satisfied.

More precisely, Theorems 1.2 and 1.3 are consequences of Theorems 1.4 and 1.5
below. The latter are the core results of our paper. In these theorems, we fix a
linear perturbation hε = h0 + εf for some function f ∈ Cp(M). Furthermore, we
specify the behavior of the blowing-up solutions that we obtain. We let H2

1 (M) be
the completion of C∞(M) for the norm ‖u‖H2

1
:= ‖∇u‖2 +‖u‖2. We say that (uε)ε

blows up with one bubble at some point ξ0 ∈M if uε = u0 +Uδε,ξε + o(1) as ε→ 0
in H2

1 (M), where u0 ∈ H2
1 (M) is such that uε ⇀ u0 weakly in H2

1 (M), Uδε,ξε is as
in (24), (δε, ξε)→ (0, ξ0) and o(1)→ 0 strongly in H2

1 (M) as ε→ 0.

Our first result deals with the case where u0 ≡ 0 in dimension n ≥ 4:

Theorem 1.4. Let (M, g) be a compact Riemannian manifold of dimension n ≥ 4.
Let h0 ∈ Cp(M), p ≥ 2, be such that ∆g+h0 is coercive. Assume that there exists a
point ξ0 ∈M satisfying (4). Assume in addition that ξ0 is a nondegenerate critical
point of h0 − cn Scalg and

(7) Kh0
(ξ0) :=

mh0(ξ0) if n = 4, 5

∆g (h0 − cn Scalg) (ξ0) +
cn
6
|Weylg(ξ0)|2g if n ≥ 6

 6= 0,

where mh0(ξ0) is the mass of ∆g+h0 at the point ξ0 (see Proposition-Definition 8.1),
and Weylg is the Weyl curvature tensor of the manifold. We fix a function f ∈
Cp(M) such that f(ξ0) × Kh0

(ξ0) > 0. Then for small ε > 0, there exists uε ∈
C2(M) satisfying

(8) ∆guε + (h0 + εf)uε = u2?−1
ε in M, uε > 0,

and such that uε ⇀ 0 weakly in L2?(M) and (uε)ε blows up with one bubble at ξ0.

The definition of Kh0(ξ0) outlines the major difference between high- and low-
dimensions that was mentioned above: for n ≥ 6, it is a local quantity, but for
n ∈ {4, 5}, it carries global information (see Section 8 for more discussions).

Next we deal with the case where u0 > 0 in dimension n ≥ 6:

Theorem 1.5. Let (M, g) be a compact Riemannian manifold of dimension n ≥ 6.
Let h0 ∈ Cp(M), p ≥ 2, be such that ∆g + h0 is coercive. Assume that there exist
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a nondegenerate solution u0 ∈ C2(M) to equation (1) and ξ0 ∈ M satisfying (6).
Assume in addition that ξ0 is a nondegenerate critical point of ϕh0,u0 and
(9)

Kh0,u0
(ξ0) :=



∆gϕh0,u0
(ξ0) +

c6
6
|Weylg(ξ0)|2g if n = 6

u0(ξ0) if 7 ≤ n ≤ 9

672u0(ξ0) + ∆gϕh0,u0
(ξ0) +

c10

6
|Weylg(ξ0)|2g if n = 10

∆gϕh0,u0
(ξ0) +

cn
6
|Weylg(ξ0)|2g if n ≥ 11


6= 0.

We fix a function f ∈ Cp(M) such that

(10) Kh0,u0
(ξ0)×

{ [
f + 2(∆g + h0 − 2u0)−1(fu0)

]
(ξ0) if n = 6

f(ξ0) if n > 6

}
> 0.

Then for small ε > 0, there exists uε ∈ C2(M) satisfying (8) and such that uε ⇀ u0

weakly in L2?(M) and (uε)ε blows up with one bubble at ξ0.

The paper is organized as follows. In Section 2, we discuss the question of
existence of functions h0 and u0 satisfying the assumptions of Theorem 1.3. In
Section 3, we introduce our notations and discuss the general setting of the problem.
In Section 4, we establish a general C1-estimate on the energy functional, which
holds in all dimensions. In Sections 5, 6 and 7, we then compute a C1-asymptotic
expansion of the energy functional in the case where n ≥ 6, which we divide in
the following subcases: [n ≥ 6 and u0 ≡ 0] in Section 5, [n ≥ 7 and u0 > 0]
in Section 6 and [n = 6 and u0 > 0] in Section 7. In Section 8, we discuss the
specific setting of dimensions n ∈ {4, 5} and we define the mass of ∆g + h0 in this
case. In Section 9, we then deal with the C1-asymptotic expansion of the energy
functional when n ∈ {4, 5}. In Sections 10, 11, 12 and 13, we complete the proofs
of Theorems 1.4, 1.5, 1.2 and 1.3, respectively. Finally, in Section 14, we deal with
the necessity of condition (4) on the gradient

2. Existence results for h0 and u0

This short section deals with two results which provide conditions for the exis-
tence of functions h0 and u0 satisfying the assumptions of Theorem 1.3 with pre-
scribed ϕh0,u0 and ξ0. The first result is a straightforward consequence of classical
works on the Yamabe equation:

Theorem 2.1. (Aubin [1], Schoen [28], Trudinger [31]) Assume that n ≥ 3. Then
there exists ε0 ≥ 0 depending only on n and (M, g) such that ε0 > 0 if (M, g) is not
conformally diffeomorphic to the standard sphere, ε0 = 0 otherwise, and for every
ϕ0 ∈ C1(M) such that

ϕ0 ≤ ε0 and λ1(∆g + h0) > 0, where h0 := ϕ0 + cn Scalg,

there exists a solution u0 ∈ C2(M) of the equation (1). In particular, if n 6= 6 and
ϕ0(ξ0) = |∇ϕ0(ξ0)| = 0 at some point ξ0 ∈M , then h0 satisfies (6).

It remains to deal with the case where n = 6. In this case, we obtain the
following:
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Proposition 2.1. Assume that n = 6. Let ϕ0 ∈ Cp(M), 1 ≤ p ≤ ∞, be such that

(11) λ1(∆g + ϕ0 + cn Scalg) < 0.

Then there exists h0 ∈ Cp(M) such that the equation (1) admits a solution u0 ∈
C2(M) satisfying h0−cn Scalg −2u0 ≡ ϕ0. In particular, if ϕ0(ξ0) = |∇ϕ0(ξ0)| = 0
at some point ξ0 ∈M , then (h0, u0) satisfy (6).

Proof of Proposition 2.1. Note that 2? − 1 = 2 when n = 6. In this case, we can
rewrite the equation (1) as

(12) ∆gu+ (h0 − 2u)u = −u2, u > 0 in M.

Using (11) together with a standard variational method, we obtain that there ex-
ists a solution u0 ∈ Cp+1(M) ⊂ C2(M) of the equation (12) with h0 := ϕ0 +
cn Scalg +2u0 ∈ Cp(M). This ends the proof of Proposition 2.1. �

3. Notations and general setting

We follow the notations and definitions of Robert–Vétois [26].

3.1. Euclidean setting. We define

(13) U1,0(x) :=

(√
n(n− 2)

1 + |x|2

)n−2
2

for all x ∈ Rn,

so that U1,0 is a positive solution to the equation

∆EuclU = U2?−1 in Rn,
where Eucl stands for the Euclidean metric. For every δ > 0 and ξ ∈ Rn, we define

(14) Uδ,ξ(x) := δ−
n−2
2 U

(
δ−1(x− ξ)

)
=

(√
n(n− 2)δ

δ2 + |x− ξ|2

)n−2
2

for all x ∈ Rn.

We define

(15) Z0 := (∂δUδ,ξ)|(1,0) and Zi := (∂ξiUδ,ξ)|(1,0) for all i = 1, . . . , n.

As one checks,

(16) Z0 = −n− 2

2
U − (x,∇U) =

√
n(n− 2)

n−2
2 n− 2

2

|x|2 − 1

(1 + |x|2)
n
2

and

(17) Zi = −∂xiU =
√
n(n− 2)

n−2
2 (n− 2)

xi
(1 + |x|2)

n
2

for all i = 1, . . . , n.

We denote p = (p0, p1, . . . , pn) := (δ, ξ) ∈ (0,∞) × Rn. Straightforward computa-
tions yield

(18) ∂piUδ,ξ = δ−1(Zi)δ,ξ := δ−1δ−
n−2
2 Zi

(
δ−1(x− ξ)

)
for all i = 0, . . . , n,

(19) ∂δUδ,ξ =
√
n(n− 2)

n−2
2 n− 2

2
δ
n−2
2 −1 |x− ξ|2 − δ2

(δ2 + |x− ξ|2)n/2

and

(20) ∂ξiUδ,ξ =
√
n(n− 2)

n−2
2 (n− 2)δ

n−2
2

(x− ξ)i
(δ2 + |x− ξ|2)n/2

for all i = 1, . . . , n.
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It follows from Rey [25] (see also Bianchi–Egnell [2]) that

{φ ∈ D2
1(Rn) : ∆Euclφ = (2? − 1)U2?−2φ in Rn} = Span{Zi}i=0,...,n,

where D2
1(Rn) is the completion of C∞c (Rn) for u 7→ ‖∇u‖2.

3.2. Riemannian setting. We fix N > n − 2 to be chosen large later. It follows
from Lee–Parker [17] that there exists a function Λ ∈ C∞(M × M) such that,
defining Λξ := Λ(ξ, ·), we have

(21) Λξ > 0, Λξ(ξ) = 1 and ∇Λξ(ξ) = 0 for all ξ ∈M

and, defining the metric gξ := Λ2?−2
ξ g conformal to g, we have

(22) Scalgξ(ξ) = 0, ∇Scalgξ(ξ) = 0, ∆g Scalgξ(ξ) =
1

6
|Weylg(ξ)|2g

and

(23) dvgξ(x) = (1 + O(|x|N )) dx via the chart exp
gξ
ξ around 0,

where dx is the Euclidean volume element, dvgξ is the Riemannian volume element

of (M, gξ) and exp
gξ
ξ is the exponential chart at ξ with respect to the metric gξ. The

compactness of M yields the existence of r0 > 0 such that the injectivity radius of
the metric gξ satisfies igξ(M) ≥ 3r0 for all ξ ∈M . We let χ ∈ C∞(R) be such that
χ(t) = 1 for all t ≤ r0, χ(t) = 0 for all t ≥ 2r0 and 0 ≤ χ ≤ 1. For every δ > 0 and
ξ ∈M , we then define the bubble as

Uδ,ξ(x) : = χ(dgξ(x, ξ))Λξ(x)δ−
n−2
2 U1,0(δ−1(exp

gξ
ξ )−1(x))(24)

= χ(dgξ(x, ξ))Λξ(x)

(
δ
√
n(n− 2)

δ2 + dgξ(x, ξ)
2

)n−2
2

,

where dgξ(x, ξ) is the geodesic distance between x and ξ with respect to the metric
gξ. Since there will never be ambiguity, to avoid unnecessary heavy notations, we
will keep the notations Uδ,ξ as (14) when p = (δ, ξ) ∈ (0,∞)×Rn, and as (24) when
p = (δ, ξ) ∈ (0,∞)×M . Finally, for every p = (δ, ξ) ∈ (0,∞×M , we define

Kδ,ξ := Span{(Zi)δ,ξ}i=0,...,n,

where
(Zi)δ,ξ(x) := χ(dgξ(x, ξ))Λξ(x)δ−

n−2
2 Zi(δ

−1(exp
gξ
ξ )−1(x))

for all x ∈M and i = 0, . . . , n.

3.3. General reduction theorem. For every 1 ≤ q ≤ ∞, we let ‖·‖q be the usual

norm of Lq(M). For every h ∈ C0(M), we define

Jh(u) :=
1

2

∫
M

(
|∇u|2g + hu2

)
dvg −

1

2?

∫
M

u2?

+ dvg for all u ∈ H2
1 (M),

where u+ := max(u, 0). The space H2
1 (M) is endowed with the bilinear form 〈·, ·〉h,

where

〈u, v〉h :=

∫
M

(∇u∇v + huv) dvg for all u, v ∈ H2
1 (M).

If ∆g +h0 is coercive and ‖h−h0‖∞ is small enough, then 〈·, ·〉h is positive definite
and (H2

1 (M), 〈·, 〉h) is a Hilbert space. We then have that Jh ∈ C1(H2
1 (M)) and

J ′h(u)[φ] =

∫
M

(∇u∇φ+ huφ) dvg −
∫
M

u2?−1
+ φdvg = 〈u, φ〉h −

∫
M

u2?−1
+ φdvg
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for all u, φ ∈ H2
1 (M). We let (δ, ξ)→ Bh,δ,ξ = Bh(δ, ξ) be a function in C1((0,∞)×

M,H2
1 (M)) such that for every δ > 0, there exists ε(δ) > 0 independent of h and ξ

such that

(25) ‖Bh,δ,ξ‖H2
1

+ δ‖∂pBh,δ,ξ‖H2
1
< ε(δ) for all p = (δ, ξ) ∈ (0,∞)×M

and ε(δ) → 0 as δ → 0. The function Bh,δ,ξ will be fixed later. We also let
ũ0 ∈ C2(M). We define

Wh,ũ0,δ,ξ := ũ0 + Uδ,ξ +Bh,δ,ξ.

We fix a point ξ0 ∈ M and a function h0 ∈ C0(M) such that ∆g + h0 is coercive.
We let u0 ∈ C2(M) be a solution of the equation

∆gu0 + h0u0 = u2?−1
0 , u0 ≥ 0 in M.

It follows from the strong maximum principle that either u0 ≡ 0 or u0 > 0. We
assume that u0 is nondegenerate, that is, for every φ ∈ H2

1 (M),

∆gφ+ h0φ = (2? − 1)u2?−2
0 φ ⇐⇒ φ ≡ 0.

It then follows from Robert–Vétois [26] that there exist ε0 > 0, U0 ⊂ M a small
open neighborhood of ξ0 and Φh,ũ0

∈ C1((0, ε0) × U0, H
2
1 (M)) such that, when

‖h− h0‖∞ < ε0 and ‖ũ0 − u0‖C2 < ε0, we have

(26) ΠK⊥δ,ξ
(Wh,ũ0,δ,ξ + Φh,ũ0,δ,ξ − (∆g + h)−1((Wh,ũ0,δ,ξ + Φh,ũ0,δ,ξ)

2?−1
+ )) = 0

and

(27) ‖Φh,ũ0,δ,ξ‖H2
1
≤ C‖Wh,ũ0,δ,ξ−(∆g+h)−1((Wh,ũ0,δ,ξ)

2?−1
+ )‖H2

1
≤ C

∥∥Rδ,ξ∥∥ 2n
n+2

for all (δ, ξ) ∈ (0, ε0)×U0, where C > 0 does not depend on (h, ũ0, δ, ξ), Φh,ũ0,δ,ξ :=
Φh,ũ0(δ, ξ), ΠK⊥δ,ξ

is the orthogonal projection of H2
1 (M) onto K⊥δ,ξ (here, the or-

thogonality is taken with respect to 〈·, ·〉h) and

(28) Rδ,ξ := (∆g + h)Wh,ũ0,δ,ξ − (Wh,ũ0,δ,ξ)
2?−1
+ .

Furthermore, for every (δ0, ξ0) ∈ (0, ε0)× U0, we have

(29) J ′h(Wh,ũ0,δ0,ξ0 + Φh,ũ0,δ0,ξ0) = 0

⇐⇒ (δ0, ξ0) is a critical point of (δ, ξ) 7→ Jh(Wh,ũ0,δ,ξ + Φh,ũ0,δ,ξ).

It follows from Robert–Vétois [26] that

(30) Jh(Wh,ũ0,δ,ξ + Φh,ũ0,δ,ξ) = Jh (Wh,ũ0,δ,ξ) + O(‖Φh,ũ0,δ,ξ‖2H2
1
)

uniformly with respect to (δ, ξ) ∈ (0, ε0)×U0 and (h, ũ0) such that ‖h−h0‖∞ < ε0
and ‖ũ0 − u0‖C2 < ε0.
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Conventions:

• To avoid unnecessarily heavy notations, we will often drop the indices
(h, , ũ0, δ, ξ), so that U := Uδ,ξ, B := Bh,δ,ξ, W := Wh,ũ0,δ,ξ, Φ := Φh,ũ0,δ,ξ,
etc. The differentiation with respect to the variable (δ, ξ) will always be
denoted by ∂p, and the differentiation with respect to x ∈ M (or Rn) by
∂x. For example,

∂xi∂pjW =


∂2Wh,ũ0,δ,ξ(x)

∂xi∂δ
if j = 0

∂2Wh,ũ0,δ,ξ(x)

∂xi∂ξj
if j ≥ 1.

• For every ξ ∈ U0, we identify the tangent space TξM with Rn. Indeed,
assuming that the neighborhood U0 is small enough, it follows from the
Gram–Schmidt orthonormalization procedure that there exists an orthonor-
mal frame with respect to the metric gξ, which is smooth with respect to
the point ξ. Such a frame provides a smooth family of linear isometries
(ψξ)ξ∈U0

, ψξ : Rn → TξM , which allow to identify TξM with Rn. In par-
ticular, in this paper, the chart exp

gξ
ξ will denote the composition of the

usual exponential chart with the isometry ψξ.

• Throughout the paper, C will denote a positive constant such that
– C depends on n, (M, g), ξ0 ∈M , the functions h0, u0 ∈ C2(M) and a

constant A > 0 such that ‖h0‖C2 < A and λ1(∆g + h0) > 1/A. In the
case where u0 > 0, we also assume that ‖u0‖C2 < A and u0 > 1/A.

– C does not depend on x ∈M (or x ∈ Rn, depending on the context),
ξ in the neighborhood U0, δ > 0 small and h ∈ C2(M) such that
‖h‖C2 < A and λ1(∆g +h) > 1/A. In the case where u0 > 0, C is also
independent of ũ0 ∈ C2(M) such that ‖ũ0‖C2 < A and ũ0 > 1/A.

The value of C might change from line to line, and even in the same line.

• For every f, g ∈ R, the notations f = O(g) and f = o(g) will stand for
|f | ≤ C |g| and |f | ≤ Cε(h, δ, ξ) |g|, respectively, where ε(h, δ, ξ) → 0 as
h→ h0 in C2(M), δ → 0 and ξ → ξ0.

4. C1-estimates for the energy functional

For every δ > 0 and ξ ∈ U0, we define

(31) Ũδ,ξ(x) :=

(
δ
√
n(n− 2)

δ2 + dgξ(x, ξ)
2

)n−2
2

for all x ∈M.

Our first result is the differentiable version of (30).

Proposition 4.1. In addition to the assumptions of Section 3, we assume that

(32) |Bh,δ,ξ(x)|+ δ|∂pBh,δ,ξ(x)| ≤ C(Uδ,ξ(x) + δŨδ,ξ(x)) for all x ∈M.

We then have

(33) ∂pJh(W + Φ) = ∂pJh(W ) + O(δ−1‖Φ‖H2
1
(‖R‖ 2n

n+2
+ δ‖∂pR‖ 2n

n+2
+ ‖Φ‖H2

1
))

+ O(1n≥7δ
−1‖Φ‖2

?−1
H2

1
),

where R = Rδ,ξ is as in (28).
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Proof of Proposition 4.1. It follows from (26) that there exist real numbers λj :=
λj(δ, ξ) such that

W + Φ− (∆g + h)−1(W + Φ)2?−1
+ =

n∑
j=0

λjZj .

This can be written as

(34) J ′h(W + Φ) =

n∑
j=0

λj〈Zj , ·〉h.

We fix i ∈ {0, . . . , n}. We obtain

∂piJh(W + Φ) = J ′h(W + Φ)[∂piW + ∂piΦ](35)

= J ′h(W )[∂piW ] + (J ′h(W + Φ)− J ′h(W )) [∂piW ] + J ′h(W + Φ)[∂piΦ]

= J ′h(W )[∂piW ] + (J ′h(W + Φ)− J ′h(W )) [∂piW ] +

n∑
j=0

λj〈Zj , ∂piΦ〉h

= ∂piJh(W ) + (J ′h(W + Φ)− J ′h(W )) [∂piW ]−
n∑
j=0

λj〈∂piZj ,Φ〉h,

where, for the last line, we have used that 〈(Zi)δ,ξ,Φh,ũ0,δ,ξ〉h = 0 for all (δ, ξ) since
Φh,ũ0,δ,ξ ∈ K⊥δ,ξ. We estimate separately the two last terms in the right-hand side

of (35). As regards the first of these two term, we have

(J ′h(W + Φ)− J ′h(W )) [∂piW ](36)

=

∫
M

(∇Φ∇∂piW + hΦ∂piW )−
∫
M

((W + Φ)2?−1
+ −W 2?−1

+ )∂piW dvg

=

∫
M

Φ((∆g + h)∂piW − (2? − 1)W 2?−1
+ ∂piW ) dvg

−
∫
M

((W + Φ)2?−1
+ −W 2?−1

+ − (2? − 1)W 2?−1
+ Φ)∂piW dvg.

With the definition (28), Hölder’s and Sobolev’s inequalities, we obtain

(37)

∫
M

Φ((∆g + h)∂piW − (2? − 1)W 2?−1
+ ∂piW ) dvg

=

∫
M

Φ∂piRdvg = O(‖Φ‖2?‖∂piR‖ 2n
n+2

) = O(‖Φ‖H2
1
‖∂piR‖ 2n

n+2
).

In the sequel, we will need the following lemma:

Lemma 4.1. We have

(38) Uδ,ξ(x) + δ|∂pUδ,ξ(x)| ≤ CŨδ,ξ(x)

for all (δ, ξ) ∈ (0, ε0)× U0 and x ∈M .

Proof of Lemma 38. Most of the proof is easy computations. The only delicate
point is to prove that |∂ξdgξ(x, ξ)2| ≤ Cdgξ(x, ξ) for all x ∈ M and ξ ∈ U0.

We define F (x, ξ) := dgξ(x, ξ)
2 and G(ξ, y) := exp

gξ
ξ (y). Proving the desired in-

equality amounts to proving that (∂ξF (x, ξ))|ξ=x = 0 for all x ∈ M . Note that

F (G(ξ, y), ξ) = |y|2 for small y ∈ Rn. Differentiating this equality with respect to
ξ yields a relation between ∂xF and ∂ξF , and the requested inequality follows. �
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End of proof of Proposition 4.1. Using Lemma 4.1, the assumption (32) on Bh,δ,ξ,
and that ∂pi ũ0 = 0, we obtain∣∣∣∣∫

M

((W + Φ)2?−1
+ −W 2?−1

+ − (2? − 1)W 2?−2
+ Φ)∂piW dvg

∣∣∣∣
≤ Cδ−1

∫
M

|(W + Φ)2?−1
+ −W 2?−1

+ − (2? − 1)W 2?−2
+ Φ|Ũ dvg.

We split the integral in two. First∫
|W |≤2|Φ|

|(W + Φ)2?−1
+ −W 2?−1

+ − (2? − 1)W 2?−2
+ Φ|Ũ dvg

≤ C
∫
M

|Φ|2
?−1Ũ dvg ≤ C‖Φ‖2

?−1
2? ‖Ũ‖2? ≤ C‖Φ‖2

?−1
H2

1
.

As regards the other part, looking carefully at the signs of the different terms, we
obtain∫

|Φ|≤|W |/2
|(W + Φ)2?−1

+ −W 2?−1
+ − (2? − 1)W 2?−2

+ Φ|Ũ dvg

=

∫
|Φ|≤|W |/2

|W |2
?−1

∣∣∣∣∣
(

1 +
Φ

W

)2?−1

− 1− (2? − 1)
Φ

W

∣∣∣∣∣ Ũ dvg
≤ C

∫
|Φ|≤|W |/2

|W |2
?−1

(
Φ

W

)2

Ũ dvg = C

∫
|Φ|≤|W |/2

|W |2
?−3Φ2Ũ dvg.

In case n ≤ 6, that is 2? ≥ 3, we obtain∫
|Φ|≤|W |/2

|W |2
?−3|Φ|2Ũ dvg ≤

∫
M

Ũ2?−2|Φ|2dvg ≤ C‖Ũ‖2
?−2

2? ‖Φ‖22? ≤ C‖Φ‖2H2
1
.

In case n ≥ 7, that is 2? < 3, arguing as above, we obtain∫
|Φ|≤|W |/2

|W |2
?−3Φ2Ũ dvg ≤ C

∫
M

|Φ|2
?−1Ũ dvg ≤ C‖Φ‖2

?−1
H2

1
.

Plugging these estimates together yields

(39)

∣∣∣∣∫
M

((W + Φ)2?−1
+ −W 2?−1

+ − (2? − 1)W 2?−2
+ Φ)∂piW dvg

∣∣∣∣
≤ Cδ−1(‖Φ‖2H2

1
+ 1n≥7‖Φ‖2

?−1
H2

1
).

As regards the last term in the right-hand side of (35), arguing as in the proof of
Lemma 4.1, we obtain ‖∂piZj‖H2

1
≤ C/δ for all i, j = 0, . . . , n. Therefore, we obtain

(40)

∣∣∣∣∣∣
n∑
j=0

λj〈∂piZj ,Φ〉h

∣∣∣∣∣∣ ≤ Cδ−1Λ‖Φ‖H2
1
, where Λ :=

n∑
j=0

|λj |.

It follows from (34) that

J ′h(W + Φ)[Zi] =

n∑
j=0

λj〈Zi, Zj〉h
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for all i = 0, . . . , n. Since 〈Zi, Zj〉h → 0 if i 6= j and → 1 if i = j as δ → 0 and
uniformly with respect to ξ ∈ U0, we obtain

Λ ≤ C
n∑
i=0

|J ′h(W + Φ)[Zi]| .

For every i = 0, . . . , n, using that 〈Φ, Zi〉h = 0 and ‖W‖2? +‖Zi‖2? ≤ C, we obtain

|J ′h(W + Φ)[Zi]| ≤ |J ′h(W )[Zi]|+
∣∣∣∣〈Φ, Zi〉h − ∫

M

((W + Φ)2?−1
+ −W 2?−1

+ )Zi dvg

∣∣∣∣
≤
∣∣∣∣∫
M

RZi dvg

∣∣∣∣+ C

∫
M

(|W |2
?−2|Φ|+ |Φ|2

?−1)|Zi| dvg

≤ C‖R‖ 2n
n+2

+ C(‖Φ‖2? + ‖Φ‖2
?−1

2? ) ≤ C‖R‖ 2n
n+2

+ C‖Φ‖2? .

Therefore,

(41) Λ ≤ C‖R‖ 2n
n+2

+ C‖Φ‖2? .

Plugging (36), (37), (39), (40) and (41) into (35) yields (33). This proves Proposi-
tion 4.1. �

5. Energy and remainder estimates: the case n ≥ 6 and u0 ≡ ũ0 ≡ 0

In this section, we consider the case where n ≥ 6 and u0 ≡ ũ0 ≡ 0. In this
case, we set Bh,δ,ξ ≡ 0. Then Wh,ũ0,δ,ξ = Wδ,ξ ≡ Uδ,ξ and the assumptions of
Proposition 4.1 are satisfied. We prove the following estimates for R = Rδ,ξ:

Proposition 5.1. Assume that n ≥ 6 and u0 ≡ ũ0 ≡ 0. Then

(42) ‖R‖ 2n
n+2

+ δ‖∂pR‖ 2n
n+2
≤ C



δ2 +Dh,ξδ
2 (ln(1/δ))

2/3
if n = 6

δ
n−2
2 +Dh,ξδ

2 if 7 ≤ n ≤ 9

δ4 (ln(1/δ))
3/5

+Dh,ξδ
2 if n = 10

δ4 +Dh,ξδ
2 if n ≥ 11,

where

(43) Dh,ξ := ‖h− h0‖∞ + dg(ξ, ξ0)2.

Proof of Proposition 5.1. Let Lg := ∆g + cn Scalg be the conformal Laplacian. For

a metric g′ = w4/(n−2)g conformal to g (w ∈ C∞(M) is positive), the conformal
invariance law gives that

(44) Lg′φ = w−(2?−1)Lg(wφ) for all φ ∈ C∞(M).

Therefore, we have

R = (∆g + h)U − U2?−1 = LgU − U2?−1 + ϕhU

= Λ2?−1
ξ (Lgξ(Λ

−1
ξ U)− (Λ−1

ξ U)2?−1) + ϕhU

= Λ2?−1
ξ (∆gξ(Λ

−1
ξ U)− (Λ−1

ξ U)2?−1) + ĥξU,

where ϕh is as in (5) and

(45) ĥξ := ϕh + cnΛ2?−2
ξ Scalgξ .
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Via the exponential chart, using the radial symmetry of Uδ,0 : Rn → R, we obtain
that around 0,
(46)

∆gξ(Λ
−1
ξ U)− (Λ−1

ξ U)2?−1 = ∆EuclUδ,0 +
∂r
√
|gξ|√
|gξ|

∂rUδ,0−U2?−1
δ,0 =

∂r
√
|gξ|√
|gξ|

∂rUδ,0.

It then follows from (23) that

(47) R(x) = ĥξ(x)U(x) + δ
n−2
2 Θδ,ξ(x), where |Θδ,ξ(x)|+ |∂pΘδ,ξ(x)| ≤ C

for all (δ, ξ) ∈ (0,∞)×U0 and x ∈M . Note that these estimates are a consequence
of (46) when x is close to ξ, and they are straightforward when x is far from ξ.
Using Lemma 4.1, we then obtain

(48) |R(x)|+ δ|∂δR(x)| ≤ Cδ
n−2
2 + C|ĥξ(x)|Ũδ,ξ(x)

and

(49) δ|∂ξR(x)| ≤ Cδ
n−2
2 + C|h̃ξ(x)|Ũδ,ξ(x) + Cδ|∂ph̃ξ(x)|Ũδ,ξ(x).

Since (6) and (22) hold, we have

(50) |ĥξ(x)| ≤ CDh,ξ + Cdgξ(x, ξ)
2 and |∂ξĥξ(x)| ≤ Cdgξ(x, ξ).

It is a straightforward computation that for every α > 0 and p ≥ 1, we have

(51) ‖dgξ(·, ξ)αŨδ,ξ‖p ≤ C


δ
n−2
2 if n > (n− 2− α)p

δ
n−2
2 (ln(1/δ))

1/p
if n = (n− 2− α)p

δ
n
p+α−n−2

2 if n < (n− 2− α)p.

Plugging together (48), (49), (50) and (51), long but painless computations yield
(42). This ends the proof of Proposition 5.1. �

Since n ≥ 6, that is 2?−1 ≤ 2, we have ‖Φ‖2
H2

1
= O(‖Φ‖2

?−1
H2

1
). Plugging together

(30), (27), (33) and (42), we obtain

(52) Jh(W + Φ) = Jh(W ) + O


δ4 +D2

h,ξδ
4 (ln(1/δ))

4/3
if n = 6

δn−2 +D2
h,ξδ

4 if 7 ≤ n ≤ 9

δ8 (ln(1/δ))
6/5

+D2
h,ξδ

4 if n = 10

δ8 +D2
h,ξδ

4 if n ≥ 11


and

(53) ∂piJh(W + Φ) = ∂piJh(W )

+ O
(
δ−1
)


δ4 +D2
h,ξδ

4 (ln(1/δ))
4/3

if n = 6

(δ
n−2
2 +Dh,ξδ

2)2?−1 if 7 ≤ n ≤ 9

(δ4 (ln(1/δ))
3/5

+Dh,ξδ
2)2?−1 if n = 10

(δ4 +Dh,ξδ
2)2?−1 if n ≥ 11

for all i = 0, . . . , n. We now estimate Jh(W + Φ):
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Proposition 5.2. Assume that n ≥ 6 and u0 ≡ ũ0 ≡ 0. Then

(54) Jh(W + Φ) =
1

n

∫
Rn
U2?

1,0 dx+
1

2
ϕh(ξ)δ2

∫
Rn
U2

1,0 dx

− 1

4n


242ω5Kh0(ξ0)δ4 ln(1/δ) + O(δ4(o(ln(1/δ) +D2

h,ξ(ln(1/δ))4/3)) if n = 6

Kh0
(ξ0)δ4

∫
Rn
|x|2U2

1,0 dx+ o(δ4) if n ≥ 7

as δ → 0, ξ → ξ0 and h→ h0 in C2(M), where Kh0(ξ0) is as in (7).

Proof of Proposition 5.2. Integrating by parts, we obtain

Jh(U) =
1

2

∫
M

[(∆g + h)U ]U dvg −
1

2?

∫
M

U2?dvg(55)

=
1

2

∫
M

[(∆g + h)U − U2?−1]U dvg +
1

n

∫
M

U2?dvg.

It follows from (47) that

(56)

∫
M

(∆gU + hU − U2?−1)U dvg =

∫
M

ĥξU
2dvg + O(δn−2).

Using the volume estimate (23), we obtain∫
M

U2?dvg =

∫
M

(Λ−1
ξ U)2?dvgξ =

∫
Br0 (0)

U2?

δ,0(1 + O(|x|N ) dx+ O(δn)(57)

=

∫
Rn
U2?

1,0 dx+ O(δn).

Plugging (56) and (57) into (55), we obtain

Jh(U) =
1

2

∫
M

ĥξU
2dvg +

1

n

∫
Rn
U2?

1,0 dx+ O(δn−2).

With the change of metric, the definition of the bubble (24) and the property of
the volume (23), we obtain

(58)

∫
M

ĥξU
2dvg =

∫
Br0 (ξ)

ĥξU
2dvg + O(δn−2) =

∫
Br0 (0)

Ah,ξU
2
δ,0 dx+ O(δn−2),

where

(59) Ah,ξ(x) := (ĥξΛ
2−2?

ξ )(exp
gξ
ξ (x)).

Using the radial symmetry of Uδ,0 and since h0 ∈ C2(M), we obtain∫
Br0 (0)

Ah,ξU
2
δ,0 dx =

∫
Br0 (0)

(Ah,ξ(0) + ∂xαAh,ξ(0)xα(60)

+
1

2
∂xα∂xβAh,ξ(0)xαxβ + O(‖h− h0‖C2 |x|2 + εh0,ξ(x)|x|2))U2

δ,0 dx

= Ah,ξ(0)

∫
Br0 (0)

U2
δ,0 dx−

1

2n
∆EuclAh,ξ(0)

∫
Br0 (0)

|x|2U2
δ,0 dx

+ O

(∫
Br0 (0)

(‖h− h0‖C2 + εh0,ξ(x))|x|2U2
δ,0 dx

)
+ O(δn−2),
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where εh0,ξ(x) → 0 as x → 0, uniformly in ξ ∈ U0. With a change of variable and
Lebesgue convergence theorem, we obtain

(61)

∫
Br0 (0)

U2
δ,0 dx = δ2

∫
Rn
U2

1,0 dx+ O(δn−2),

(62)

∫
Br0 (0)

|x|2U2
δ,0 dx =


242ω5δ

4 ln(1/δ) + O(δ4) if n = 6

δ4

∫
Rn
|x|2U2

1,0 dx+ O(δ5) if n ≥ 7,

and

(63)

∫
Br0 (0)

εh0,ξ(x)|x|2U2
δ,0 dx = o

(
δ4 ln(1/δ) if n = 6

δ4 if n ≥ 7

)
.

Furthermore, we have Ah,ξ(0) = ϕh(ξ) and

∆EuclAh,ξ(0) = ∆gξ(ĥξΛ
2−2?

ξ )(ξ) = Lgξ(ϕhΛ2−2?

ξ )(ξ) + cn∆gξ Scalgξ(ξ)(64)

= Lg(ϕhΛ3−2?

ξ )(ξ) +
cn
6
|Weylg(ξ)|2g

= Lg(ϕh0
Λ3−2?

ξ )(ξ) +
cn
6
|Weylg(ξ)|2g + O(‖h− h0‖C2)

= Kh0
(ξ0) + O(εh0

(ξ) + ‖h− h0‖C2),

where εh0
(ξ)→ 0 as ξ → ξ0. Therefore, plugging together these identities yields

(65) Jh(U) =
1

n

∫
Rn
U2?

1,0 dx+
1

2
ϕh(ξ)δ2

∫
Rn
U2

1,0 dx

− 1

4n


242ω5Kh0

(ξ0)δ4 ln(1/δ) + o
(
δ4 ln(1/δ)

)
if n = 6

Kh0
(ξ0)δ4

∫
Rn
|x|2U2

1,0 dx+ o(δ4) if n ≥ 7.

Plugging together (52) and (65), we obtain (54). This ends the proof of Proposi-
tion 5.2. �

We now estimate the derivatives of Jh(W + Φ):

Proposition 5.3. Assume that n ≥ 6 and u0 ≡ ũ0 ≡ 0. Then

(66) ∂δJh(W + Φ) = ϕh(ξ)δ

∫
Rn
U2

1,0dx

− 1

n


242ω5Kh0(ξ0)δ3 ln(1/δ) + o

(
δ3 ln(1/δ)

)
+ O(D2

h,ξδ
3(ln(1/δ))4/3) if n = 6

Kh0(ξ0)δ3

∫
Rn
|x|2U2

1,0 dx+ o(δ3) + O(D2?−1
h,ξ δ

n+6
n−2 ) if n ≥ 7

and

(67) ∂ξiJh(W + Φ) =
1

2
∂ξiϕh(ξ)δ2

∫
Rn
U2

1,0 dx

+ O

 o(δ3 ln(1/δ)) + O(D2
h,ξδ

3 (ln(1/δ))
4/3

) if n = 6

o(δ3) + O(D2?−1
h,ξ δ

n+6
n−2 ) if n ≥ 7


for all i = 1, . . . , n, as δ → 0, ξ → ξ0 and h→ h0 in C2(M).
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Proof of Proposition 5.3. We fix i ∈ {0, . . . , n}. Using (47) and (38) and arguing
as in (58), we obtain

∂piJh(U) = J ′h(U)[∂piU ] =

∫
M

(∆gU + hU − U2?−1)∂piU dvg(68)

=

∫
M

R∂piU dvg =

∫
M

ĥξU∂piU dvg + O

(
δ
n−2
2

∫
M

|∂piU | dvg
)

=

∫
M

ĥξU∂piU dvg + O
(
δ−1δn−2

)
=

∫
Br0 (0)

Ah,ξUδ,ξ(Λ
−1
ξ ∂piU)(exp

gξ
ξ (x)) dx+ O

(
δ−1δn−2

)
As in (60), we write

(69) Ah,ξ(x) = Ah,ξ(0) + ∂xαAh,ξ(0)xα +
1

2
∂xj∂xkAh,ξ(0)xjxk

+ O(εh0,ξ(x)|x|2 + ‖h− h0‖C2 |x|2)

for all x ∈ Br0(0), where εh0,ξ(x) → 0 as x → 0, uniformly in ξ ∈ U0. With (38),
(62) and (63), we obtain

(70)

∣∣∣∣∣
∫
Br0 (0)

(εh0,ξ(x) + ‖h− h0‖C2)|x|2Uδ,0(Λ−1
ξ ∂piU)(exp

gξ
ξ (x)) dx

∣∣∣∣∣
≤ Cδ−1

∫
Br0 (0)

(εh0,ξ(x)+‖h−h0‖C2)|x|2Ũ2
δ,0 dx = o(δ−1)

{
δ4 ln(1/δ) if n = 6

δ4 if n ≥ 7.

We write ∫
Br0 (0)

Ah,ξUδ,0(Λ−1
ξ ∂piU)(exp

gξ
ξ (x)) dx

=

∫
Br0 (0)

Ah,ξUδ,0∂pi(Λ
−1
ξ U)(exp

gξ
ξ (x)) dx

−
∫
Br0 (0)

Ah,ξU
2
δ,0(Λ−1

ξ ∂piΛ
−1
ξ )(exp

gξ
ξ (x)) dx.

Since ∇Λξ(ξ) = 0, we obtain∫
Br0 (0)

Ah,ξU
2
δ,0(Λ−1

ξ ∂piΛ
−1
ξ )(exp

gξ
ξ (x)) dx

= O

(
Aδ,ξ(0)

∫
Br0 (0)

|x|U2
δ,0 dx

)
+ O

(∫
Br0 (0)

|x|2U2
δ,0 dx

)
.

With the definition (59) of Ah,ξ and the assumption (6) on h0, it follows that∫
Br0 (0)

Ah,ξU
2
δ,0(Λ−1

ξ ∂piΛ
−1
ξ )(exp

gξ
ξ (x)) dx

= O

(
δ−1δ4

(
Dh,ξ +

{
δ ln(1/δ) if n = 6

δ if n ≥ 7

}))
.
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This estimate, the Taylor expansion (69) and the estimate (70) yield

(71)

∫
Br0 (0)

Ah,ξΛ
−1
ξ Uδ,0(Λ−1

ξ ∂piU)(exp
gξ
ξ (x)) dx

= Ah,ξ(0)

∫
Br0 (0)

Uδ,0∂pi(Λ
−1
ξ U)(exp

gξ
ξ (x)) dx

+ ∂xαAh,ξ(0)

∫
Br0 (0)

xαUδ,0∂pi(Λ
−1
ξ U)(exp

gξ
ξ (x)) dx

+
1

2
∂xj∂xkAh,ξ(0)

∫
Br0 (0)

xjxkUδ,0∂pi(Λ
−1
ξ U)(exp

gξ
ξ (x)) dx

+ o(δ−1)

{
δ4 ln(1/δ) if n = 6

δ4 if n ≥ 7.

We first deal with the case i = 0, that is ∂pi = ∂p0 = ∂δ. For every homogeneous
polynomial Q on Rn, it follows from (14) and (18) that∫

Br0 (0)

QUδ,0∂δ(Λ
−1
ξ U)(exp

gξ
ξ (x)) dx

=

∫
Br0 (0)

Qδ−1δ−
n−2
2 U1,0 (x/δ) δ−

n−2
2 Z0 (x/δ) dx.

The explicit expressions (13) and (15) of U and Z0 and their radial symmetry then
yield∫
Br0 (0)

Uδ,0∂δ(Λ
−1
ξ U)(exp

gξ
ξ (x)) dx = δ−1δ2

∫
Rn
U1,0Z0 dx+ O(δ−1δn−2) for n ≥ 6,

∫
Br0 (0)

xjUδ,0∂δ(Λ
−1
ξ U)(exp

gξ
ξ (x)) dx = 0 for n ≥ 6,

and∫
Br0 (0)

xjxkUδ,0∂δ(Λ
−1
ξ U)(exp

gξ
ξ (x)) dx

=
εjk
n
δ−1δ4


c′6 ln(1/δ) + O(δ−1δ4) if n = 6∫

Rn
|x|2U1,0Z0 dx+ O(δ−1δn−2) if n ≥ 7,

where εjk is the Kronecker symbol and c′6 > 0 is a constant that will be discussed
later. Putting these estimates in (68), and (71), we obtain

∂δJh(U) = Ah,ξ(0)δ−1δ2

∫
Rn
U1,0Z0 dx

− 1

2n
δ−1δ4


c′6∆EuclAh,ξ(0) ln(1/δ) + o(ln(1/δ)) if n = 6

∆EuclAh,ξ(0)

∫
Rn
|x|2U1,0Z0 dx+ o(1) if n ≥ 7.

For every δ > 0, we have∫
Rn
U2
δ,0 dx = δ2

∫
Rn
U2

1,0 dx for n ≥ 5
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and ∫
Rn
|x|2U2

δ,0 dx = δ4

∫
Rn
|x|2U2

1,0 dx for n ≥ 7.

Differentiating these equalities with respect to δ at δ = 1, we obtain∫
Rn
U1,0Z0 dx =

∫
Rn
U2

1,0 for n ≥ 5

and ∫
Rn
|x|2U1,0Z0 dx = 2

∫
Rn
|x|2U2

1,0 for n ≥ 7.

Therefore, with the computation (64) and the definition (7), we obtain

(72) ∂δJh(U) = ϕh(ξ)δ−1δ2

∫
Rn
U2

1,0 dx

− 1

n
δ−1δ4


c′6Kh0(ξ0) ln(1/δ) + o(ln(1/δ)) if n = 6

Kh0
(ξ0)

∫
Rn
|x|2U2

1,0 dx+ o(1) if n ≥ 7.

Differentiating (65), we obtain c′6/2 = 242ω5. Therefore, with (53), we obtain (66).
We now deal with the case where i ≥ 1, that is ∂pi = ∂ξi . We first claim that
(73)

[∂ξi(Λ
−1
ξ Uδ,ξ)](ξ, exp

gξ
ξ (x)) + [∂xi(Λ

−1
ξ Uδ,ξ)](ξ, exp

gξ
ξ (x)) = O

(
δ
n−2
2 |x|3

(δ2 + |x|2)
n/2

)
,

where the differential for ξ is taken via the exponential chart. Before proving this
claim, let us remark that it is trivial in the Euclidean context. Indeed, for every
ξ, x ∈ Rn and δ > 0, with the notation (14), we have

∂ξiUδ,ξ(x) = ∂ξi(δ
−n−2

2 U(δ−1(x− ξ))) = −∂xiUδ,ξ(x).

We now prove the claim (73). We fix ξ ∈ U0. We define the path ξ(t) := exp
gξ
ξ (t~ei)

for small t ∈ R, where ~ei is the i-th vector in the canonical basis of Rn. With (31),
we obtain

[∂xi(Λ
−1
ξ Uδ,ξ)](ξ, exp

gξ
ξ (x)) =

d

dt
Ũδ,ξ(exp

gξ
ξ (x+ t~ei))|t=0(74)

= −n− 2

2

δ
n−2
2

(δ2 + |x|2)n/2
· 2xi

and

[∂ξi(Λ
−1
ξ Uδ,ξ)](ξ, exp

gξ
ξ (x)) =

d

dt
Ũδ,ξ(t)(exp

gξ
ξ (x))|t=0(75)

= −n− 2

2

δ
n−2
2

(δ2 + |x|2)n/2
· d
dt
d2
gξ(t)

(ξ(t), exp
gξ
ξ (x)).

It follows from Esposito–Pistoia–Vétois [12, Lemma A.2] that

(76)
d

dt
d2
gξ(t)

(ξ(t), exp
gξ
ξ (x)) + 2xi = O(|x|3) as x→ 0.
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Putting together all these estimates yields (73). This proves the claim. With the
definition (14), we obtain∫

Br0 (0)

Uδ,0
δ
n−2
2 |x|3

(δ2 + |x|2)
n/2

dx = O(δ3) for n ≥ 6,

∫
Br0 (0)

|x|Uδ,0
δ
n−2
2 |x|3

(δ2 + |x|2)
n/2

dx = O

(
δ4 ln(1/δ) if n = 6

δ4 if n ≥ 7

)
and ∫

Br0 (0)

|x|2Uδ,0
δ
n−2
2 |x|3

(δ2 + |x|2)
n/2

dx = O

 δ4 if n = 6

δ5 ln(1/δ) if n = 7

δ5 if n ≥ 8.

 .

Noting that [∂xi(Λ
−1
ξ Uδ,ξ)](ξ, exp

gξ
ξ (x)) = ∂xiUδ,0, we obtain by symmetry that∫

Br0 (0)

Λ−1
ξ Uδ,0∂xi(Λ

−1
ξ U)(exp

gξ
ξ (x)) dx =

∫
Br0 (0)

Uδ,0∂xiUδ,0 dx = 0

and similarly, ∫
Br0 (0)

xjxkUδ,0∂xi(Λ
−1
ξ U)(exp

gξ
ξ (x)) dx = 0.

Integrating by parts, straightforward estimates yield∫
Br0 (0)

xjUδ,0∂xi(Λ
−1
ξ U)(exp

gξ
ξ (x)) dx =

∫
Br0 (0)

xjUδ,0∂xiUδ,0 dx

=
1

2

∫
Br0 (0)

xj∂xi(U
2
δ,0) dx = −εij

2

∫
Br0 (0)

U2
δ,0 dx+

1

2

∫
∂Br0 (0)

xj~νiU
2
δ,0 dσ

= −εij
2
δ2

∫
Rn
U2

1,0 dx+ O(δn−2) for n ≥ 6,

where ~ν := (~ν1, . . . , ~νn) is the outward unit normal vector and dσ is the volume
element of ∂Br0(0). Since Ah,ξ(0) = O(Dh,ξ), plugging these estimates together
with (68) and (71), we obtain

(77) ∂ξiJh(U) =
1

2
∂ξiϕh(ξ)δ2

∫
Rn
U2

1,0 dx+ o

(
δ3 ln(1/δ) if n = 6

δ3 if n ≥ 7

)
.

With (53), we then obtain (67). This ends the proof of Proposition 5.3. �

Theorem 1.4 for n ≥ 6 will be proved in Section 10.

6. Energy and remainder estimates: the case n ≥ 7 and u0, ũ0 > 0

In this section, we assume that u0, ũ0 > 0 and n ≥ 7, that is 2? − 1 < 2. As in
the previous case, we set Bh,δ,ξ ≡ 0, so that Wh,ũ0,δ,ξ = Wũ0,δ,ξ ≡ ũ0 + Uδ,ξ and
the assumptions of Proposition 4.1 are satisfied. We prove the following estimates
for R = Rδ,ξ:

Proposition 6.1. Assume that n ≥ 7 and u0, ũ0 > 0. Then
(78)

‖R‖ 2n
n+2
≤ C‖∆gũ0 +hũ0− ũ2?−1

0 ‖∞+C(Dh,ξ + δ2 + δ
n−6
2 )δ2 and ‖∂pR‖ 2n

n+2
≤ Cδ,

where Dh,ξ is as in (43).
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Proof of Proposition 6.1. We have

(79) R = (∆gũ0 + hũ0 − ũ2?−1
0 ) +R0 − ((ũ0 + U)2?−1 − ũ2?−1

0 − U2?−1),

where

R0 := ∆gU + hU − U2?−1.

Concerning the derivatives, given i ∈ {0, . . . , n}, we have

∂piR = ∆g∂piU + h∂piU − (2? − 1)(ũ0 + U)2?−2∂piU(80)

= ∂piR
0 − (2? − 1)((ũ0 + U)2?−2 − U2?−2)∂piU.

A straightforward estimate yields

|(ũ0 + U)2?−1 − ũ2?−1
0 − U2?−1| ≤ C1U≤ũ0 ũ

2?−2
0 U + C1ũ0≤U ũ0U

2?−2.

With the expression (24), we obtain

{U(x) ≤ ũ0(x) ⇒ dgξ(x, ξ) ≥ c1
√
δ} and {U(x) ≥ ũ0(x) ⇒ dgξ(x, ξ) ≤ c2

√
δ}

for all x ∈ M , where c1, c2 > 0 depend only on n, (M, g) and A > 0 such that
1/A < ũ0 < A Therefore, with r := dgξ(x, ξ),

|(ũ0 + U)2?−1 − ũ2?−1
0 − U2?−1| ≤ C1r≥c1

√
δU + C1r≤c2

√
δU

2?−2.

Since U ≤ Cδ n−2
2 (δ2 + r2)1−n/2, we then obtain

(81) ‖(ũ0 + U)2?−1 − ũ2?−1
0 − U2?−1‖ 2n

n+2
≤ Cδ

n+2
4 for n ≥ 7.

Since 0 < 2? − 2 < 1, we have

|(ũ0 + U)2?−2 − U2?−2| ≤ C.
Therefore, with (31) and (38), we obtain

(82) ‖((ũ0 + U)2?−2 − U2?−2)∂piU‖ 2n
n+2
≤ Cδ−1‖U‖ 2n

n+2
≤ Cδ−1δ2 for n ≥ 7.

Merging the estimates (42), (79), (80), (81) and (82), we obtain (78). This ends
the proof of Proposition 6.1. �

Plugging (78) and (78) together with (30), (27) and (33), we obtain

(83) Jh(W + Φ) = Jh(W ) + O(‖∆gũ0 + hũ0 − ũ2?−1
0 ‖2∞ +D2

h,ξδ
4 + δ8 + δn−2)

and

(84) ∂piJh(W + Φ) = ∂piJh(W ) + O(‖∆gũ0 + hũ0 − ũ2?−1
0 ‖ 2n

n+2
δ

+‖∆gũ0+hũ0−ũ2?−1
0 ‖2

?−1
∞ δ−1+(Dh,ξ+δ2+δ

n−6
2 )2?−1δ

n+6
n−2 +Dh,ξδ

3+δ5+δn/2)

for all i = 0, . . . , n. We now estimate Jh(W + Φ):

Proposition 6.2. Assume that n ≥ 7 and u0, ũ0 > 0. Then

(85) Jh(W + Φ) = Jh(ũ0) +
1

n

∫
Rn
U2?

1,0 dx+
1

2
ϕh(ξ)δ2

∫
Rn
U2

1,0 dx

− 1

4n
Kh0(ξ0)δ4

∫
Rn
|x|2U2

1,0 dx+ o(δ4)− u0(ξ0)δ
n−2
2

∫
Rn
U2?−1

1,0 dx

+O(‖∆gũ0 +hũ0−ũ2?−1
0 ‖2∞+δ

n−2
2 (‖∆gũ0 +hũ0−ũ2?−1

0 ‖∞+‖ũ0−u0‖∞+o(1)))

as δ → 0, ξ → ξ0 and h→ h0 in C2(M).
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Proof of Proposition 6.2. We first write

Jh(ũ0 +U) = Jh(ũ0) + Jh(U)−
∫
M

ũ0U
2?−1dvg +

∫
M

(∆gũ0 +hũ0− ũ2?−1
0 )U dvg

− 1

2?

∫
M

((ũ0 + U)2? − ũ2?

0 − U2? − 2?ũ2?−1
0 U − 2?ũ0U

2?−1) dvg.

We fix 0 < θ < 2
n−2 < 2? − 2. There exists C > 0 such that

|(ũ0 + U)2? − ũ2?

0 − U2? − 2?ũ2?−1
0 U − 2?ũ0U

2?−1|

≤ C1ũ0≤U ũ
1+θ
0 U2?−1−θ + C1U≤ũ0

ũ2?−1−θ
0 U1+θ.

Using the definition (24) and arguing as in the proof of (81), we obtain∣∣∣∣∫
M

((ũ0 + U)2? − ũ2?

0 − U2? − 2?ũ2?−1
0 U − 2?ũ0U

2?−1) dvg

∣∣∣∣ ≤ Cδ n−2
2 +n−2

2 θ.

Furthermore, we obtain∣∣∣∣∫
M

(∆gũ0 + hũ0 − ũ2?−1
0 )U dvg

∣∣∣∣ ≤ C‖∆gũ0 + hũ0 − ũ2?−1
0 )‖∞

∫
M

Udvg

≤ C‖∆gũ0 + hũ0 − ũ2?−1
0 )‖∞δ

n−2
2 .

Using (24), that Λξ(x) = 1 + O(dg(x, ξ)
2) for all x ∈ M and that Uδ,0 is radially

symmetrical, we obtain∫
M

ũ0U
2?−1dvg =

∫
Br0 (0)

ũ0(exp
gξ
ξ (x))(1 + O(|x|2))U2?−1

δ,0 dx+ O(δ
n−2
2 (2?−1))

=

∫
Br0 (0)

(ũ0(ξ) + xα∂xα ũ0(exp
gξ
ξ (ξ)) + O(|x|2))U2?−1

δ,0 dx+ O(δ
n+2
2 )

= ũ0(ξ)

∫
Br0 (0)

U2?−1
δ,0 dx+ O

(∫
Br0 (0)

|x|2U2?−1
δ,0 dx

)
+ O(δ

n+2
2 )

= ũ0(ξ)δ
n−2
2

∫
Br0/δ(0)

U2?−1
1,0 dx+ O

(
δ
n+2
2

∫
Br0/δ(0)

|x|2U2?−1
1,0 dx

)
+ O(δ

n+2
2 ).

Since U1,0 ≤ C(1 + |x|2)1−n/2, we obtain∫
Br0/δ(0)

U2?−1
1,0 dx =

∫
Rn
U2?−1

1,0 dx+ O(δ2)

and ∫
Br0/δ(0)

|x|2U2?−1
1,0 dx = O (ln(1/δ)) for n ≥ 7.

Therefore, plugging all these estimates together yields∫
M

ũ0U
2?−1dvg = ũ0(ξ)δ

n−2
2

∫
Rn
U2?−1

1,0 dx+ O(δ
n+2
2 ln(1/δ)).
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Consequently, we obtain that for every 0 < θ < 2
n−2 ,

Jh(ũ0 + U) = Jh(ũ0) + Jh(U)− ũ0(ξ)δ
n−2
2

∫
Rn
U2?−1

1,0 dx

+

∫
M

(∆gũ0 + hũ0 − ũ2?−1
0 )U dvg + O(δ

n−2
2 +n−2

2 θ).

Now, with the expansion (65), we obtain that for n ≥ 7,

(86) Jh(ũ0 + U) = Jh(ũ0) +
1

n

∫
Rn
U2?

1,0 dx+
1

2
ϕh(ξ)δ2

∫
Rn
U2

1,0 dx

− 1

4n
Kh0(ξ0)δ4

∫
Rn
|x|2U2

1,0 dx+ o(δ4)− u0(ξ0)δ
n−2
2

∫
Rn
U2?−1

1,0 dx

+ O(δ
n−2
2 (‖∆gũ0 + hũ0 − ũ2?−1

0 ‖∞ + ‖ũ0 − u0‖∞ + dg(ξ, ξ0) + δ
n−2
2 θ)).

Plugging together (83) and (86), we then obtain (85). This ends the proof of
Proposition 6.2. �

We now estimate the derivatives of Jh(W + Φ):

Proposition 6.3. Assume that n ≥ 7 and u0, ũ0 > 0. Then

(87) ∂δJh(W + Φ) = ϕh(ξ)δ

∫
Rn
U2

1,0 dx−
1

n
Kh0(ξ0)δ3

∫
Rn
|x|2U2

1,0 dx+ o(δ3)

− n− 2

2
u0(ξ0)δ

n−4
2

∫
Rn
U2?−1

1,0 dx+ O(δ
n−4
2 (‖ũ0 − u0‖∞ + o(1))

+ ‖∆gũ0 + hũ0 − ũ2?−1
0 ‖∞δ + ‖∆gũ0 + hũ0 − ũ2?−1

0 ‖2
?−1
∞ δ−1 +D2?−1

h,ξ δ
n+6
n−2 )

and

(88) ∂ξiJh(W + Φ) =
1

2
∂ξiϕh(ξ)δ2

∫
Rn
U2

1,0 dx+ o(δ3)

+ O(δ
n−4
2 (‖ũ0 − u0‖∞ + o(1)) + ‖∆gũ0 + hũ0 − ũ2?−1

0 ‖∞δ

+ ‖∆gũ0 + hũ0 − ũ2?−1
0 ‖2

?−1
∞ δ−1 +D2?−1

h,ξ δ
n+6
n−2 )

for all i = 1, . . . , n, as δ → 0, ξ → ξ0 and h→ h0 in C2(M).

Proof of Proposition 6.3. We fix i ∈ {0, . . . , n}. We have

∂piJh(ũ0 +U) =

∫
M

(∆gũ0 +hũ0− ũ2?−1
0 )∂piU dvg−(2?−1)

∫
M

ũ0U
2?−2∂piU dvg

+ ∂piJh(U)−
∫
M

((ũ0 + U)2?−1 − U2?−1 − (2? − 1)ũ0U
2?−2)∂piU dvg.

There exists C > 0 such that

|(ũ0 + U)2?−1 − ũ2?−1
0 − U2?−1 − (2? − 1)ũ0U

2?−2|

≤ C1ũ0≤U ũ
2?−1
0 + C1U≤ũ0

U2?−1.

Since |∂piU | ≤ CŨ/δ (see (38)), arguing as in the proof of (81), we obtain∣∣∣∣∫
M

((ũ0 + U)2?−1 − U2?−1 − (2? − 1)ũ0U
2?−2)∂piU dvg

∣∣∣∣ ≤ Cδ n−2
2 .
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Furthermore, we obtain∣∣∣∣∫
M

(∆gũ0 + hũ0 − ũ2?−1
0 )∂piU dvg

∣∣∣∣ ≤ C‖∆gũ0 + hũ0 − ũ2?−1
0 )‖∞δ−1

∫
M

Ũdvg

≤ C‖∆gũ0 + hũ0 − ũ2?−1
0 )‖∞δ−1δ

n−2
2 .

Independently, using again (38), straightforward computations yield∫
M

ũ0U
2?−2∂piU dvg =

∫
M

(u0(ξ0) + O(‖ũ0 − u0‖∞ + dg(., ξ0))U2?−2∂piU dvg

= u0(ξ0)

∫
M

U2?−2∂piU dvg

+ O

(
δ−1

∫
M

(‖ũ0 − u0‖∞ + dg(ξ, ξ0) + dg(., ξ))Ũ
2?−1dvg

)
= u0(ξ0)

∫
M

U2?−2∂piU dvg + O(δ−1δ
n−2
2 (‖ũ0 − u0‖∞ + dg(ξ, ξ0) + δ)).

Arguing as in the proof of (71), we obtain∫
M

U2?−2∂piU dvg =

∫
Br0 (0)

(ΛξU)2?−2∂pi(Λ
−1
ξ U)(exp

gξ
ξ (x)) dx

+ O

(
δ−1

∫
Br0 (0)

|x|Ũ2?−1dx

)

=

∫
Br0 (0)

(ΛξU)2?−2∂pi(Λ
−1
ξ U)(exp

gξ
ξ (x)) dx+ O(δ

n−2
2 ).

We first deal with the case where i = 0, that is ∂pi = ∂p0 = ∂δ. With (18), we
obtain∫

Br0 (0)

(ΛξU)2?−2∂δ(Λ
−1
ξ U)(exp

gξ
ξ (x)) dx =

∫
Br0 (0)

U2?−2
δ,0 ∂δUδ,0 dx

=

∫
Br0 (0)

U2?−2
δ,0 ∂δUδ,0dx = δ−1

∫
Br0 (0)

(δ−
n−2
2 U1,0(δ−1x))2?−2δ−

n−2
2 Z0(δ−1x) dx

= δ−1δ
n−2
2

∫
Br0/δ(0)

U2?−2
1,0 Z0 dx.

Since Z0 ≤ CU1,0, an asymptotic estimate yields∫
Br0 (0)

(ΛξU)2?−2∂δ(Λ
−1
ξ U)(exp

gξ
ξ (x)) dx = δ−1δ

n−2
2

∫
Rn
U2?−2

1,0 Z0 dx+ O(δ
n
2 ).

Note that for every δ > 0, we have∫
Rn
U2?−1
δ,0 dx = δ

n−2
2

∫
Rn
U2?−1

1,0 dx.

Differentiating this equality with respect to δ at 1, we obtain

(2? − 1)

∫
Rn
U2?−2

1,0 Z0 dx =
n− 2

2

∫
Rn
U2?−1

1,0 dx.

Therefore, we obtain

(2? − 1)

∫
M

U2?−2∂δU dvg =
n− 2

2
δ−1δ

n−2
2

∫
Rn
U2?−1

1,0 dx+ O(δ
n−2
2 ).
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We now deal with the case i ≥ 1, that is ∂pi = ∂ξi . It follows from (75) and (76)
that∫

Br0 (0)

(ΛξU)2?−2∂ξi(Λ
−1
ξ U)(exp

gξ
ξ (x)) dx

=

∫
Br0 (0)

U2?−2
δ,0

(
−n− 2

2

)
δ
n−2
2

(δ2 + |x|2)n/2
(
−2xi + O(|x|3)

)
dx

= O

(∫
Br0 (0)

U2?−2
δ,0

Uδ,0
δ2 + |x|2

|x|3 dx

)
= O

(∫
Br0 (0)

|x|U2?−1
δ,0 dx

)
= O(δ

n−2
2 ).

Putting these results together yields

∂ξiJh(ũ0 + U) = ∂ξiJh(U)− n− 2

2
εi,0u0(ξ0)δ−1δ

n−2
2

∫
Rn
U2?−1

1,0 dx

+ O(δ−1δ
n−2
2 (‖∆gũ0 + hũ0 − ũ2?−1

0 ‖∞ + ‖ũ0 − u0‖∞ + dg(ξ, ξ0) + δ))

for all i = 0, . . . , n. Using the estimates (72) and (77) for the derivatives of Jh(Uδ,ξ),
we obtain

∂δJh(ũ0 + U) = ϕh(ξ)δ−1δ2

∫
Rn
U2

1,0 dx− 4Kh0
(ξ0)δ3

∫
Rn
|x|2U2

1,0 dx

− n− 2

2
u0(ξ0)δ

n−4
2

∫
Rn
U2?−1

1,0 dx+ o(δ3)

+ O(δ
n−4
2 (‖∆gũ0 + hũ0 − ũ2?−1

0 ‖∞ + ‖ũ0 − u0‖∞ + dg(ξ, ξ0) + δ))

and

∂ξiJh(ũ0 + U) =
1

2
∂ξiϕh(ξ)δ2

∫
Rn
U2

1,0 dx+ o(δ4)

+ O(δ
n−4
2 (‖∆gũ0 + hũ0 − ũ2?−1

0 ‖∞ + ‖ũ0 − u0‖∞ + dg(ξ, ξ0) + δ)).

With (84), we then obtain (87) and (88). This ends the proof of Proposition 6.3. �

Theorem 1.5 for n ≥ 7 will be proved in Section 11.

7. Energy and remainder estimates: the case n = 6 and u0, ũ0 > 0

In this section, we assume that u0, ũ0 > 0 and n = 6, that is 2? − 1 = 2. Here
again, we set Bh,δ,ξ ≡ 0, so that Wh,ũ0,δ,ξ = Wũ0,δ,ξ ≡ ũ0+Uδ,ξ and the assumptions
of Proposition 4.1 are satisfied. The remark underlying this section is that

∆g(u0 + U) + h(u0 + U)− (u0 + U)2 = ∆gU + (h− 2u0)U − U2.

Therefore, to obtain a good approximation of the blowing-up solution, we will
subtract a perturbation of 2u0 to the potential. We first estimate R = Rδ,ξ:

Proposition 7.1. Assume that n = 6 and u0, ũ0 > 0. Then

(89) ‖R‖3/2 + δ‖∂pR‖3/2 ≤ C‖∆gũ0 + hũ0 − ũ2
0‖∞ + Cδ2(1 +Dh,ξ (ln(1/δ))

2/3
),

where

(90) Dh,ξ := ‖h̄− h̄0‖∞ + dg(ξ, ξ0)2.
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Proof of Proposition 7.1. Since 2? − 1 = 2, we have

R = ∆g(ũ0 + U) + h(ũ0 + U)− (ũ0 + U)2

= ∆gũ0 + hũ0 − ũ2
0 + ∆gU + (h− 2ũ0)U − U2

and

∂piR = ∂pi
(
∆gU + (h− 2ũ0)U − U2

)
for all i = 0, . . . , n. For convenience, we write

h̄ := h− 2ũ0 and h̄0 := h0 − 2u0.

The estimate (89) then follows from (42). This ends the proof of Proposition 7.1. �

We now estimate the derivatives of Jh(W + Φ):

Proposition 7.2. Assume that n = 6 and u0, ũ0 > 0. Then

(91) Jh(W + Φ) = Jh(ũ0) +
1

n

∫
Rn
U2?

1,0 dx+
1

2
ϕh,ũ0(ξ)δ2

∫
Rn
U2

1,0 dx

− 24ω5Kh0,u0(ξ0)δ4 ln(1/δ) + O(‖∆gũ0 + hũ0 − ũ2
0‖2∞ + ‖∆gũ0 + hũ0 − ũ2

0‖∞δ2)

+ O(δ4 ln(1/δ)(o(1) +D
2

h,ξ (ln(1/δ))
1/3

)),

(92) ∂δJh(W + Φ) = ϕh,ũ0
(ξ)δ

∫
Rn
U2

1,0 dx− 96ω5Kh0,u0
(ξ0)δ3 ln(1/δ)

+ O(‖∆gũ0 + hũ0 − ũ2
0‖∞δ + ‖∆gũ0 + hũ0 − ũ2

0‖2∞δ−1)

+ O(δ3 ln(1/δ)(o(1) +D
2

h,ξ (ln(1/δ))
1/3

))

and

(93) ∂ξiJh(W + Φ) =
1

2
∂ξiϕh,ũ0

(ξ)δ2

∫
Rn
U2

1,0 dx

+ O(‖∆gũ0 + hũ0 − ũ2
0‖∞δ + ‖∆gũ0 + hũ0 − ũ2

0‖2∞δ−1)

+ O(δ3 ln(1/δ)(o(1) +D
2

h,ξ (ln(1/δ))
1/3

))

for all i = 1, . . . , n, as δ → 0, ξ → ξ0 and h → h0 in C2(M), where ϕh,ũ0 ,

Kh0,u0(ξ0) and Dh,ξ are as in (5), (9) and (90).

Proof of Proposition 7.2. As one checks, since n = 6 and 2? = 3, we have

Jh(ũ0 + U) = Jh(ũ0) + Jh̄(U) +

∫
M

(
∆gũ0 + hũ0 − ũ2

0

)
U dvg

and

∂piJh(ũ0 + U) = ∂piJh̄(U) +

∫
M

(
∆gũ0 + hũ0 − ũ2

0

)
∂piU dvg

for all i = 0, . . . , n. Using the definition (24) and since |∂piU | ≤ CŨ/δ, we obtain∣∣∣∣∫
M

(∆gũ0 + hũ0 − ũ2
0)U dvg

∣∣∣∣ ≤ C‖∆gũ0 + hũ0 − ũ2
0)‖∞

∫
M

Udvg

≤ C‖∆gũ0 + hũ0 − ũ2
0)‖∞δ2.
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and ∣∣∣∣∫
M

(∆gũ0 + hũ0 − ũ2
0)∂piU dvg

∣∣∣∣ ≤ C‖∆gũ0 + hũ0 − ũ2
0)‖∞δ−1

∫
M

Ũdvg

≤ C‖∆gũ0 + hũ0 − ũ2
0)‖∞δ−1δ2.

Putting these estimates together with (6), (30), (33), (89), (65), (72) and (77), we
obtain (91), (92) and (93). This ends the proof of Proposition 7.2. �

Theorem 1.5 for n = 6 will be proved in Section 11.

8. Setting and definition of the mass in dimensions n = 3, 4, 5

In this section, we assume that n ≤ 5. Our first lemma is a simple computation:

Lemma 8.1. There exist two functions (ξ, x) 7→ fi(ξ, x), i = 1, 2, defined and
smooth on M ×M such that for every function f : Rn → R that is radially sym-
metrical, we have

(∆g + h)(χ(r)Λξ(x)f(r)) = Λξ(x)2?−1χ∆Eucl(f(r)) + f1(ξ, x)f ′(r) + f2(ξ, x)f(r)

+ ĥξχ(x)Λξ(x)f(r)

for all x ∈ M\ {ξ}, where r := dgξ(x, ξ) and ĥξ is as in (45). Furthermore,
fi(ξ, x) = 0 when dg(x, ξ) ≥ r0 and there exists CN > 0 such that

|f1(ξ, x)(x)| ≤ CNdg(x, ξ)N−1 and |f2(ξ, x)| ≤ CNdg(x, ξ)N−2 for all x, ξ ∈M.

The proof of Lemma 8.1 follows the computations in (47). We leave the details
to the reader.

We define

Γξ(x) :=
χ(dgξ(x, ξ))Λξ(x)

(n− 2)ωn−1dgξ(x, ξ)
n−2

for all x ∈M\ {ξ}. It follows from Lemma 8.1 and the definition (14) that

(94) ∆gUδ,ξ + hUδ,ξ = U2?−1
δ,ξ + Fδ(ξ, x)δ

n−2
2 + ĥξUδ,ξ

and

(∆g + h)Γξ = δξ +
F0(ξ, x)

kn
+ ĥξΓξ, where kn := (n− 2)ωn−1

√
n(n− 2)

n−2
2 ,

δξ is the Dirac mass at ξ and (t, ξ, x)→ Ft(ξ, x) is of class Cp on [0,∞)×M ×M ,
with p being as large as we want provided we choose N large enough. This includes
t = 0 and, therefore,

(95) lim
t→0

Ft = F0 in Cp(M ×M).

For every t ≥ 0, we define βh,t,ξ ∈ H2
1 (M) as the unique solution to

(∆g + h)βh,t,ξ = −

(
Ft(ξ, x)

kn
+ ĥξ

χ(dgξ(ξ, x))Λξ(x)

(n− 2)ωn−1(t2 + dgξ(ξ, x)2)
n−2
2

)
(96)

= −Ft(ξ, x)

kn
− ĥξ


Ut,ξ

knt
n−2
2

if t > 0

Γξ if t = 0.
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Since N > n− 2 and n ≤ 5, the right-hand-side is uniformly bounded in Lq(M) for
some q > 2n

n+2 , independently of t ≥ 0, ξ ∈ U0 and h ∈ C2(M) satisfying ‖h‖∞ < A

and λ1(∆g + h) > 1/A. Therefore, βh,t,ξ is well defined and we have

(97) ‖βh,t,ξ − βh,0,ξ‖H2
1

= o(1) as t→ 0

uniformly with respect to ξ and h. Furthermore, we have βh,t,ξ ∈ C2(M) when
t > 0. As one checks, with these definitions, we obtain that

Gh,ξ := Γξ + βh,0,ξ

is the Green’s function of the operator ∆g + h at the point ξ. We now define the
mass of ∆g + h at the point ξ:

Proposition-Definition 8.1. Assume that 3 ≤ n ≤ 5 and N > n − 2. Let
h ∈ C2(M) be such that ∆g + h is coercive. In the case where n ∈ {4, 5}, assume
in addition that there exists ξ ∈M such that ϕh(ξ) = |∇ϕh(ξ)| = 0, where ϕh is as
in (5). Then βh,0,ξ ∈ C0(M). Furthermore, the number βh,0,ξ(ξ) does not depend
on the choice of N > n − 2 and gξ satisfying (21) and (23). We then define the
mass of ∆g + h at the point ξ as mh(ξ) := βh,0,ξ(ξ).

Proof of Proposition-Definition 8.1. As one checks, when n = 3, we have

ĥξ(x)Γξ(x) = O(dg(x, ξ)
−1)

and when n ∈ {4, 5} and ϕh(ξ) = |∇ϕh(ξ)| = 0, we have

ĥξ(x)Γξ(x) = O(dg(x, ξ)
4−n).

Furthermore, we have

F0(ξ, x) = O(dg(x, ξ)
N−n).

When N > n − 2, this implies that βh,0,ξ ∈ C0(M). The fact that the number
βh,0,ξ(ξ) does not depend on the choice of N and gξ then follows from the unique-
ness of conformal normal coordinates up to the action of O(n) and the choice of
the metric’s one-jet at the point ξ (see Lee–Parker [17]). This ends the proof of
Proposition-Definition 8.1. �

We now prove a differentiation result that will allow us to obtain Theorem 1.2:

Proposition 8.1. Assume that 3 ≤ n ≤ 5. Let h ∈ C2(M) be such that ∆g + h
is coercive. In the case where n ∈ {4, 5}, assume that there exists ξ ∈ M such
that ϕh(ξ) = |∇ϕh(ξ)| = 0. Let H ∈ C2(M) be such that H(ξ) = |∇H(ξ)| = 0.
Then mh+εH(ξ) is well defined for small ε ∈ R and differentiable with respect to ε.
Furthermore,

∂ε(mh+εH(ξ))|0 = −
∫
M

HG2
h,ξ dvg.

Proof of Proposition 8.1. In order to differentiate the mass with respect to the po-
tential function h, it is convenient to write

Gh,ξ = Gcn Scalg,ξ + β̂h,ξ,

where β̂h,ξ ∈ H2
1 (M) is the solution to

(98) (∆g + h)β̂h,ξ = −ϕhGcn Scalg,ξ.
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Under the assumptions of the proposition, we have β̂h,ξ ∈ C0(M) and

β̂h,ξ(ξ) = −
∫
M

ϕhGcn Scalg,ξGh,ξ dvg.

Furthermore, as one checks, we have

(99) mh(ξ) = mcn Scalg (ξ)− β̂h,ξ(ξ).

It follows from standard elliptic theory that β̂h+εH,ξ is differentiable with respect
to ε. Differentiating (98) then yields

(∆g + h)∂ε(β̂h+εH,ξ)|0 +Hβ̂h,ξ = −HGcn Scalg,ξ,

which gives

(∆g + h)∂ε(β̂h+εH,ξ)|0 = −HGh,ξ.
Therefore,

∂ε(β̂h+εH,ξ(x))|0 = −
∫
M

Gh,xHGh,ξ dvg.

It then follows from (99) that

∂ε(mh+εH(ξ))|0 = −
∫
M

HG2
h,ξ dvg.

This ends the proof of Proposition 8.1. �

9. Energy and remainder estimates in dimensions n = 3, 4, 5

In this section, we assume that n ≤ 5 and u0 ≡ ũ0 ≡ 0. When n ∈ {4, 5}, we
assume in addition that the condition (4) is satisfied. We define

(100) Wh,ũ0,δ,ξ = Wh,δ,ξ := Uδ,ξ +Bh,δ,ξ, where Bh,δ,ξ := knδ
n−2
2 βh,δ,ξ.

In order to use the C1−estimates of Proposition 4.1, our first step is to obtain
estimates for βh,δ,ξ and its derivatives in H2

1 (M):

Proposition 9.1. For 3 ≤ n ≤ 5, let Bh,δ,ξ be as in (100). Then (25) holds.

Proof of Proposition 9.1. It follows from (97) that

‖βh,δ,ξ‖H2
1
≤ C.

Differentiating (96) with respect to ξi, i = 1, . . . , n, we obtain

(∆g + h)(∂ξiβh,δ,ξ) = − 1

kn

(
∂ξiFδ(ξ, ·) + ∂ξi ĥξ

Uδ,ξ

δ
n−2
2

+ ĥξ
∂ξiUδ,ξ

δ
n−2
2

)
.

It follows from (95) that

‖∂ξiFδ(ξ, ·)‖∞ ≤ C

With the definition (45) of ĥξ, we obtain

∂ξi ĥξ = ∂ξi(cn Scalgξ Λ2−2?

ξ ) = O(dg(·, ξ)).

Therefore, with (14), we obtain∣∣∣∣∂ξi ĥξ Uδ,ξ
δ
n−2
2

∣∣∣∣ ≤ C dg(x, ξ)

(δ2 + dg(x, ξ)2)
n−2
2

.
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With (73) and (74), we obtain

|δ−
n−2
2 ∂ξiUδ,ξ| ≤ C

1

(δ2 + dg(x, ξ)2)
n−2
2

+ C
dg(x, ξ)

(δ2 + dg(x, ξ)2)n/2
.

The definition (45) of ĥξ and the assumption ϕh0
(ξ0) = |∇ϕh0

(ξ0)| = 0 yield

(101) ĥξ(x) = O(dg(x, ξ)
2 +Dh,ξ),

where Dh,ξ is as in (43). Putting together these inequalities yields

(102) |(∆g+h)(∂ξiβh,δ,ξ)| ≤ C+C
dg(x, ξ)

(δ2 + dg(x, ξ)2)
n−2
2

+CDh,ξ
δ2 + dg(x, ξ)

(δ2 + dg(x, ξ)2)n/2
.

It then follows from standard elliptic theory and straightforward computations that

‖∂ξiβh,δ,ξ‖H2
1
≤ C


1 if n = 3

(ln(1/δ))
4/3

if n = 4

δ−1/2 if n = 5.

Similarly, differentiating with respect to δ, we obtain

|(∆g + h)(∂δβh,δ,ξ)| =
∣∣∣∣− 1

kn

(
∂δFδ(ξ, ·) + ĥξ∂δ(δ

−n−2
2 Uδ,ξ)

)∣∣∣∣(103)

≤ C + C
δ(dg(x, ξ)

2 +Dh,ξ)

(δ2 + dg(x, ξ)2)n/2

and, therefore, elliptic estimates and straightforward computations yield

‖∂δβh,δ,ξ‖ 2n
n+2
≤ C + C

∥∥∥∥ δ

(δ2 + dg(x, ξ)2)n/2

∥∥∥∥
H2

1

≤ C

{
1 if n = 3

δ2−n/2 if n = 4, 5.

With the definition (100), all these estimates yield (25). This ends the proof of
Proposition 9.1. �

The sequel of the analysis requires a pointwise control for βh,δ,ξ and its deriva-
tives. This is the objective of the following proposition:

Proposition 9.2. We have

(104) |βh,δ,ξ(x)| ≤ C


1 if n = 3

1 + | ln
(
δ2 + dg(x, ξ)

2
)
| if n = 4(

δ2 + dg(x, ξ)
2
)−1/2

if n = 5,

(105) |∂δβh,δ,ξ(x)| ≤ C + CDh,ξδ ln(1/δ)
(
δ2 + dg(x, ξ)

2
)−n−2

2

and
(106)

|∂ξiβh,δ,ξ(x)| ≤ C + C


Dh,ξ

∣∣ln(δ2 + dg(x, ξ)
2)
∣∣ if n = 3

Dh,ξ

(
δ2 + dg(x, ξ)

2
)−1/2

if n = 4∣∣ln(δ2 + dg(x, ξ)
2)
∣∣+Dh,ξ(δ

2 + dg(x, ξ)
2)−1 if n = 5

for all i = 1, . . . , n, where Dh,ξ is as in (43).
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Proof of Proposition 9.2. These estimates will be consequences of Green’s repre-
sentation formula and Giraud’s Lemma. More precisely, it follows from (96) that
(107)

βh,δ,ξ(x) = −
∫
M

Gh,x(y)

(
Fδ(ξ, y)

kn
+ ĥξ

χ(dgξ(y, ξ))Λξ(y)

(n− 2)ωn−1(δ2 + dgξ(y, ξ)
2)

n−2
2

)
dvg(y)

for all x ∈ M . With (95) and the standard estimates of the Green’s function
0 < Gh,x(y) ≤ Cdg(x, y)2−n for all x, y ∈M , x 6= y, we obtain

(108) |βh,δ,ξ(x)| ≤ C + C

∫
M

dg(x, y)2−n

(δ2 + dg(y, ξ)2)
n−2
2

dvg(y).

Recall Giraud’s Lemma (see [11] for the present statement): For every α, β such
that 0 < α, β < n and x, z ∈M , x 6= z, we have

∫
M

dg(x, y)α−ndg(y, z)
β−ndvg(z) ≤ C


dg(x, z)

α+β−n if α+ β < n

1 + | ln dg(x, z)| if α+ β = n

1 if α+ β > n.

Therefore, (108) yields (104) when dg(x, ξ) ≥ δ. When dg(x, ξ) ≤ δ, (108) yields

|βh,δ,ξ(x)| ≤ C + C

∫
M

dg(x, y)2−n

(δ2 + dg(y, x)2)
n−2
2

dvg(y),

which in this case also yields (104). To prove (106), we use (102) and the same
method as for (104). The inequality (105) is a little more delicate. With (103) and
Green’s identity, we obtain

|∂δβh,δ,ξ(x)| =
∣∣∣∣∫
M

Gh,x(y) (∆g + h) ∂δβh,δ,ξ(y) dvg(y)

∣∣∣∣
≤ C + C

∫
M

dg(x, y)2−n δ(dg(y, ξ)
2 +Dh,ξ)

(δ2 + dg(y, ξ)2)n/2
dvg(y).

We then obtain

|∂δβh,δ,ξ(x)| ≤ C + Cδ

∫
M

dg(x, y)2−ndg(y, ξ)
2−ndvg(y)

+ CδDh,ξ

∫
M

dg(x, y)2−n

(δ2 + dg(y, ξ)2)n/2
dvg(y).

We estimate the first two terms in the right-hand side by using Giraud’s lemma as
in the proof of (104). We split the integral of the third term as∫

M

dg(x, y)2−n

(δ2 + dg(y, ξ)2)n/2
dvg(y) =

∫
{dg(x,y)<dg(x,ξ)/2}

+

∫
{dg(x,y)≥dg(x,ξ)/2}

.

Since dg(y, ξ) > dg(x, ξ)/2 when dg(x, y) < dg(x, ξ)/2, we have∫
{dg(x,y)<dg(x,ξ)/2}

dg(x, y)2−n

(δ2 + dg(y, ξ)2)n/2
dvg(y)

≤ Cdg(x, ξ)−n
∫
{dg(x,y)<dg(x,ξ)/2}

dg(x, y)2−ndvg(y) ≤ Cdg(x, ξ)2−n.
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As regards the second part of the integral, we have∫
{dg(x,y)≥dg(x,ξ)/2}

dg(x, y)2−n

(δ2 + dg(y, ξ)2)n/2
dvg(y)

≤ Cdg(x, ξ)2−n
∫
M

(δ2 + dg(y, ξ)
2)−n/2dvg(y) ≤ Cdg(x, ξ)2−n ln(1/δ).

This yields (105) when dg(x, ξ) > δ. Finally, we treat the case dg(x, ξ) ≤ δ in the
same way as (106). This ends the proof of Proposition 9.2. �

It is a direct consequence of Proposition 9.2 that (25) is satisfied. Therefore
Proposition 4.1 applies. It follows from (27), (30) and (33) that

(109) Jh(W + Φ) = Jh (W ) + O(‖R‖22n
n+2

)

and, since n ≤ 5,

(110) ∂pJh(W + Φ) = ∂pJh(W ) + O(δ−1‖R‖ 2n
n+2

(‖R‖ 2n
n+2

+ δ‖∂pR‖ 2n
n+2

)),

where R = Rδ,ξ is as in (28). We prove the following estimates for R:

Proposition 9.3. We have

(111) ‖R‖ 2n
n+2

+ δ‖∂pR‖ 2n
n+2
≤ C


δ if n = 3

δ2 ln(1/δ) if n = 4

Dh,ξδ
2 ln(1/δ) + δ2 if n = 5.

Proof of Proposition 9.3. Note that since n < 6, we have 2? > 3. The definitions
(96), (100) and (100) combined with (94) yield

R = (∆g + h)U + (∆g + h)B − (U +B)2?−1
+ = U2?−1 − (U +B)2?−1

+(112)

= −(2? − 1)U2?−2B + O(U2?−3B2 + |B|2
?−1),

where we have used that U ≥ 0. Therefore,

‖R‖ 2n
n+2
≤ C‖U2?−2B‖ 2n

n+2
+ ‖|B|2

?−1‖ 2n
n+2

.

Since B = knδ
n−2
2 β, the pointwise estimate (104), the estimate U ≤ CŨ and the

estimates (51) yield

‖R‖ 2n
n+2
≤ C


δ if n = 3

δ2 ln(1/δ) if n = 4

δ2 if n = 5.

We now deal with the gradient term. We fix i ∈ {0, . . . , n}. We have

∂piR = ∂pi(U
2?−1 − (U +B)2?−1

+ )

= −(2? − 1)((U +B)2?−2
+ (∂piU + ∂piB)− U2?−2∂piU)

= −(2? − 1)(((U +B)2?−2
+ − U2?−2)∂piU + (U +B)2?−2

+ ∂piB).

Using that 2? > 3 together with (32) and (38), we obtain

δ|∂piR| ≤ CŨ2?−2|B|+ CŨ |B|2
?−2 + Cδ|∂piB|Ũ2?−2.
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Since B = knδ
n−2
2 β, using the estimates of β and its derivatives in Proposition 9.2

and the estimates (51), long but easy computations yield

δ‖∂piR‖ 2n
n+2
≤ C


δ if n = 3

δ2 ln(1/δ) if n = 4

Dh,ξδ
2 ln(1/δ) + δ2 if n = 5.

Therefore, we obtain (111). This ends the proof of Proposition 9.3. �

With (111), the estimates (109) and (110) become

Jh(W + Φ) = Jh (W ) +O


δ2 if n = 3

δ4 (ln(1/δ))
2

if n = 4

δ4 +D2
h,ξδ

4(ln(1/δ))2 if n = 5


and

∂piJh(W + Φ) = ∂piJh(W ) + O


δ if n = 3

δ3 (ln(1/δ))
2

if n = 4

δ3 +D2
h,ξδ

3(ln(1/δ))2 if n = 5

 .

We now estimate Jh(W + Φ):

Proposition 9.4. We have

(113) Jh(W + Φ) =
1

n

∫
Rn
U2?

1,0 dx+
1

2
ϕh(ξ)


0 if n = 3

8ωn−1δ
2 ln(1/δ) if n = 4

δ2

∫
Rn
U2

1,0 dx if n = 5


− k2

n

2
mh0

(ξ0)δn−2 + o(δn−2)

as δ → 0, ξ → ξ0 and h→ h0 in C2(M).

Proof of Proposition 9.4. We have

Jh(W ) =
1

2

∫
M

(
|∇W |2 + hW 2

)
dvg −

1

2?

∫
M

W 2?

+ dvg(114)

=
1

2

∫
M

RW dvg +

(
1

2
− 1

2?

)∫
M

W 2?

+ dvg.

Using that U ≥ 0, we obtain

(115) W 2?

+ = (U +B)2?

+ = U2? + 2?BU2?−1 + O
(
B2U2?−2 + |B|2

?)
.

Plugging (112) and (115) into (114), and using (32) and (38), we obtain

Jh(W ) =
1

n

∫
M

U2?dvg −
1

2

∫
M

BU2?−1dvg

+ O

(∫
M

(Ũ2?−2B2 + Ũ |B|2
?−1 + |B|2

?

) dvg

)
.
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Since B = knδ
n−2
2 β, the pointwise estimate (104), the definition (14) and (57) yield

(116) Jh(W ) =
1

n

∫
Rn
U2?

1,0 dx−
1

2

∫
M

BU2?−1dvg +O


δ2 if n = 3

δ4 (ln(1/δ))
3

if n = 4

δ4 if n = 5

 .

The definitions (96) and (100) of β and B yield

(117) ∆gB + hB = U2?−1 − (∆gU + hU) in M.

Therefore, we obtain∫
M

BU2?−1dvg =

∫
M

B(U2?−1 − (∆gU + hU)) dvg +

∫
M

B(∆gU + hU) dvg

=

∫
M

(
|∇B|2 + hB2

)
dvg +

∫
M

(∆gB + hB)U dvg

=

∫
M

(
|∇B|2 + hB2

)
dvg − δ

n−2
2

∫
M

Fδ(ξ, ·)U dvg −
∫
M

ĥξU
2dvg.

Since B = knδ
n−2
2 β, using (97) and (95) together with Lebesgue’s convergence

theorem, we obtain

(118)

∫
M

BU2?−1dvg = δn−2k2
n

(∫
M

(
|∇βh,0,ξ|2 + hβ2

h,0,ξ

)
dvg

− 1

kn

∫
M

F0(ξ, ·)Γξ dvg
)
−
∫
M

ĥξU
2dvg + o(δn−2).

Since U(x)2 ≤ Cδn−2dg(ξ, x)4−2n, letting ξ → ξ0 and h→ h0 in C2(M), integration
theory yields ∫

M

ĥξU
2dvg = δk2

n

∫
M

ˆ(h0)ξ0Γ2
ξ0 dvg + o(δ) when n = 3.

We now assume that n ∈ {4, 5}. We write∫
M

ĥξU
2dvg = ĥξ(ξ)

∫
M

U2dvg + ∂ξi ĥξ(ξ)

∫
M

xiU2dvg

+

∫
M

(ĥξ − ĥξ(ξ)− ∂ξi ĥξ(ξ)xi)U2dvg,

where the coordinates are taken with respect to the exponential chart at ξ. As one
checks, there exists C > 0 such that

|ĥξ − ĥξ(ξ)− ∂ξi ĥξ(ξ)xi|U2 ≤ Cδn−2dg(ξ, x)6−2n

for all x, ξ ∈M , x 6= ξ. Since n < 6 and ξ remains in a neighborhood of ξ (so that
the exponential chart remains nicely bounded), integration theory then yields∫

M

(ĥξ − ĥξ(ξ)− ∂ξi ĥξ(ξ)xi)U2dvg = δn−2k2
n

∫
M

(ĥξ − ĥξ(ξ)− ∂ξi ĥξ(ξ)xi)Γ2
ξdvg

+ o(δn−2).

Furthermore, letting ξ → ξ0, h→ h0 and using (4), we obtain

(119)

∫
M

(ĥξ − ĥξ(ξ)− ∂ξi ĥξ(ξ)xi)U2dvg = δn−2k2
n

∫
M

ˆ(h0)ξ0Γ2
ξ0 dvg + o(δn−2).
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Via the exponential chart, using the radial symmetry of U , we obtain∫
M

xiU2dvg =
√
n(n− 2)

n−2
∫
Br0 (0)

xi
(

δ

δ2 + |x|2

)n−2

(1 + O(|x|)) dx

= O

(∫
Br0 (0)

|x|2
(

δ

δ2 + |x|2

)n−2

dx

)
= O(δn−2)

since n < 6. It then follows from (61), (62), (63) and the above estimates that

∫
M

ĥξU
2dvg = ĥξ(ξ)


0 if n = 3

8ωn−1δ
2 ln(1/δ) if n = 4

δ2

∫
Rn
U2

1,0 dx if n = 5

+ δn−2k2
n

∫
M

ˆ(h0)ξ0Γ2
ξ0 dvg

+ o(δn−2).

Combining this estimate with (118), we obtain

∫
M

BU2?−1dvg = −ĥξ(ξ)


0 if n = 3

8ωn−1δ
2 ln(1/δ) if n = 4

δ2

∫
Rn
U2

1,0 dx if n = 5

+ δn−2k2
nIh0,ξ0 + o(δn−2),

where

(120) Ih0,ξ0 :=

∫
M

(
|∇βh0,0,ξ0 |2 + h0β

2
h0,0,ξ0

)
dvg −

1

kn

∫
M

F0(ξ, ·)Γξ0 dvg

−
∫
M

ˆ(h0)ξ0Γ2
ξ0 dvg.

Integrating by parts and using the definition (96), we obtain

Ih0,ξ0 =

∫
M

βh0,0,ξ0 (∆gβh0,0,ξ0 + h0βh0,0,ξ0) dvg

−
∫
M

Γξ0

(
1

kn
F0(ξ, ·) + ˆ(h0)ξ0Γξ0

)
dvg

=

∫
M

(βh0,0,ξ0 + Γξ0) (∆gβh0,0,ξ0 + h0βh0,0,ξ0) dvg

=

∫
M

Gh0,ξ0(∆gβh0,0,ξ0 + h0βh0,0,ξ0) dvg.

We now use (107) at the point ξ0, which makes sense since βh0,0,ξ0 is continuous on
M . We then obtain

(121) Ih0,ξ0 = βh0,0,ξ0(ξ0) = mh0
(ξ0).

Putting these results together yields (113), which proves Proposition 9.4. �

We now estimate the derivatives of Jh(W + Φ):
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Proposition 9.5. We have

(122) ∂δJh(W + Φ) = ϕh(ξ)


0 if n = 3

8ωn−1δ ln(1/δ) if n = 4

δ

∫
Rn
U2

1,0 dx if n = 5


− n− 2

2
k2
nmh0

(ξ0)δn−3 + o(δn−3)

and

(123) ∂ξiJh(W + Φ) =
1

2
∂ξiϕh(ξ)


0 if n = 3

8ωn−1δ
2 ln(1/δ) if n = 4

δ2

∫
Rn
U2

1,0 dx if n = 5


+ O


δ if n = 3

δ2 +Dh,ξδ
2 ln(1/δ) if n = 4

δ3 +Dh,ξδ
2 if n = 5


for all i = 1, . . . , n, as δ → 0, ξ → ξ0 and h→ h0 in C2(M).

Proof of Proposition 9.5. We fix i ∈ {0, . . . , n}. With (112), (38) and (32), we
obtain

∂piJh(W ) = J ′h(W )[∂piW ] =

∫
M

(∆gW + hW −W 2?−1
+ )∂piW dvg =

∫
M

R∂piWdvg

= −(2? − 1)

∫
M

U2?−2B∂piW dvg + O

(∫
M

(
U2?−3B2 + |B|2

?−1
)
|∂piW | dvg

)
= −(2? − 1)

∫
M

U2?−2B∂piW dvg + O

(
δ−1

∫
M

(
Ũ2?−2B2 + Ũ |B|2

?−1
)
dvg

)
.

= −(2? − 1)

∫
M

U2?−2B∂piW dvg + O(δ−1)


δ2 if n = 3

δ4 (ln(1/δ))
3

if n = 4

δ4 if n = 5.

The estimates (106) and (105) and the definition B = knδ
n−2
2 β yield

∫
M

U2?−2B∂piB dvg = O(δ−1)


δ2 if n = 3

δ4 (ln(1/δ))
3

if n = 4

δ4 + εi0Dh,ξδ
3 ln(1/δ) if n = 5,

where εi0 is the Kronecker symbol. Since W = U +B, we then obtain

∂piJh(W ) = −(2? − 1)

∫
M

U2?−2B∂piU dvg

+ O(δ−1)


δ2 if n = 3

δ4 (ln(1/δ))
3

if n = 4

δ4 + εi0Dh,ξδ
3 ln(1/δ) if n = 5,
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Differentiating (117), we obtain

(∆g + h)∂piB = (2? − 1)U2?−2∂piU − (∆g + h)∂piU.

Multiplying by B and integrating by parts, we then obtain
(124)∫
M

∂piB(∆g + h)B dvg = (2? − 1)

∫
M

U2?−2B∂piU dvg −
∫
M

∂piU(∆g + h)B dvg.

We begin with estimating the left-hand-side of (124). Using that B = knδ
n−2
2 β, we

obtain∫
M

∂piB(∆g + h)B dvg = k2
nδ
n−2

∫
M

∂piβ(∆g + h)β dvg

+ εi0
n− 2

2
k2
nδ
n−2−1

∫
M

β(∆gβ + hβ) dvg.

With (96) and the pointwise estimates (106) and (105), we obtain∣∣∣∣∫
M

∂piβ(∆g + h)β dvg

∣∣∣∣ ≤ C
{

1 if n = 3, 4

1 +D2
h,ξ ln(1/δ) if n = 5.

Therefore, we obtain

(125)

∫
M

∂piB(∆g + h)B dvg = εi0
n− 2

2
k2
nδ
n−2−1

∫
M

β(∆gβ + hβ) dvg

+ O

(
δn−2 if n = 3, 4

δ3 +D2
h,ξδ

3 ln(1/δ) if n = 5

)
.

We now deal with the second term in the right-hand-side of (124). We first consider
the case where i ≥ 1, so that ∂pi = ∂ξi . In this case, it follows from (73) that

∂ξiU = −∂xiU + O(Ũ). Then, using (96), we obtain

−
∫
M

∂ξiU(∆g+h)B dvg =

∫
M

∂xiU(∆g+h)B dvg+O

(∫
M

Ũ(δ
n−2
2 + |ĥξ|Ũ) dvg

)
.

With (101), we obtain

∫
M

Ũ(δ
n−2
2 + |ĥξ|Ũ) dvg ≤ C


δ if n = 3

δ2 +Dh,ξδ
2 ln(1/δ) if n = 4

δ3 +Dh,ξδ
2 if n = 5.

With (96) and since ∂xiU = O(δ
n−2
2 dg(x, ξ)

1−n) (see the definition (24)), we obtain∫
M

∂xiU(∆g + h)B dvg = −
∫
M

ĥξU∂xiU dvg + O(δn−2).

Putting together the above estimates yields

− (2? − 1)

∫
M

U2?−2B∂ξiU dvg = −
∫
M

ĥξU∂xiU dvg

+ O


δ if n = 3

δ2 +Dh,ξδ
2 ln(1/δ) if n = 4

δ3 +Dh,ξδ
2 if n = 5

 .
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Using the explicit expression (14) of U together with the facts that Λξ(ξ) = 1,

∇Λξ(ξ) = 0 and |x|∂xiU = O(Ũ), we obtain

∫
M

ĥξU∂xiU dvg =

∫
Br0 (0)

ĥξ(exp
gξ
ξ (x))Uδ,0∂xiUδ,0(1 + O(|x|2)) dx

+ O

(∫
Br0 (0)

|ĥξ(exp
gξ
ξ (x))||x|Ũ2

δ,0 dx

)
+ O(δn−2)

With a Taylor expansion of ĥξ, using the radial symmetry of Uδ,0 and the explicit
expressions given in (20), we then obtain that there exists c′4, c

′
5 > 0 such that

∫
M

ĥξU∂xiU dvg = −∂ξiϕh(ξ)


0 if n = 3

c′4δ
2 ln(1/δ) if n = 4

c′5δ
2 if n = 5

+ O(δn−2)

and then

∂ξiJh(W ) = ∂ξiϕh(ξ)


0 if n = 3

c′4δ
2 ln(1/δ) if n = 4

c′5δ
2 if n = 5


+ O


δ if n = 3

δ2 +Dh,ξδ
2 ln(1/δ) if n = 4

δ3 +Dh,ξδ
2 if n = 5.

 .

We now consider the case where i = 0, so that ∂pi = ∂p0 = ∂δ. In this case, we
have∫

M

∂δU(∆g + h)B dvg = −
∫
M

ĥξU∂δU dvg − δ
n−2
2

∫
M

F∂δU dvg

= −
∫
M

(ĥξ(ξ) + xi∂ξi ĥξ(ξ))U∂δU dvg

−
∫
M

(δ
n−2
2 F + (ĥξ − ĥξ(ξ)− xi∂ξiĥξ(ξ))U)∂δU dvg,

where the coordinates are taken with respect to the exponential chart at ξ. With
(18), (16) and (19), arguing as in the proof of (119), we obtain

δ
n−2
2

∫
M

(F + (ĥξ − ĥξ(ξ)− xi∂ξi ĥξ(ξ))δ−
n−2
2 U)∂δU dvg

=
n− 2

2
k2
nδ
−1δn−2

∫
M

(
Fξ,0
kn

+ ĥξ0Γhξ0

)
Γhξ0 dvg + o(δ−1δn−2).
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Using (61) and arguing as in the estimate of (60), we obtain that there exist c′′4 , c
′′
5 >

0 such that∫
M

(ĥξ(ξ) + xi∂ξi ĥξ(ξ))U∂δU dvg =
ĥξ(ξ)

δ

∫
B0(r0)

Uδ,0Zδ,0 dx+ o(δ−1δn−2)

=
ĥξ(ξ)

δ


0 if n = 3

c′′4δ
2 ln(1/δ) if n = 4

c′′5δ
2 if n = 5

+ o(δ−1δn−2).

Putting these estimates together yields

− (2? − 1)

∫
M

U2?−2B∂piU dvg =
ĥξ(ξ)

δ


0 if n = 3

c′′4δ
2 ln(1/δ) if n = 4

c′′5δ
2 if n = 5


− n− 2

2
k2
nIh0,ξ0δ

−1δn−2 + o(δ−1δn−2),

where Ih0,ξ0 is as in (120). Since Ih0,ξ0 = mh0
(ξ0) (see (121)), we obtain (122) and

(123) up to the value of the constants. These values then follow from Proposition 9.4
together with the above estimates. This ends the proof of Proposition 9.4. �

Theorem 1.4 for n ∈ {4, 5} will be proved in Section 10.

10. Proof of Theorem 1.4

We let h0, f ∈ Cp(M), p ≥ 2, and ξ0 ∈ M satisfy the assumptions of Theo-
rem 1.4. For small ε > 0 and τ ∈ Rn, we define

(126) hε := h0 + εf and ξε(τ) := exp
gξ0
ξ0

(
√
ετ).

We fix R > 0 and 0 < a < b to be chosen later.

10.1. Proof of Theorem 1.4 for n ≥ 6. In this case, we let (δε)ε>0 > 0 be such
that δε → 0 as ε→ 0. We define

(127) δε(t) := δεt and Fε(t, τ) := Jhε(Uδε(t),ξε(τ) + Φhε,0,δε(t),ξε(τ))

for all τ ∈ Rn such that |τ | < R and t > 0 such that a < t < b. Using the
assumption ϕh0

(ξ0) = |∇ϕh0
(ξ0)| = 0, we obtain

ϕhε(ξε(τ)) =
1

2
∇2ϕh0

(ξ0)[τ, τ ]ε+ f(ξ0)ε+ o(ε)

and

∇ϕhε(ξε(τ)) = ∇2ϕh0
(ξ0)[τ, ·]

√
ε+ o(

√
ε)

as ε→ 0 uniformly with respect to |τ | < R. We distinguish two cases:

Case n ≥ 7. In this case, we set δε :=
√
ε. It follows from (54) that

(128) lim
ε→0

Fε(t, τ)− 1
n

∫
Rn U

2?

1,0 dx

ε2
= E0(t, ξ) in C0

loc((0,∞)× Rn),

where

E0(t, τ) := Cn

(
1

2
∇2ϕh0

(ξ0)[τ, τ ] + f(ξ0)

)
t2 −DnKh0

(ξ0)t4,
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with

(129) Cn :=
1

2

∫
Rn
U2

1,0 dx and Dn :=
1

4n

∫
Rn
|x|2U2

1,0 dx.

Furthermore, we have

∂tFε(t, τ) =
√
ε
(
∂δJhε(Uδε(t),ξε(τ) + Φδε(t),ξε(τ))

)
and

∂τiFε(t, τ) =
√
ε
(
∂ξiJhε(Uδε(t),ξε(τ) + Φδε(t),ξε(τ))

)
.

Therefore, it follows from (66) and (67) that the limit in (128) actually holds in
C1

loc((0,∞)× Rn). Assuming that f(ξ0)×Kh0
(ξ0) > 0, we can define

t0 :=

√
Cnf(ξ0)

2DnKh0(ξ0)
.

As one checks, (t0, 0) is a critical point of E0. In addition, the Hessian matrix at
the critical point (t0, 0) is

∇2E0(t0, 0) =

(
−8t20DnKh0(ξ0) 0

0 t20Cn∇2ϕh0
(ξ0)

)
.

Therefore, if ξ0 is a nondegenerate critical point of ϕh0
, then (t0, 0) is a nonde-

generate critical point of E0. With the convergence in C1
loc((0,∞)× Rn), we then

obtain that there exists a critical point (tε, τε) of Fε such that (tε, τε) → (t0, 0) as
ε→ 0. It then follows from (29) that

uε := Uδε(tε),ξε(τε) + Φhε,0,δε(tε),ξε(τε)

is a solution to (8). As one checks, uε ⇀ 0 weakly in L2?(M) and (uε)ε blows up
with one bubble at ξ0. This proves Theorem 1.4 for n ≥ 7.

Case n = 6. In this case, we let δε > 0 be such that

(130) δ2
ε ln(1/δε) = ε.

As one checks, δε → 0 as ε→ 0. As in the previous case, we obtain

lim
ε→0

Fε(t, τ)− 1
n

∫
Rn U

2?

1,0 dx

εδ2
ε

= E0(t, ξ) in C1
loc((0,∞)× Rn),

where

E0(t, τ) := C6

(
1

2
∇2ϕh0(ξ0)[τ, τ ] + f(ξ0)

)
t2 − 242ω5Kh0(ξ0)t4

for all t > 0 and τ ∈ Rn. As in the previous case, E0 has a nondegenerate criti-
cal point (t̃0, 0), which yields the existence of a critical point of Fε and, therefore,
a blowing-up solution to (8) satisfying the desired conditions. This proves Theo-
rem 1.4 for n = 6.
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10.2. Proof of Theorem 1.4 for n ∈ {4, 5}. When n ∈ {4, 5}, we define

Fε(t, τ) := Jhε(Uδε(t),ξε(τ) +Bhε,δε(t),ξε(τ) + Φhε,0,δε(t),ξε(τ)),

where δε(t) will be chosen differently depending on the dimension.

Case n = 5. In this case, we set δε(t) := tε. It follows from (113) that

lim
ε→0

Fε(t, τ)− 1
n

∫
Rn U

2?

1,0 dx

ε3
= E0(t, ξ) in C0

loc((0,∞)× Rn),

where

E0(t, τ) := C5

(
1

2
∇2ϕh0(ξ0)(τ, τ) + f(ξ0)

)
t2 − k2

5

2
mh0(ξ0)t3.

It follows from the C1−estimates of Proposition 9.5 that the convergence holds in
C1

loc((0,∞)× Rn). Assuming that f(ξ0)×mh0
(ξ0) > 0, we then define

t0 :=
4C5f(ξ0)

(n− 2)k2
5mh0

(ξ0)
.

As in the previous cases, we obtain that (t0, 0) is a nondegenerate critical point of
E0, which yields the existence of a critical point for Fε and, therefore, a blowing-up
solution to (8) satisfying the desired conditions. This proves Theorem 1.4 for n = 5.

Case n = 4. In this case, we set δε(t) := e−t/ε. It follows from the C1−estimates
of Proposition 9.5 that

lim
ε→0

(
−εδε(t)−2∂tFε(t, τ), δε(t)

−2∂τFε(t, τ)
)

= (ψ0(t, τ), ψ1(t, τ))

in C0
loc((0,∞)× Rn), where

ψ0(t, τ) := C4

(
1

2
∇2ϕh0

(ξ0)(τ, τ) + f(ξ0)

)
t− n− 2

2
k2
nmh0

(ξ0)

and

ψ1(t, τ) :=
1

2
C4∇2ϕh0

(ξ0)[τ, ·]t.

As one checks, since ξ0 is a nondegenerate critical point of ϕh0 , the function ψ has
a unique zero point in (0,∞) × Rn which is of the form (t0, 0) for some t0 > 0.
Furthermore, the nondegeneracy implies that the Jacobian determinant of ψ at
(t0, 0) is nonzero and, therefore, the degree of ψ at 0 is well-defined and nonzero.
The invariance of the degree under uniform convergence then yields the existence
of a critical point (tε, τε) of Fε such that (tε, τε)→ (t0, 0) as ε→ 0. It then follows
from (29) that

uε := Uδε(t),ξε(τ) +Bhε,δε(t),ξε(τ) + Φhε,0,δε(t),ξε(τ)

is a critical point of Jhε that blows up at ξ0 and converges weakly to 0 in L2?(M).
This proves Theorem 1.4 for n = 4. � �

11. Proof of Theorem 1.5

We let h0, f ∈ Cp(M), p ≥ 2, u0 ∈ C2(M) and ξ0 ∈ M satisfy the assumptions
of Theorem 1.5. We let hε be as in (8). We let ξε(τ) and δε(t) be as in (126) and
(127). Since u0 is nondegenerate, the implicit function theorem yields the existence
of ε′0 ∈ (0, ε0) and (u0,ε)0<ε<ε′0

∈ C2(M) such that

(131) ∆gu0,ε + hεu0,ε = u2?−1
0,ε , u0,ε > 0 in M
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and (u0,ε)ε is smooth with respect to ε, which implies in particular that

‖u0,ε − u0‖C2 ≤ Cε.
We fix 0 < a < b and R > 0 to be chosen later. We define

Fε(t, τ) := Jhε(u0,ε + Uδε(t),ξε(τ) + Φhε,u0,ε,δε(τ),ξε(τ))

for all τ ∈ Rn such that |τ | < R and t > 0 such that a < t < b. With (85), we
obtain that for n ≥ 7,

Fε(t, τ) = Jhε(u0,ε) +
1

n

∫
Rn
U2?

1,0 dx+ Cn

(
1

2
∇2ϕh0(ξ0)(τ, τ) + f(ξ0)

)
t2εδ2

ε

+ o(εδ2
ε )−DnKh0

(ξ0)t4δ4
ε + o(δ4

ε )−Bnu0(ξ0)t
n−2
2 δ

n−2
2

ε + o(δ
n−2
2

ε )

as ε→ 0 uniformly with respect to a < t < b and |τ | < R, where Cn and Dn are as
in (129) and

Bn :=

∫
Rn
U2?−1

1,0 dx.

We distinguish three cases:

Case 7 ≤ n ≤ 10, that is n ≥ 7 and n−2
2 ≤ 4. In this case, we set δε := ε

2
n−6 , so

that

εδ2
ε = δ

n−2
2

ε .

We then obtain

(132) lim
ε→0

Fε(t, τ)−Aε
εδ2
ε

= E0(t, τ)

uniformly with respect to a < t < b and |τ | < R, where

(133) Aε := Jhε(u0,ε) +
1

n

∫
Rn
U2?

1,0 dx

and

E0(t, τ) := Cn

(
1

2
∇2ϕh0

(ξ0)(τ, τ) + f(ξ0)

)
t2

− (Bnu0(ξ0) + 1n=10DnKh0
(ξ0)) t

n−2
2 .

Moreover, the estimates (87) and (88) yield the convergence (132) in C1
loc((0,∞)×

Rn). Straightforward changes of variable yield

B10

D10
= 40

∫
R10 U

3/2
1,0 dx∫

R10 |x|2U3/2
1,0 dx

= 40

∫∞
0

r9dr
(1+r2)6∫∞

0
r11dr

(1+r2)8

= 40

∫∞
0

s4ds
(1+s)6∫∞

0
s5ds

(1+s)8

.

Integrating by parts, we then obtain

B10

D10
=

40× 4
5 ×

3
4 ×

2
3 ×

1
2

∫∞
0

ds
(1+s)2

5
7 ×

4
6 ×

3
5 ×

2
4 ×

1
3

∫∞
0

ds
(1+s)3

=
40× 6× 7

∫∞
0

ds
(1+s)2

5
∫∞

0
ds

(1+s)3

=
40× 6× 7× 2

5

= 672.

The assumption Kh0,u0
(ξ0) 6= 0 then gives Bnu0(ξ0) + 1n=10DnKh0

(ξ0) 6= 0 with
same sign as f(ξ0). As in the proof of Theorem 1.4 for n ≥ 7, we obtain that
E0 has a unique critical point in (0,∞) × Rn, say (t0, 0), and this critical point is
nondegenerate. Mimicking again the proof of Theorem 1.4 for n ≥ 7, we obtain the
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existence of a critical point (tε, τε) of Fε such that (tε, τε) → (t0, 0) as ε → 0. It
then follows that

uε := u0,ε + Uδε(tε),ξε(τ) + Φhε,u0,ε,δε(tε),ξε(τ)

is a solution to (8). As one checks, uε ⇀ 0 weakly in L2?(M) and (uε)ε blows up
with one bubble at ξ0. This proves Theorem 1.5 for 7 ≤ n ≤ 10.

Case 4 < n−2
4 , that is n ≥ 11. In this case, we set δε :=

√
ε, so that

εδ2
ε = δ4

ε and δ
n−2
2

ε = o(δ4
ε ) as ε→ 0.

We then obtain

lim
ε→0

Fε(t, τ)−Aε
εδ2
ε

= E0(t, τ) in C0
loc((0,∞)× Rn),

where Aε is as in (133) and

E0(t, τ) := Cn

(
1

2
∇2ϕh0

(ξ0)(τ, τ) + f(ξ0)

)
t2 −DnKh0

(ξ0)t4.

As in the previous case, we obtain that the convergence holds in C1
loc((0,∞)×Rn)

and E0 has a nondegenerate critical point in (0,∞)×Rn, which yields the existence
of a blowing-up solution (uε)ε to (8) satisfying the desired conditions. This proves
Theorem 1.5 for n ≥ 11.

Case n=6. Note that in this case, we have 2? − 1 = 2. Differentiating (131) with
respect to ε at 0, we obtain

(∆g + h0 − 2u0)(∂εu0,ε)|0 + fu0 = 0 in M.

Using that u0 is nondegenerate, we then obtain

(∂εu0,ε)|0 = −(∆g + h0 − 2u0)−1(fu0).

It follows that

ϕhε,uε = hε − 2u0,ε − cn Scalg = ϕh0,u0
+ f̃ ε+ o(ε) as ε→ 0,

where

f̃ := f + 2(∆g + h0 − 2u0)−1(fu0).

We let δε > 0 be as in (130). With (91), we then obtain

lim
ε→0

Fε(t, τ)−Aε
εδ2
ε

= E0(t, τ) in C0
loc((0,∞)× Rn),

where Aε is as in (133) and

E0(t, τ) := C6

(
1

2
∇2ϕh0(ξ0)(τ, τ) + f̃(ξ0)

)
t2 − 242ω5Kh0,u0(ξ0)t4.

As in the previous case, using (92) and (93), we obtain that the convergence holds in
C1

loc((0,∞)×Rn). Furthermore, using (10), we obtain that E0 has a nondegenerate
critical point in (0,∞)×Rn and, therefore, that there exists a blowing-up solution
to (8) satisfying the desired conditions. This proves Theorem 1.5 for n = 6. �
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12. Proof of Theorem 1.2

We let h0 ∈ Cp(M), 1 ≤ p ≤ ∞, and ξ0 ∈ M be such that ∆g + h0 is coercive
and the condition (4) is satisfied. In the case where p = 1, a standard regularization

argument give the existence of (ĥε)ε>0 ∈ C2(M) such that ĥε → h0 in C1(M) as

ε→ 0. In the case where p ≥ 2, we set ĥε = h0. We then define

h̃ε := ĥε + fε, where fε(x) := χ(x)((h0 − ĥε)(ξ0) + 〈∇(h0 − ĥε)(ξ0), x〉+ λε|x|2),

where λε > 0, χ is a smooth cutoff function around 0 and the coordinates are
taken with respect to the exponential chart at ξ0. As one checks, for some suitable
λε → 0, we then have that h̃ε → h0 in Cp(M), ϕh̃ε(ξ0) = ϕh0(ξ0) = 0, |∇ϕh̃ε(ξ0)| =
|∇ϕh0(ξ0)| = 0 and for small ε > 0, ξ0 is a nondegenerate critical point of ϕh̃ε .

Assume first that n ∈ {4, 5}. Then the mass of h̃ε is defined at ξ0. As is
easily seen, there exists ψ : (0, 1) → (0, 1) such that ψ(ε) → 0 as ε → 0 and
either {mh̃ψ(ε)

(ξ0) > 0 for all ε ∈ (0, 1)}, {mh̃ψ(ε)
(ξ0) < 0 for all ε ∈ (0, 1)} or

{mh̃ψ(ε)
(ξ0) = 0 for all ε ∈ (0, 1)}. If mhψ(ε)

(ξ0) = 0 for all ε ∈ (0, 1), then it

follows from Proposition 8.1 that if we choose µε > 0 small enough, then we obtain
mȟε

(ξ0) < 0 for small ε > 0 with ȟε = h̃ψ(ε) + µεχ| · |2. Therefore, in all cases, we
can assume that mh̃ε

(ξ0) 6= 0 for small ε > 0, with a sign independent of ε.

Assume now that n ≥ 6. With a similar argument, we can assume that, for small
ε > 0, Kh̃ε

(ξ0) 6= 0 with a sign independent of ε, where Kh̃ε
(ξ0) is as in (7).

In all cases, we can now fix f0 ∈ C∞(M) such that f0(ξ0) × Kh̃ε
(ξ0) > 0 for

small ε > 0. It then follows from Theorem 1.4 that there exist αε > 0 and a family
(ũε,α)0<α<αε of solutions to the equation

∆gũε,α + (h̃ε + αf0)ũε,α = ũ2?−1
ε,α , ũε,α > 0 in M

such that ũε,α ⇀ 0 weakly in L2?(M) and (ũε,α)α blows up with one bubble at ξ0
as α→ 0. Therefore, we obtain that for every ε > 0, there exists α′ε > 0 such that

0 < α′ε < min(ε, αε), ‖ũε,α′ε‖2 < ε,

∣∣∣∣∫
M

|ũε,α′ε |
2?dvg −

∫
Rn
U2?

1,0 dx

∣∣∣∣ < ε

and ∫
M\Bε(ξ0)

|ũε,α′ε |
2?dvg < ε .

We then define uε := ũε,α′ε , so that

∆guε + hεuε = u2?−1
ε in M, where hε := h̃ε + α′εf0 = h0 + fε + α′εf0.

As one checks, uε ⇀ 0 weakly in L2?(M) and (uε)ε blows up with one bubble at ξ0
as ε→ 0. This proves Theorem 1.2. �

13. Proof of Theorem 1.3

We let h0 ∈ Cp(M), 1 ≤ p ≤ ∞, u0 ∈ C2(M) and ξ0 ∈M be such that ∆g + h0

is coercive, u0 is a solution of (1) and the condition (6) is satisfied. We begin with
proving the following:
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Lemma 13.1. There exists a neighborhood Ω0 of ξ0 and families (h̃ε)ε>0 ∈ Cp(M)

and (ũε)ε>0 ∈ C2(M) such that h̃ε → h0 in Cp(M), ũε → u0 in C2(M) as ε → 0,

h̃ε ≡ h0 and ũε ≡ u0 in Ω0 and ũε is a nondegenerate solution of

(134) ∆gũε + h̃εũε = ũ2?−1
ε , ũε > 0 in M for all ε > 0.

Proof of Lemma 13.1. For all v ∈ Cp+2(M) such that v > −u0, we define

u(v) := u0 + v and h(v) := u(v)2?−2 − u2?−1
0 − h0u0 + ∆gv

u(v)
= u(v)2?−2 − ∆gu(v)

u(v)
,

so that

(135) ∆gu(v) + h(v)u(v) = u(v)2?−1 in M.

By elliptic regularity, we have u0 ∈ Cp+1(M). Since moreover h0 ∈ Cp(M) and
v ∈ Cp+2(M), we obtain that u(v) ∈ Cp+1(M) and h(v) ∈ Cp(M). Furthermore,
we have that h(v)→ h0 in Cp(M) and u(v)→ u0 in C2(M) as v → 0 in Cp+2(M).
As is easily seen, to prove the lemma, it suffices to show that there exists a neigh-
borhood Ω0 of ξ0 and a family (vε)ε>0 ∈ Cp+2(M) such that vε → 0 in Cp+2(M)
as ε→ 0, vε ≡ 0 in Ω0 and u(vε) is a nondegenerate solution of (135). Assume by
contradiction that this is not true, that is for every neighborhood Ω of ξ0, there
exists a small neighborhood VΩ of 0 in Cp+2(M) such that for every v ∈ VΩ, if
v ≡ 0 in Ω, then u(v) is degenerate i.e. there exists φ(v) ∈ Kv\ {0}, where

Kv := {φ ∈ H2
1 (M) : ∆gφ+ h(v)φ = (2? − 1)u(v)2?−2φ in M}.

By renormalizing, we can assume that φ(v) ∈ SKv := {φ ∈ Kv : ‖φ‖H2
1

= 1}.
Since h(tv), u(tv) → h0, u0 in C0(M) as t → 0, it then follows that there exists
φv ∈ K0 and (tk)k∈N > 0 such that tk → 0 and φ(tkv) ⇀ φv weakly in H2

1 (M).
By compactness of the embedding H2

1 (M) ↪→ L2(M), we obtain that φ(tkv)→ φv
strongly in L2(M). By standard elliptic theory that we apply to the linear equation
satisfied by φ(tkv), we then obtain that φ(tkv) → φv strongly in H2

1 (M), so that
in particular φv ∈ SK0 . We then define

ψk(v) :=
φ(tkv)− φv

tk
.

It is easy to check that ψk(v) satisfies the equation

(136) ∆gψk(v) + h0ψk(v) = (2? − 1)u2?−2
0 ψk(v) + fk(v)φ(tkv) in M,

where

fk(v) :=
1

tk
((2? − 1)(u(tkv)2?−2 − u2?−2

0 ) + h0 − h(tkv))

=
1

tk
((2? − 2)(u(tkv)2?−2 − u2?−2

0 ) + tk
u0∆gv − v∆gu0

u0u(tkv)
).

A straightforward Taylor expansion gives

(137) fk(v) = (2? − 2)2u2?−3
0 v + u−1

0 ∆gv − u−2
0 v∆gu0 + o(1) = u−1

0 L0(v) + o(1),

as k →∞, uniformly in v ∈ VΩ, where

(138) L0(v) := ∆gv + h0v − (1− (2? − 2)2)u2?−2
0 v.

It follows that

‖ΠK⊥0
(ψk(v))‖H2

1
≤ C‖fk(v)φ(tkv)‖ 2n

n+2
≤ C‖φ(tkv)‖ 2n

n+2
≤ C‖φ(tkv)‖H2

1
≤ C,
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where ΠK⊥0
is the orthogonal projection of H2

1 onto K⊥0 and the letter C stands

for positive constants independent of k ∈ N and v ∈ VΩ. Since (ΠK⊥0
(ψk(v)))k is

bounded in H2
1 (M), up to a subsequence, we may assume that there exists ψv ∈ K⊥0

such that ΠK⊥0
(ψk(v)) ⇀ ψv weakly in H2

1 (M). Passing to the limit in (136) and

using (137), we then obtain that ψv satisfies the equation

∆gψv + h0ψv = (2? − 1)u2?−2
0 ψv + u−1

0 L0(v)φv in M.

In particular, since φv ∈ K0, multiplying this equation by φv and integrating by
parts yields

(139)

∫
M

u−1
0 L0(v)φ2

v dvg = 0.

We now construct v contradicting (139). For every α > 0, we choose Ω := Bα(ξ0)
and we consider the neighborhood VBα(ξ0) of 0 in Cp+2(M). We let rα ∈ (0, α) be
such that B0(rα) ⊂ VBα(ξ0) and χ ∈ C∞(R) be such that χ(t) = 0 for t ≤ 1 and
χ(t) = 1 for t ≥ 2. We define

vα(x) := e−1/αrαχ(dg(x, ξ0)/α)u0(x) for all x ∈M and α > 0.

As one checks, for small α > 0,

(140) vα ≡ 0 in Bα(ξ0) and vα ∈ B0(rα) ⊂ VBα(ξ0).

Therefore, u(vα) is degenerate and the above analysis applies. Since ‖φvα‖H2
1

= 1,

φvα ∈ K0 ⊂ C2(M) and K0 is of finite dimension, up to a subsequence, we can
assume that there exists φ0 ∈ K0 such that

(141) lim
α→0

φvα = φ0 6= 0 in C2(M).

Since L0 is self-adjoint, it follows from (139) that∫
M

vαL0(u−1
0 φ2

vα) dvg = 0 for all ε > 0.

Since e1/αr−1
α vα → u0 in L2(M) as α → 0, passing to the limit in this equation

and using (140) and (141), we obtain∫
M

u0L0(u−1
0 φ2

0) dvg = 0.

Integrating again by parts and noting that L0(u0) = (2?−2)2u2?−1
0 , we then obtain

0 =

∫
M

u−1
0 φ2

0L0(u0) dvg = (2? − 2)2

∫
M

u2?−2
0 φ2

0 dvg,

which is a contradiction since u0 > 0 and φ0 6≡ 0. This ends the proof of
Lemma 13.1. �

We can now end the proof of Theorem 1.3. We let Ω0, (h̃ε)ε>0 and (ũε)ε>0

be given by Lemma 13.1. Since h̃ε ≡ h0 and ũε ≡ u0 in Ω0, we obtain that
ϕh̃ε,ũε ≡ ϕh0,u0

in Ω0 and, therefore, ϕh̃ε,ũε(ξ0) = |∇ϕh̃ε,ũε(ξ0)| = 0. For every
ε > 0, we can then mimick the first part of the proof of Theorem 1.2 to construct
a family (h̃ε,α)α>0 ∈ Cmax(p,2)(M) such that h̃ε,α → h̃ε in Cp(M) as α → 0,
ϕh̃ε,α,ũε(ξ0) = 0, ξ0 is a nondegenerate critical point of ϕh̃ε,α,ũε and Kh̃ε,α,ũε

(ξ0) 6= 0.

We now distinguish two cases:
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Case n ≥ 7. Note that in this case, we have ϕh̃ε,α,ũε = ϕh̃ε . Since ũε is nonde-

generate and h̃ε,α → h̃ε in C1(M) as α → ∞, the implicit function theorem gives
that for small α > 0, there exists a nondegenerate solution ũε,α ∈ C2(M) to the
equation

∆gũε,α + h̃ε,αũε,α = ũ2?−1
ε,α , ũε,α > 0 in M

such that ũε,α → ũε in C2(M) as α → 0. Applying Theorem 1.5, we then obtain

that there exist βε,α > 0, (h̃ε,α,β)0<β<βε,α ∈ Cmax(p,2)(M) and (ũε,α,β)0<β<βε,α ∈
C2(M) satisfying

∆gũε,α,β + h̃ε,α,β ũε,α,β = ũ2?−1
ε,α,β in M, ũε,α,β > 0 for all 0 < β < βε,α

and such that h̃ε,α,β → h̃ε,α in Cmax(p,2)(M), ũε,α,β ⇀ ũε,α weakly in L2?(M) and
(ũε,α,β)β blows up with one bubble at ξ0 as β → 0. Therefore, we obtain that for
every ε > 0, there exists αε ∈ (0, ε) and βε > 0 such that

‖h̃ε,αε − h̃ε‖Cp < ε, ‖ũε,αε − ũε‖C2 < ε, 0 < βε < min(ε, βε,αε),

‖ũε,αε,βε − u0‖2 < ε,

∣∣∣∣∫
M

|ũε,αε,βε − ũε,αε |2
?

dvg −
∫
Rn
U2?

1,0 dx

∣∣∣∣ < ε

and ∫
M\Bε(ξ0)

|ũε,αε,βε − ũε,αε |2
?

dvg < ε .

We then define uε := ũε,αε,βε , so that

∆guε + hεuα = u2?−1
ε in M, where hε := h̃ε,αε,βε .

As one checks, hε → h0 in Cp(M), uε ⇀ u0 weakly in L2?(M) and (uε)ε blows up
with one bubble at ξ0 as ε→ 0. This proves Theorem 1.3 for n ≥ 7.

Case n = 6. In this case, we have ϕh̃ε,α,ũε = ϕh̃ε,α−2ũε. Furthermore, noting that

2? − 1 = 2 when n = 6, we can rewrite the equation (134) as

∆gũε + (h̃ε − 2ũε)ũε = −ũ2
ε in M.

Since h̃ε,α − 2ũε → h̃ε − 2ũε in C0(M) as α→ 0, a standard minimization method
gives that for small α > 0, there exists a unique nondegenerate solution ũε,α to the
equation

∆gũε,α + (h̃ε,α − 2ũε)ũε,α = −ũ2
ε,α, ũε,α > 0 in M.

As is easily seen, this equation can be rewritten as

(142) ∆gũε,α + h̊ε,αũε,α = ũ2
ε,α, ũε,α > 0 in M, where h̊ε,α := h̃ε,α − 2ũε + 2ũε,α.

Since h̃ε,α → h̃ε in Cp(M) as α → 0, we obtain that h̊ε,α → h̃ε in Cp(M) and
ũε,α → ũε in Cp+1(M) as α→ 0. Furthermore, since ũε is nondegenerate, we have
that ũε,α is nondegenerate for small α > 0. Similarly, since Kh̃ε,α,ũε

(ξ0) 6= 0, we

obtain that Kh̊ε,α,ũε,α
(ξ0) 6= 0 for small α > 0. Furthermore, we have

ϕh̊ε,α,ũε,α = h̊ε,α − 2ũε,α − cn Scalg = h̃ε,α − 2ũε − cn Scalg = ϕh̃ε,α,ũε .

In view of the properties satisfied by h̃ε,α, it follows that ϕh̊ε,α,ũε,α(ξ0) = 0 and ξ0 is

a nondegenerate critical point of ϕh̊ε,α,ũε,α . Applying Theorem 1.5, we then obtain
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that there exist βε,α > 0, (h̃ε,α,β)0<β<βε,α ∈ Cmax(p,2)(M) and (ũε,α,β)0<β<βε,α ∈
C2(M) satisfying

∆gũε,α,β + h̃ε,α,β ũε,α,β = ũ2?−1
ε,α,β in M, ũε,α,β > 0 for all 0 < β < βε,α

and such that h̃ε,α,β → h̊ε,α in Cmax(p,2)(M), ũε,α,β ⇀ ũε,α weakly in L2?(M) and
(ũε,α,β)β blows up with one bubble at ξ0 as β → 0. Finally, as in the previous case,
we obtain the existence of αε > 0 and βε > 0 such that uε := ũε,αε,βε satisfies the
desired conditions. This proves Theorem 1.3 for n = 6. �

14. Necessity of the condition on the gradient

Theorem 14.1. Let (M, g) be a compact Riemannian manifold of dimension n ≥ 4.
Let h0 ∈ C1(M) be such that ∆g + h0 is coercive. Assume that there exist families
(hε)ε>0 ∈ Cp(M) and (uε)ε>0 ∈ C2(M) satisfying (2) and such that hε → h0

strongly in C1(M). Assume that (M, g) is locally conformally flat. If (uε)ε blows
up with one bubble at some point ξ0 ∈ M and uε ⇀ 0 weakly as ε → 0, then (4)
holds true.

Proof of Theorem 14.1. Let ϕh0
be as in (5). The identity ϕh0

(ξ0) = 0 is a
consequence of the results of Druet [7, 9]. Since (M, g) is locally conformally flat,

there exists Λ ∈ C∞(M) positive such that ĝ := Λ
4

n−2 g is flat around ξ0. Define

ûε := Λ−1uε and ĥε := (hε − cn Scalg) Λ2−2? + cn Scalĝ .

The conformal law (44) yields

(143) ∆ĝûε + ĥεûε = û2?−1
ε , ûε > 0 in M.

As one checks, on (M, ĝ), ûε blows-up at ξ0 in the sense that ûε = Uδε,ξε + o(1)
as ε → 0 in H2

1 (M), where Uδε,ξε is as in (24) (with respect to the metric ĝ) and
(δε, ξε) → (0, ξ0) as ε → 0. It then follows from Druet–Hebey–Robert [11] that
there exist C, ε0 > 0 such that for every ε ∈ (0, ε0),

(144)
1

C

(
δε

δ2
ε + dĝ (x, ξε)

2

)n−2
2

≤ ûε(x) ≤ C

(
δε

δ2
ε + dĝ (x, ξε)

2

)n−2
2

for all x ∈M and, defining

Uε(x) := δ
n−2
2

ε χ(x)ûε(ξε + δεx)

for all x ∈ Rn, where χ is a cutoff function on a small ball centered at ξ0, we have

(145) lim
ε→0

Uε = U1,0 =

(√
n(n− 2)

1 + | · |2

)n−2
2

in C2
loc(Rn).

Without loss of generality, via a chart, we may assume that ĝ is the Euclidean metric
on B2ν(ξ0) for some ν > 0. We fix i ∈ {1, ..., n}. Differentiating the Pohozaev
identity for ûε on Bν(ξε) (see for instance Ghoussoub–Robert [13, Proposition 7])
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and integrating by parts, we obtain

(146)
1

2

∫
Bν(ξε)

∂xi ĥεû
2
ε dx

=

∫
∂Bν(ξε)

(
xi
|x|

(
|∇ûε|2 + ĥεû

2
ε

2
− û2?

ε

2?

)
−
〈
x

|x|
,∇ûε

〉
∂xi ûε

)
dσ(x),

where dσ is the volume element on ∂Bν(ξε). It follows from (144) that there exists

C(ν) > 0 such that ûε(x) ≤ C(ν)δ
n−2
2

ε for all x ∈ M \ Bν/4(ξ0) and ε ∈ (0, ε0). It
then follows from (143) and standard elliptic theory that there exists C1 > 0 such

that |∇ûε(x)| ≤ C1δ
n−2
2

ε for all x ∈ M \ Bν/2(ξ0) and ε ∈ (0, ε0). Plugging these
inequalities into (146) yields

(147)

∫
Bν(ξε)

∂xi ĥεû
2
ε dx = O(δn−2

ε ) as ε→ 0.

On the other hand, with a change of variable, we obtain∫
Bν(ξε)

∂xi ĥεû
2
ε dx = δ2

ε

∫
Bν/δε (0)

(∂xi ĥε)(ξε + δεx)Uε(x)2 dx.

The control (144) gives Uε ≤ CU1,0. Therefore, when n ≥ 5, Lebesgue’s dominated
convergence Theorem and (145) yield∫

Bν(ξε)

∂xi ĥεû
2
ε dx = δ2

ε

(
∂xi ĥε(ξε)

∫
Rn
U2

1,0 dx+ o(1)

)
as ε→ 0.

Combining this identity with (147), we obtain that ∂xi(ϕh0Λ2−2?)(ξ0) = 0 when
n ≥ 5. Since Λ > 0 and ϕh0

(ξ0) = 0, it follows that ∂xiϕh0
(ξ0) = 0 when n ≥ 5.

We now assume that n = 4. With (144), we obtain∫
Bν(ξε)

|x− ξε|û2
ε dx = O(δ2

ε ).

Therefore, with (147), we obtain

(148) ∂xi ĥε(ξε) = O

δ2
ε

(∫
Bν(ξε)

û2
ε dx

)−1
 .

With the lower bound in (144), we then obtain

(149)

∫
Bν(ξε)

û2
ε dx ≥ C

∫
Bν(ξε)

(
δε

δ2
ε + |x− ξε|2

)n−2

dx ≥ Cδ2
ε ln(1/δε).

It follows from (148) and (149) that ∂xi ĥε(ξε) = o(1) as ε → 0 and so again
∂xiϕh0

(ξ0) = 0 when n = 4.

In all cases, we thus obtain that ∇ϕh0(ξ0) = 0. This ends the proof of Theo-
rem 14.1. �
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[26] F. Robert and J. Vétois, A general theorem for the construction of blowing-up solutions to

some elliptic nonlinear equations via Lyapunov-Schmidt’s reduction, Concentration Analy-
sis and Applications to PDE (ICTS Workshop, Bangalore, 2012), Trends in Mathematics,
Springer, Basel, 2013, pp. 85–116.



BLOWING-UP SOLUTIONS 49

[27] , Examples of non-isolated blow-up for perturbations of the scalar curvature equation,

J. Differential Geom. 98 (2014), no. 2, 349–356.

[28] R. M. Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature,
J. Differential Geom. 20 (1984), no. 2, 479–495.

[29] , Notes from graduate lectures in Stanford University (1988). http://www.math.

washington.edu/pollack/research/Schoen-1988-notes.html.
[30] , On the number of constant scalar curvature metrics in a conformal class, Differential

geometry, Pitman Monogr. Surveys Pure Appl. Math., vol. 52, Longman Sci. Tech., Harlow,

1991, pp. 311–320.
[31] N. S. Trudinger, Remarks concerning the conformal deformation of Riemannian structures

on compact manifolds, Ann. Scuola Norm. Sup. Pisa (3) 22 (1968), 265–274.
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