BLOWING-UP SOLUTIONS FOR SECOND-ORDER CRITICAL
ELLIPTIC EQUATIONS: THE IMPACT OF THE SCALAR
CURVATURE

FREDERIC ROBERT AND JEROME VETOIS

ABSTRACT. Given a closed manifold (M™, g), n > 3, Olivier Druet [7] proved
that a necessary condition for the existence of energy-bounded blowing-up
solutions to perturbations of the equation
Agu—l—hgu:u%, u>0in M

is that ho € C*(M) touches the Scalar curvature somewhere when n > 4 (the
condition is different for n = 6). In this paper, we prove that Druet’s condition
is also sufficient provided we add its natural differentiable version. For n > 6,
our arguments are local. For the low dimensions n € {4, 5}, our proof requires
the introduction of a suitable mass that is defined only where Druet’s condition
holds. This mass carries global information both on hg and (M, g).

1. INTRODUCTION AND MAIN RESULTS

Let (M,g) be a compact Riemannian manifold of dimension n > 3 without
boundary and hg € CP(M), 1 < p < oco. We consider the equation

(1) Agu—l—hou:u?*l, u>01in M,

where A, := —divy(V) is the Laplace-Beltrami operator and 2* := -2 We inves-
tigate the existence of families (h¢)cso € CP(M) and (uc)eso € C?(M) satisfying
(2) Ague + heue = ug*_17 ue > 0in M for all € > 0,

and such that he — hg in CP(M) and maxy; ue — oo as € — 0. We say that (uc).
blows up at some point §o € M as € — 0 if for all 7 > 0, lim_,o maxp, (¢,) U = +00.
Druet [7,9] obtained the following necessary condition for blow-up:

Theorem 1.1 (Druet [7,9]). Let (M,g) be a compact Riemannian manifold of
dimension n > 4. Let hg € C*'(M) be such that A, + hg is coercive. Assume that
there exist families (he)eso € C1(M) and (ue)eso € C*(M) satisfying (2) and such
that he — hq strongly in C1(M) and u. — ug weakly in L% (M). Assume that (ue).
blows-up. Then there exists & € M such that (ue). blows up at & and

(3)  (ho —cnScaly) (&) =0 if n # 6 and (hg — ¢, Scalyg —2ug) (§0) =0 if n = 6.

Furthermore, if n € {4,5}, then ug = 0.

Here ¢, := 4&77_21) and Scaly is the Scalar curvature of (M, g). This result does
not hold in dimension n = 3. Indeed, Hebey—Wei [15] constructed examples of

blowing-up solutions to (2) on the standard sphere (S?, gg), which are bounded in
L% (S?) but do not satisfy (3).
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This paper is concerned with the converse of Theorem 1.1 in dimensions n > 4.
For the sake of clarity, we state separately our results in the cases ug = 0 in
dimension n > 4 (Theorem 1.2) and wy > 0 in dimension n > 6 (Theorem 1.3):

Theorem 1.2. Let (M, g) be a compact Riemannian manifold of dimension n > 4.
Let hg € CP(M), 1 < p < o0, be such that Ay + hg is coercive. Assume that there
ezists a point & € M such that

(4) (ho — ¢n Scalg) (§0) = [V (ho — ¢n Scalg) (§0)| = 0.
Then there exist families (he)eso € CP(M) and (ue)eso € C?(M) satisfying (2) and
such that he — ho strongly in CP(M), uc — 0 weakly in L* (M) and (uc). blows
up at &p.

For convenience, for every hg,ug € C°(M), we define
ho — ¢y, Scalg ifn+#6

) #ho = Fio = en Scaly and Phouo = { ho — 2up — ¢, Scal,  if n = 6.

Theorem 1.3. Let (M, g) be a compact Riemannian manifold of dimension n > 6.
Let hg € CP(M), 1 < p < o0, be such that Ay + hg is coercive. Assume that there
exist a solution ug € C*(M) of (1) and a point &g € M such that

(6) Pho,uo (50) = |V<Ph0,u0 (SO)‘ =0.

Then there exist families (he)eso € CP(M) and (ue)eso € C%(M) satisfying (2) and
such that he — ho strongly in CP(M), ue — ug weakly in L*" (M) and (uc)c blows
up at &.

Compared with Theorem 1.1, we have assumed here that condition (3) is also
satisfied at order 1. However, this stronger condition is actually expected to be
necessary for the existence of blowing-up solutions (see Theorem 14.1 in the last
section of this paper and the discussion in Druet [9, Section 2.5]). Note that we do
not make any nondegeneracy assumptions, neither on the solution ug, nor on the
critical point &j.

We refer to Section 2 for examples of functions hy and wug satisfying the assump-
tions of Theorem 1.3. Recently, Premoselli-Thizy [23] obtained a beautiful example
of blowing-up solutions showing that in dimension n € {4,5}, condition (4) may
not be satisfied at all blow-up points.

When hg = ¢, Scalg, that is when (1) is the Yamabe equation, several examples
of blowing-up solutions have been obtained. In the perturbative case, that is when
he # cp Scaly, examples of blowing-up solutions have been obtained by Druet—
Hebey [10], Esposito-Pistoia—Vétois [12], Morabito-Pistoia—Vaira [22], Pistoia—
Vaira [24] and Robert-Vétois [27]. In the nonpertubative case h. = ¢, Scaly, we
refer to Brendle [3] and Brendle-Marques [4] regarding the non-compactness of
Yamabe metrics. When solutions blow-up not only pointwise but also in energy,
the function ¢, may not vanish (see Chen—-Wei-Yan [5] for n > 5 and Vétois—
Wang [32] for n = 4).

When there does not exist any blowing-up solutions to the equations (2), then
equation (1) is stable. We refer to the survey of Druet [9] and the book of Hebey [14]
for exhaustive studies of the various concepts of stability. Stability also arises in
the Lin-Ni-Takagi problem (see for instance del Pino-Musso-Roman-Wei [0] for a
recent reference on this topic). In Geometry, stability is linked to the problem of
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compactness of the Yamabe equation (see Schoen [29,30], Li-Zhu [20], Druet [8],
Marques [21], Li-Zhang [18, 19], Khuri-Marques—Schoen [16]).

Let us give some general considerations about the proofs. Theorem 1.1 yields
local information on blow-up points. It is essentially the consequence of the concen-
tration of the L?-norm of the solutions at one of the blow-up points when n > 4.
However, in our construction, the problem may be both local and global. Indeed,
we reduce the problem to finding critical points of a functional defined on a finite-
dimensional space. The first term in the asymptotic expansion of the reduced
functional is local. This is due to the L?-concentration of the standard bubble in
the definition of our ansatz. The second term in the expansion plays a decisive role
for obtaining critical points. For the high dimensions n > 6, this term is also local
(see e.g. (54)). However, for n € {4,5}, the second term is global and we are then
compelled to introduce a suitable notion of mass, which carries global information
on hy and (M, g), and to add a corrective term to the standard bubble (see (100))
in order to obtain a reasonable expansion (see e.g. (113)). Unlike the case where
n = 3 or hy = ¢, Scaly, the mass is not defined at all points in the manifold, but
only at the points where the condition (6) is satisfied.

More precisely, Theorems 1.2 and 1.3 are consequences of Theorems 1.4 and 1.5
below. The latter are the core results of our paper. In these theorems, we fix a
linear perturbation h. = hg + ef for some function f € CP(M). Furthermore, we
specify the behavior of the blowing-up solutions that we obtain. We let HZ(M) be
the completion of C°°(M) for the norm [lul| g2 == [[Vull2 + [[ull2. We say that (uc)e
blows up with one bubble at some point § € M if u, = ug + Us_¢. +0(1) as € = 0
in HZ(M), where ug € HZ(M) is such that u. — ug weakly in Hf(M), Us, ¢, is as
n (24), (6c,&) — (0,&) and o(1) — 0 strongly in HZ(M) as € — 0.

Our first result deals with the case where ug = 0 in dimension n > 4:

Theorem 1.4. Let (M, g) be a compact Riemannian manifold of dimension n > 4.
Let hy € CP(M), p > 2, be such that Ag+hyg is coercive. Assume that there exists a
point & € M satisfying (4). Assume in addition that & is a nondegenerate critical
point of ho — ¢, Scaly, and

mho(fo) an = 4,5

7 K =
(1) Kno(&) Ay (ho — ¢n Scaly) (&) + %”| Weyl, (¢0)[2 ifn>6

£0,
where mp, (§o) is the mass of Ag+hg at the point &y (see Proposition-Definition 8.1),
and Weyl, is the Weyl curvature tensor of the manifold. We fiz a function f €
CP(M) such that f(&o) X Kny(&) > 0. Then for small € > 0, there exists u. €
C?(M) satisfying

(8) Agte + (ho + ef Jue = uZ =" in M, uc > 0,

and such that uc — 0 weakly in L*> (M) and (uc) blows up with one bubble at &.

The definition of K}, (&o) outlines the major difference between high- and low-
dimensions that was mentioned above: for n > 6, it is a local quantity, but for
n € {4,5}, it carries global information (see Section 8 for more discussions).

Next we deal with the case where ug > 0 in dimension n > 6:

Theorem 1.5. Let (M, g) be a compact Riemannian manifold of dimension n > 6.
Let hg € CP(M), p > 2, be such that Ay + hg is coercive. Assume that there exist
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a nondegenerate solution ug € C2(M) to equation (1) and & € M satisfying (6).
Assume in addition that & is a nondegenerate critical point of Yny v, and

9)

C .
A gno,u0 (€0) + 5| Weyl, (€0) 5 if n="6
uo(&o) if7<n<9
Kho,uo é- = & . 7& 0.
V= 67200(80) + Agiong€0) + 22 Wel, (&) ifm =10
Cp, .
Ag‘ﬁho,uo (gO) + E|Wey1g(§0)|3 an > 11

We fiz a function f € CP(M) such that
[f +2(Ag + ho = 2ug) ' (fuo)] (o) ifn =6 =0
f (&) ifn>6 '

Then for small € > 0, there exists u. € C%(M) satisfying (8) and such that u. — ug
weakly in L*" (M) and (ue)e blows up with one bubble at &.

(10) Khmuo(gO) X {

The paper is organized as follows. In Section 2, we discuss the question of
existence of functions hg and wg satisfying the assumptions of Theorem 1.3. In
Section 3, we introduce our notations and discuss the general setting of the problem.
In Section 4, we establish a general C'-estimate on the energy functional, which
holds in all dimensions. In Sections 5, 6 and 7, we then compute a C'-asymptotic
expansion of the energy functional in the case where n > 6, which we divide in
the following subcases: [n > 6 and wy = 0] in Section 5, [n > 7 and ug > 0]
in Section 6 and [n = 6 and ug > 0] in Section 7. In Section 8, we discuss the
specific setting of dimensions n € {4,5} and we define the mass of A; + hg in this
case. In Section 9, we then deal with the C'-asymptotic expansion of the energy
functional when n € {4,5}. In Sections 10, 11, 12 and 13, we complete the proofs
of Theorems 1.4, 1.5, 1.2 and 1.3, respectively. Finally, in Section 14, we deal with
the necessity of condition (4) on the gradient

2. EXISTENCE RESULTS FOR hg AND

This short section deals with two results which provide conditions for the exis-
tence of functions hg and wug satisfying the assumptions of Theorem 1.3 with pre-
scribed ¢pg,u, and &. The first result is a straightforward consequence of classical
works on the Yamabe equation:

Theorem 2.1. (Aubin [1], Schoen [28], Trudinger [31]) Assume that n > 3. Then
there exists eg > 0 depending only on n and (M, g) such that eg > 0 if (M, g) is not
conformally diffeomorphic to the standard sphere, e = 0 otherwise, and for every
o € CY(M) such that

wo < €0 and A (Ag+ ho) > 0, where hg := g + ¢, Scalg,

there exists a solution ug € C*(M) of the equation (1). In particular, if n # 6 and
©wo(&0) = |Veo(&o)| = 0 at some point & € M, then hg satisfies (6).

It remains to deal with the case where n = 6. In this case, we obtain the
following:
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Proposition 2.1. Assume that n = 6. Let po € CP(M), 1 < p < o0, be such that
(11) M (Ag + @o + ¢, Scaly) < 0.

Then there exists hg € CP(M) such that the equation (1) admits a solution ug €
C?(M) satisfying ho — ¢y, Scal, —2ug = @o. In particular, if ©o(&0) = [Vo(&o)| =0
at some point &y € M, then (ho,uo) satisfy (6).

Proof of Proposition 2.1. Note that 2* —1 = 2 when n = 6. In this case, we can
rewrite the equation (1) as
(12) Agu+ (ho — 2u)u = —u?, u > 0in M.

Using (11) together with a standard variational method, we obtain that there ex-
ists a solution uy € CPTH(M) C C?(M) of the equation (12) with hg := ¢o +
cn Scalg +2ug € CP(M). This ends the proof of Proposition 2.1. O

3. NOTATIONS AND GENERAL SETTING
We follow the notations and definitions of Robert—Vétois [20].
3.1. Euclidean setting. We define

n—2

—9 2
n(n)) for all x € R",

(13) Ul,o(f) = < 1+ |22

so that U o is a positive solution to the equation
ApualU = U? 1 in R",

where Eucl stands for the Euclidean metric. For every § > 0 and £ € R", we define

n—2

- Vnn—2)5\ °

14 Use(x) := 5T U (67! r—£)) = M for all z € R™.

€ 2 2

' 6% + |z — ¢
We define
(15) Zo = (85U5’5)|(170) and Z; == (851.U5’5)|(1,0) foralli=1,...,n.
As one checks,

n—2 n2p—2 |z2-1
16 Zy = — U - U) = -2) o
( ) 0 5 (x,V ) n(n ) 2 (1 + |$|2)5
and
n—2 .
(17) Zi=—=0,,U=+/n(n—-2) * (n—Q)W foralli=1,...,n.
€T 2

We denote p = (po, p1,---,0n) = (6,€) € (0,00) x R™. Straightforward computa-
tions yield

n—2

(18)  OpUse =6 "(Zi)se:=0""0""2 Z; (6 (x—¢)) foralli=0,...,n,

2220 —2 a2 |z —¢&? — 62
19 05Use = /n(n —2 sz !
(19) 6Us.¢ n(n ) D) (82 + |z — £)2)/?

and

ns2 n—2 x—&); .
(20) Og,Use =+/n(n—2) ° (n—2)5 2 02 —|—(|:c — §)|2)n/2 foralli=1,...,n.
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It follows from Rey [25] (see also Bianchi-Egnell [2]) that
{¢ € DIR™) : Apyad = (2* — 1)U? 26 in R"} = Span{Zi}io,....n,
where D?(R™) is the completion of C°(R") for u — ||Vulz.

3.2. Riemannian setting. We fix N > n — 2 to be chosen large later. It follows

from Lee-Parker [17] that there exists a function A € C*°(M x M) such that,
defining A¢ := A(E, -), we have
(21) Ae >0, Ae(§) =1 and VAg(§) =0 for all § € M
and, defining the metric g¢ := Ag*_zg conformal to g, we have
1
(22) Scaly (€) = 0, VSealy, (€) =0, Ay Scaly (€) = 2| Weyl, 1
and
(23) dvg, (z) = (1 + O(|z|™)) dz via the chart expgf around 0,

where dz is the Euclidean volume element, dv,, is the Riemannian volume element
of (M, g¢) and expg5 is the exponential chart at £ with respect to the metric g¢. The
compactness of M yields the existence of 7y > 0 such that the injectivity radius of
the metric ge satisfies iy, (M) > 3r¢ for all £ € M. We let x € C°°(R) be such that
x(t) =1 for all t < rg, x(t) =0 for all t > 2rg and 0 < x < 1. For every ¢ > 0 and
& € M, we then define the bubble as

T L0 (expf) (@)

(24) Use () - = x(dge (2,€)) Ae(2)d™ "3

— X(dy (. ) Ae(2) (5 V“”‘”) ,

02 4 dg. (,£)?

where dgy, (z,€) is the geodesic distance between 2 and § with respect to the metric
ge. Since there will never be ambiguity, to avoid unnecessary heavy notations, we
will keep the notations Us ¢ as (14) when p = (6,£) € (0,00) xR™, and as (24) when
p=(6,&) € (0,00) x M. Finally, for every p = (6,£) € (0,00 x M, we define

Ks,¢ := Span{(Z;)s, }i=o,...,ns
where ,
(Zi)se(@) = X(dgg () Ae(2)6™ "% Z,(5 (expg®) ™ (@)
forallz € M and i =0,...,n.

3.3. General reduction theorem. For every 1 < g < oo, we let [|-[|, be the usual
norm of L4(M). For every h € CO(M), we define
1

1 .
Jp(u) = 3 /M (IVul? + hu?) dvg — 7 /M u? dv, for all u € HY (M),

where u, := max(u,0). The space HZ(M) is endowed with the bilinear form (-, -}y,
where

(u,v)p = / (VuVo + huv) dv, for all u,v € HF (M).
M

If Ay+ hg is coercive and ||h — ho||oo is small enough, then (-, -); is positive definite
and (HZ(M), (-,)s) is a Hilbert space. We then have that Jj, € C*(H?(M)) and

T} (u)[¢] = /M(Vuv¢+hu¢>) dvg — /M w2 Yo dv, = (u, d)p —/ w2 Lo du,

M
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for all u, ¢ € HZ(M). We let (6,€) — Bn.se = Br(,€) be a function in C*((0, 00) x
M, H?(M)) such that for every § > 0, there exists €(§) > 0 independent of h and &
such that

(25)  [[Bhrsellmz +0l0pBhse

g2 < €(0) for all p = (6,¢) € (0,00) x M

and €(0) — 0 as 6 — 0. The function By s5¢ will be fixed later. We also let
g € C?(M). We define

Whio,s,6 = to + Use + Brse-

We fix a point & € M and a function hy € C°(M) such that A, + hg is coercive.
We let ug € C?(M) be a solution of the equation

AgUQ + houg = ug*_l, ug > 0in M.

It follows from the strong maximum principle that either ug = 0 or ug > 0. We
assume that ug is nondegenerate, that is, for every ¢ € H (M),

Agp+hod = (25 — 1l 29 <= ¢ =0.
It then follows from Robert—Vétois [26] that there exist ¢ > 0, Uy C M a small
open neighborhood of & and @4, € C*((0,€0) x Uy, H(M)) such that, when
[1h — holloo < €0 and |9 — upl|cz < €0, we have
(26)  Mycr (Whagsg + Praoss — (Bg + 1) (Whagss + Pragse)t 1) =0
and

(27) 1®naosellirz < ClWnaooe=(Bg+h) ™ (Whiose)d ™z < C | Roel] 2

for all (6,€) € (0, €9) x Up, where C' > 0 does not depend on (h, @y, 6,§), P ag.5,c :=
D4, (6,€), HKéLE is the orthogonal projection of HZ(M) onto K(i-g (here, the or-
thogonality is taken with respect to (-,-)) and

(28) Rse = (Dg +h)Whagse — Whagse): -

Furthermore, for every (dg,&o) € (0, €y) x Up, we have

(29) T (Wh,ao.60.60 + Phiio.60.60) = 0
<= (d0,&0) is a critical point of (6,&) = Jn(Wh,ag,6.¢ + Ph,iig,5,¢)-

It follows from Robert—Vétois [26] that
(30) In(Whiao,s + Phiao,se) = In (Whaose) + O Phaq bellr2)

uniformly with respect to (4,&) € (0,€) x Uy and (h, tg) such that |2 — holle < €0
and ||’L~L0 — U0||C2 < €.
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Conventions:

e To avoid unnecessarily heavy notations, we will often drop the indices
(h,,ﬁo, 5,5)7 so that U := U&E’ B = Bh,é,ga W .= Wh,ﬂmg’g, b = q’h,ﬁg,&,fy
etc. The differentiation with respect to the variable (6,¢) will always be
denoted by 0,, and the differentiation with respect to x € M (or R™) by
0. For example,

Wi g 5.6 (x)

9106 ifj=0

O, 0y, W =
0*Wh,ag,5.¢(2) ifj>1
0x;0&; -

e For every { € Uy, we identify the tangent space T:M with R™. Indeed,
assuming that the neighborhood Uj is small enough, it follows from the
Gram—Schmidt orthonormalization procedure that there exists an orthonor-
mal frame with respect to the metric g¢, which is smooth with respect to
the point . Such a frame provides a smooth family of linear isometries
(Ve)eetys Ve : R™ = Te M, which allow to identify T¢ M with R™. In par-
ticular, in this paper, the chart expé7£ will denote the composition of the
usual exponential chart with the isometry .

e Throughout the paper, C' will denote a positive constant such that

— C depends on n, (M, g), & € M, the functions hg,ug € C?(M) and a
constant A > 0 such that ||ho|lo> < A and A\ (Agy+ ho) > 1/A. In the
case where ug > 0, we also assume that ||ug||-2 < A and ug > 1/A.

— C does not depend on z € M (or z € R", depending on the context),
¢ in the neighborhood Uy, § > 0 small and h € C?(M) such that
|l < A and A (Ag+h) > 1/A. In the case where ug > 0, C' is also
independent of @y € C*(M) such that ||gl|o. < A and @y > 1/A.

The value of C might change from line to line, and even in the same line.

e For every f,g € R, the notations f = O(g) and f = o(g) will stand for
|f] < Clg| and |f] < Ce(h,d,€)|g|, respectively, where e(h,d,&) — 0 as
h — hg in C3(M), § — 0 and & — &.

4. C'-ESTIMATES FOR THE ENERGY FUNCTIONAL
For every 6 > 0 and £ € Uy, we define
n=2
~ dy/n(n—2) ’
31 U, = 57— for all M.
(3D (@) <52 Fdg(mep) TS
Our first result is the differentiable version of (30).

Proposition 4.1. In addition to the assumptions of Section 3, we assume that

(32)  |Buse(x)| +010yBrse(x)| < C(Use(x) + 0Use(x)) for all x € M.

We then have

(33)  OpJn(W + @) = 0pJn(W) + O M| @[l sz (| RI| 22, + 61|10 Rl 22, + [ @]]112))
+ 0(1n27571|\‘1’||§12_1),

where R = Rs¢ is as in (28).
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Proof of Proposition 4.1. It follows from (26) that there exist real numbers A; :=
A;(6,€) such that

WH+@— (A +h) T W +0)T 1 =) \Z,
=0
This can be written as
(34) T(W + @) => " Xi(Zj, )n
=0
We fix i € {0,...,n}. We obtain
(35)  Op, Jn(W + @) = J; (W + @)[0,, W + 0, P|
= Jy(W)[0p W] + (Jo(W + @) — J,(W)) [0p, W] + T3, (W + )0y, D]

= T (W)[0p, W] + (JL(W + ®) — J5.(W)) [0, W] + > Nj(Z;,0p, )
§=0

= 0, Jn(W) + (JL(W + @) = T3 (W) [0, W] = D Xj(0p, Zj, @i,
3=0
where, for the last line, we have used that ((Z;)s,¢, Ph,a9,6,¢)n = 0 for all (9, &) since

D 40,56 € K i_&‘ We estimate separately the two last terms in the right-hand side
of (35). As regards the first of these two term, we have

(36)  (Jo(W + @) — J(W)) [0p, W]

- / (VOVD,, W + hdd, W) — / (W 4+ &)X~ — w2 =19, W dv,
M M

_ / B((Ag + 1), W — (2 — DWZ 19, W) dv,
M

- [ wE @ W )0, W d,
M
With the definition (28), Holder’s and Sobolev’s inequalities, we obtain
(37) / B((Ay + h)I,, W — (2 — YW 19, W) dv,
M
= [ 90, Rdo, = O[]0, Bl 22,) = Ol 105l 2,

n+2

In the sequel, we will need the following lemma:

Lemma 4.1. We have
(38) Us.e() +60,Us ()] < CUs ()
for all (6,€) € (0,¢0) x Uy and x € M.

Proof of Lemma 38. Most of the proof is easy computations. The only delicate
point is to prove that |8§dg§(x,§)2| < Cdg(v,€) for all x € M and & € U.
We define F(z,§) = dy, (r,6)? and G(&,y) = expgE (y). Proving the desired in-
equality amounts to proving that (9:F'(x,§))je=, = 0 for all z € M. Note that
F(G(&,y),€) = |y|? for small y € R™. Differentiating this equality with respect to
¢ yields a relation between 0, F and J¢F, and the requested inequality follows. [
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End of proof of Proposition 4.1. Using Lemma 4.1, the assumption (32) on By, s,
and that 0p,%9 = 0, we obtain

[ W o= - w @ - ywE )0, W s,
M

<O [ (W4 @)2 T w2t (2r — )W 20|U du,,
M

We split the integral in two. First
/ (W 4+ @)X~ w2t — (2" — )WZ 20|U dv,
[W|<2|®|
<C | (@ T U dvy < Clll Tl < Ol

M

As regards the other part, looking carefully at the signs of the different terms, we
obtain

/¢>|<|W/2 (W4 @)Y~ - w2 =1 — (2" — )YW2 20|U dv,

\ N\ d
= Wzt <1+) —1-(2"-1)—
/|<I><|W|/2 w w

. d\2 - . N
<C Wt <> Udv, =C W —3®2U du,.
|B<|W /2 w |®<|W /2

U dvg

In case n < 6, that is 2* > 3, we obtain
[ WE RO, < [ 0¥ e, < CIOIE 0l < el
|®|<|W]/2 M !
In case n > 7, that is 2* < 3, arguing as above, we obtain
/ W 3620 d, < c/ @ 10 dv, < ClJ] %
|®|<|W /2
Plugging these estimates together yields

(39) ‘/ (W+ @)Xt —w2 =1 — (2" - YW ~28)d,, W dv,
M
< C5 (Il + Laxvl @l ).

As regards the last term in the right-hand side of (35), arguing as in the proof of
Lemma 4.1, we obtain ||9,, Z;[| gz < C/é for all 4, j = 0,...,n. Therefore, we obtain

(40) > Xi{0p, Z;, ®)n| < CoTIA||®| 2, where A= |-

=0 Jj=0

It follows from (34) that

TW +@)[Zi) = > N Zi, Zj)n
7=0
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for all ¢ = 0,...,n. Since (Z;,Z;), - 0if i # jand - 1if ¢ = j as § — 0 and
uniformly with respect to £ € Uy, we obtain

ASCY |TL(W +)[Z]|.
i=0
For every i = 0, ..., n, using that (®, Z;);, = 0 and ||W]|2« + || Z;||2« < C, we obtain

ROV + B2 < RO + (@, 2~ [ (O + 87w zea,

S ‘/ RZid’Ug
M

< C|R| 2, + C([1@ll2 + [ @[3:77) < ClIR| 2, + C[[®]l2--

+c/ (W2 ~21@) + |8 )| 2] dv,
M

Therefore,

(41) A < C|IR| 2, +Cl|2]-.

Plugging (36), (37), (39), (40) and (41) into (35) yields (33). This proves Proposi-

tion 4.1. U
5. ENERGY AND REMAINDER ESTIMATES: THE CASE n > 6 AND ug =g =0

In this section, we consider the case where n > 6 and ug = g = 0. In this
case, we set By s¢ = 0. Then W, 5,5¢ = Wse = Use and the assumptions of
Proposition 4.1 are satisfied. We prove the following estimates for R = Rs¢:

Proposition 5.1. Assume that n > 6 and ug = tig = 0. Then

52 4 Dy 6 (In(1/6))** ifn =6

(1) ARl 4810, gy 0] 0T TS TSRS
0% (In(1/6))”” + Dped* ifn=10
§* + Dy ¢6? ifn > 11,
where
(43) Dhe = ||h = holleo + dg(€,€0)*.

Proof of Proposition 5.1. Let Ly := Ay 4 ¢, Scaly be the conformal Laplacian. For
a metric g’ = w*("=2) g conformal to g (w € C°°(M) is positive), the conformal
invariance law gives that

(44) Ly¢=w" VL, (we) for all ¢ € C=(M).
Therefore, we have
R=(Ag+hU-U" "1 =L,U—-U¥"' 40U
= A7 TM(Lg (ATU) = (AT TN + U
= A7 (A (AF'U) = (AU + he U,

where ¢y, is as in (5) and

(45) he == on + ang*_2 Scaly, .
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Via the exponential chart, using the radial symmetry of Us : R" — R, we obtain
that around 0,
(46)

) 0, /Tel R Y
Dge(AT'U) = (AZ'U)? ' = ApaalUso+ |g£|8TU570—U5270 VAU PR

V1] Vieel

It then follows from (23) that
(47) R(z) = izg(x)U(x) Lot Os¢(x), where |O5¢(x)| + [0,05¢(x)| < C

for all (6,€) € (0,00) x Uy and € M. Note that these estimates are a consequence
of (46) when z is close to &, and they are straightforward when x is far from &.
Using Lemma 4.1, we then obtain

(48) |R(x)| + 8|05 R(x)] < C6"F + Clhe()|Us e(x)

and

(49) 0|0 R(w)| < CO™F + Clhe()|Us e(w) + Col0phe(w)|Ts ¢ ().
Since (6) and (22) hold, we have

(50) |f15(x)\ < CODpe + Cdyg, (z,€)? and |85/A15(x)| < Cdg, (x,8).

It is a straightforward computation that for every o > 0 and p > 1, we have

n—2

02 ifn>n—-2—-a)p
(51) e () “Tsell, < C 4 6°F (n(1/6)"? ifn=(n—-2—-a)p
grte—ts® ifn<(n—-2-ap.

Plugging together (48), (49), (50) and (51), long but painless computations yield
(42). This ends the proof of Proposition 5.1. (I

Since n > 6, that is 2* —1 < 2, we have ||®||2,, = O(||‘1>H12L;{1). Plugging together
1 1
(30), (27), (33) and (42), we obtain

5t + D} ' (In(1/8))"* ifn =6

62 nwes 0|’ Dne f7<n<9
5% (In(1/6)"° + D} (6" ifn =10
68 + D%7€54 ifn>11
and
(53) Oy, Jn(W + @) = By, Jn(W)
§* + D} 6% (In(1/6))*/* ifn=6
+0 (5—1) (5%72 + Dh,g52)2**1 7<n<9
(8" (In(1/8))*® + D e6%)* ~* if n =10
(64+Dh,g52)2*—1 > 11

for all i =0,...,n. We now estimate Jp, (W + ®):
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Proposition 5.2. Assume that n > 6 and ug = g = 0. Then
(54) J(W 4 @) = % /R Uty dx + %%(5)52 / Ui, dx
) 24%ws K, (£0)0* In(1/8) + O(6*(o(In(1/8) + Dj (In(1/8))*/3)) if n =6
T Kho(fo)é“/R U2y i+ o(6%) ifn>T

as§d — 0, & — & and h — hgy in C2(M), where Ky, (£o) is as in (7).

Proof of Proposition 5.2. Integrating by parts, we obtain

(55) Th(U) = /M (A, + W)U U dv, — Qi U2 dv,

]. *
= 5/ (A, + W)U — U "YU dv, + / U? dv,.
M M
It follows from (47) that
(56) / (AU 4 hU — U "YU dv, = / heU?dv, + O(5"2).
M M
Using the volume estimate (23), we obtain

(57) / UQ*dvg:/ (AglU)Tdvg&:/ Uo(1+ O(|z[Y) dz + O(8™)
M M By, (0)

= / Uiy dx + O(5™).
Plugging (56) and (57) into (55), we obtain
/ heU?dv, + / Uiy dx + O(5"2).

With the change of metric, the definition of the bubble (24) and the property of
the volume (23), we obtain

(58) / heU?dv, = / heU?dv, + O(8"2) = / Ap U da +O(6"2),
M Bv'o (5) 70(0)
where

(59) Ape(@) = (he A7) (exp{t (x)).

Using the radial symmetry of Us o and since hg € C?(M), we obtain
(60) / Ah,ﬁU(S%O dr = / (Ah,g (0) + 675& Ah,f (0)$a
By, (0) Bry (0)
1
+ fzﬁxBAh,s(U)xaxﬁ +O(llh = holl gz 2> + €ng ()] ]*) UF o dac

1
- Ah’g(o)/ Ugoda — TAEuclAh,g(O)/ |2|*U5 o da
By, (0) n

Br, (0)

+0 (/B (0)(“’1— holl g2 + ehoé(x))szio dz) o),
ro
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where €p,, ¢(x) — 0 as x — 0, uniformly in { € Up. With a change of variable and
Lebesgue convergence theorem, we obtain

(61) / Ugodx = 52/ Ut gdz+0(5"7?),
By (0) R™
42056* In(1/6) + O(6*)  ifn=6
62 z[*Us o do = 5
(©2) /Bm(o) = "Uso 54/ \x|2U1270 dx +0(8°) ifn>7,
]Rn
and
(63) / U2, d 6*In(1/6) ifn==6
€ x x =0 .
By (0) no.e (¥ 5.0 54 fn>7
Furthermore, we have Ap, ¢(0) = ¢x(§) and

(64) Al*luclAh,E(O) = A (h§A2 z )(5) = ng (S"hA§72*)(f) + CnAgg Scalgf (€)
= Ly (onhd (&) + G Weyl (97
Ly (iono A )(E) + G Weyly (€)1 + O(h = hollc=)

= Kno(§0) + O(eny (§) + [ = hollc2),
where €5, (&) — 0 as £ — &. Therefore, plugging together these identities yields

1 * 1
(65) Jn(U) = — / Utode + 5on(§)d* | Ulgde
n Rn
) 24%w5 K,y (£0)6* In(1/6) + 0 (6* In(1/8)) ifn=6
S dn | K, (50)54/ 22U2 o da + o(6*) ifn > 7.
]Rn

Plugging together (52) and (65), we obtain (54). This ends the proof of Proposi-
tion 5.2. O

We now estimate the derivatives of Jy, (W + ®):
Proposition 5.3. Assume that n > 6 and ug = g = 0. Then

(66) OsJn(W + @) = @p(£)d - Ut oda
) 242w5 Ko (£0)8° In(1/8) + 0 (8*In(1/6)) + O(DF 63 (In(1/8))*/%) if n =6

n Kh0(§0)53/ \x|2U12’de+o(53)+O(D2* lgn—z
]Rn

n+6

7) ifn>7
and

1
(67) 0T +@) = 506005 [ Ulyda

o 0(0°1n(1/8)) + O(D3} (6* (In(1/6))**) ifn=6
0(8%) +O(DZ 7167%) ifn>7

foralli=1,...,n, asd — 0, & = & and h — hgy in C*>(M).
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Proof of Proposition 5.3. We fix i € {0,...,n}. Using (47) and (38) and arguing
as in (58), we obtain

(68) By, Jn(U) = JL(U)[0,. U] = /M(AgU +hU — U 10,,U do,

:/ RapiUdvg:/ ngUapiUdvngO(én?Z/ |8piUdvg>
M M M

- / heUdy,U dvg + O (67 16"2)
M
— /BTO o Ah,§U5,§<Ag18pi U) (exp?& (.7})) dx + 0) (6—16n—2)
As in (60)7 we write
1 .
(69)  Ane(@) = Ane(0) + Or, Ane(0)a” + 50, 0p, Ap g (0)aa"

+O(eng.¢ (@)|a]* + [|h = holl o= |=[)

for all x € B, (0), where €y, ¢(x) — 0 as z — 0, uniformly in & € Up. With (38),
(62) and (63), we obtain

(70) ‘/ ( )(eho,s(x) + b = hollc2)|2|*Us o (Ag ' 9,,U) (exp* (x) de
Bry (0

5*In(1/8) ifn=26

54 ifn>7.

<Cst (0)(6h0,5($)+||h—ho||c2)|33\2052,o dz =o(67") {

T0

‘We write

/ A eUs (A5 10, U) (exp (z) da
Bry (0)
= / ApeUs 00p, (AglU)(expgg5 (z)) dx
Bro (O)
<[ AU A et ) dn
By (0)
Since VA¢(§) = 0, we obtain
[ AncUA 0, A expd (0)) da
By (0 ' '
=0 (AM(O)/ Z|UZ dm) +0 (/ l2Us daz) .
By (0) By (0)
With the definition (59) of Aj ¢ and the assumption (6) on hy, it follows that

[ AU 9 A st () da
B’V‘O (0)

=0 <§1(54 <Dh7§ + { fsln(l/é) i Z j 3})) .
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This estimate, the Taylor expansion (69) and the estimate (70) yield
(71) / Aneh s (A7 10y, U) (exp% (2)) da
By (0)
—41e0) [ Usa0 (A V) (exp (o) do
By (0)

+ 0z, Ane(0) / x“Us,00p, (AglU) (expgg (z)) dx
By (0)

1 ,
#50n0nAnclO) [ Ut (AU e (2) da
54 1In(1/8) ifn==6
+o(6™H{ (1/9) .
1) ifn>"T7.

We first deal with the case i = 0, that is 9,, = 9, = Js. For every homogeneous
polynomial @ on R™, it follows from (14) and (18) that

/ QU5 005 (AT U) (expl () da
Bro (0)

= / Q567" Uro (1/6) 6" Zo (x/6) da.
B,y (0)

The explicit expressions (13) and (15) of U and Z and their radial symmetry then
yield

n

/ U§7085(A§_1U)(6ng§ (x))dx = 5*152/ Ui 0Z0 dx + O(6716"2) for n > 6,
Bry (0)

/ :CjU(;yO&;(AglU)(expgg (z))dx =0 for n > 6,
By, (0)
and
/ :cjakama(;(AglU)(expé75 (x)) dx
Brq (0)
{ ciIn(1/6) +O(57 %) ifn==6

= Shymig 2 1sn—2y
/ |2|*U10Zodz + O~ 0" %) ifn>7,
R‘n,

n

where €5, is the Kronecker symbol and ¢ > 0 is a constant that will be discussed
later. Putting these estimates in (68), and (71), we obtain

s In(U) = Ape(0)6710% | Uy oZoda
Rn

{ A BuctAn,e(0)In(1/6) + o(In(1/4)) ifn==6

AEuclAh,E(O) / |$|2U1’0Z0 dx + 0(1) ifn>7.
Rn

1714
— 50710

For every § > 0, we have

UZ, dx = & Ui,dx forn >5
Rr R
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and

/ |2|*U3 o do = (54/ |z|*UT o da for n > 7.
R"L R"L

Differentiating these equalities with respect to § at 6 = 1, we obtain

/ Ui pZydx = / U1270 forn>5
n Rn
and
/ 22U, 0 Zo dx = 2/ |2|?Ut o for n > 7.
R R

Therefore, with the computation (64) and the definition (7), we obtain

(12) 05n(U) = en(©)318* [ UZyda
c6Kny(&0)In(1/0) + o(In(1/8)) ifn=26

Lo iga
— =300 P .
n Kho(fo)/ 22Uy de +o(1) ifn>T.
]Rn
Differentiating (65), we obtain cf/2 = 24%ws. Therefore, with (53), we obtain (66).
We now deal with the case where ¢ > 1, that is 9, = 0¢,. We first claim that
(73)
-1 9ge -1 9ge 57 |z
[a&-(Ag U5,§)](§veng () + [817i(A§ Ué,&)](f7eXp§ (z))=0 T o2 |
(02 +[z[?)

where the differential for £ is taken via the exponential chart. Before proving this
claim, let us remark that it is trivial in the Euclidean context. Indeed, for every
&z € R™and § > 0, with the notation (14), we have

U o —€)) =~ Use().

We now prove the claim (73). We fix £ € Uy. We define the path £(t) := expg§ (té;)
for small t € R, where ¢€; is the i-th vector in the canonical basis of R™. With (31)
we obtain

n—

afi U57§($) = aﬁi (5_ 2

i

(74) 00, (g Us (€, exp () = 0 c(expl (100
_ n-—2 5t o,
2 (62 + |z|2)n/2 !
and
(75) [0, (A Us (&, oxp (1) = 5 Ui (exp ()
n—2 57 d ,

2 (02 + |z|2)/? ' %dgg(t) (f(t)anng (z)).

It follows from Esposito—Pistoia—Vétois [12, Lemma A.2] that

d

(76) dt 9e@

(£(1), expf* (x)) + 22; = O(|z[*) as © — 0.
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Putting together all these estimates yields (73). This proves the claim. With the
definition (14), we obtain

n=2, 13
/ Ué,oié G 7 dx = O(8%) for n > 6,
B0 (0% +]zf?)"

221203 5*1n(1/86) ifn==6
/ \x|U5,0%dx =0 (1/9)
B,y (0) (62 + |z[2)™

o st ifn>7
and
o & ifn==6
2 6= |zf 5 :
|| Ug,oi/zdx =0 0°In(1/0) ifn=7
By, (0) (6% + |=[*)" 5 .
) if n > 8.

k3

Noting that [0 (AglUgvg)](f, expgf (x)) = 05,Us 0, we obtain by symmetry that

/ AglU(;’Oawi (AglU)(engs (z))dz = / Us,005,Usodx =0
By, (0) By, (0)

and similarly,
/ 29 2%Us 00, (AglU)(eXpZg (x))dx =0.
B, (0)
Integrating by parts, straightforward estimates yield
/ 2 Us 0q, (Ag 'U)(expy* (z)) dz = / 2 Us,00x,Us,0 d
Bry (0)

Bry (0)
1

_ y 1 -

= 5/ xjali(U(?,O) dx = _%/ U?,O dx + 5/ lejiUng do
Bro (0) BT‘O (O) aBro (0)

_ _%52/ U2, dz + O(3"2) for n > 6,

where 7 := (/4,...,U,) is the outward unit normal vector and do is the volume
element of 0B,,(0). Since Ap¢(0) = O(Dpe), plugging these estimates together
with (68) and (71), we obtain

Oc, Jn(U 18 52 U2 d o'In(1/9) ifn =06
(77) e, I ( )—5 e on(§) /]Rn 1,00 +0 53 iftn>7)"

With (53), we then obtain (67). This ends the proof of Proposition 5.3. O

Theorem 1.4 for n > 6 will be proved in Section 10.

6. ENERGY AND REMAINDER ESTIMATES: THE CASE 1 > 7 AND g, g > 0

In this section, we assume that ug, % > 0 and n > 7, that is 2* — 1 < 2. Asin
the previous case, we set By s¢ = 0, so that Wh, 5,5 = Wag,6.6 = o + Use and
the assumptions of Proposition 4.1 are satisfied. We prove the following estimates
for R = Rs¢:

Proposition 6.1. Assume that n > 7 and ug, g > 0. Then
(78)
-~ ~ ~2% — n=6
IR 22, < C||Ayiig + hiig — 3 oo +C(Dpe+6%+6"2 )6% and 10, Rl 22, < C3,

where Dy, ¢ is as in (43).
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Proof of Proposition 6.1. We have
(79)  R=(Aglio+hiig— a2 1)+ RO — (g + U)¥ 1 —a2 ~t— U1,
where
=AU +hU UL,

Concerning the derivatives, given i € {0,...,n}, we have
(80) Oy, R = Ay, U + hdy, U — (25 — 1) (g + U)? 28,,U

=9, R° — (2" = 1)((o + U)* "2 = U?~2)9,,U.
A straightforward estimate yields

(g + U)? 1 — a2~ — U 7Y < Cly<a, @2 ~2U + Clg,<piigU? ~2
With the expression (24), we obtain
{U(x) < ig(z) = dg(2,€) > c1Vd} and {U(z) > tg(x) = dy,(x,€) < 2V}

for all z € M, where c¢1,co > 0 depend only on n, (M,g) and A > 0 such that
1/A < 1y < A Therefore, with r := dg, (z,£),

(g + U)* ' —ag T = U <01 sUAHCL ., U
Since U < C§"Z" (62 + r2)1="/2 we then obtain
(81) I(dg +U)? = a2~ —U? 2o, < O T forn > 7.
Since 0 < 2* — 2 < 1, we have
(@ +U)¥ 2 -U¥ % < C.
Therefore, with (31) and (38), we obtain
(82)  [I((iig +U)* 7% = U¥ )0y Ul| 2, < CO|U|| 25, < C57'6% for m > 7.

Merging the estimates (42), (79), (80), (81) and (82), we obtain (78). This ends
the proof of Proposition 6.1. O

Plugging (78) and (78) together with (30), (27) and (33), we obtain
(83)  Ju(W + @) = J, (W) + O([| Agiio + hitg — @ ~*||% + Dj (6* + 6% +6"72)
and
(84) Op, Jn(W + @) = 0p, Jn(W) + O(|| Agto + hiig — uo | 20 5
| Agiio+hin—a2 Y2 T 6T 4 (Dp e+ 02467 )2 *157L72+Dh7§63+55+5"/2)
for all i =0,...,n. We now estimate J, (W + ®):

Proposition 6.2. Assume that n > 7 and ug,tg > 0. Then
1 . 1
(85) Iu(W + @) = Ju(a) + [ Ubydo+ 50n©F [ Vs
n Rn

1 n—2 *

— 3o K€)d" [ 1aPURydo o) —uo()s"F [ UF e
R”

O+ hitg 246”7 (gt + hitg ~ 8~ -+ 0 —ollc +0(1)))

as 6 — 0, & — & and h — hg in C?(M).
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Proof of Proposition 6.2. We first write

Jn (o +U) :Jh(ao)+Jh(U)—/ aOUQ**lduﬁ/ (Ao + hitg — a2 ~1)U du,
M

M
— 5 [ (@ + U)Y —ad —U? —2%ad U - 2%apU% 1) du,.
M
We fix 0 < 0 < % < 2* — 2. There exists C' > 0 such that
(g + U)?" — @2 —U? — 2742 71U — 2*aoU? 7}
< Clay<papy U =170 ¢ C1y<g,ud ~1 U,

Using the definition (24) and arguing as in the proof of (81), we obtain

S Can;2+n;29.

‘/ (g +U)? — a2 —U? — 202 71U — 2*aoU% ~Y) dw,
M
Furthermore, we obtain

< C||Agio + hiig — 42 1) ||oo /M Udv,

‘/M(Agao + hiig — @2 1)U dv,

n—2

< C||Agii + hiig — 42 1) || oo 2

Using (24), that A¢(z) = 1+ O(dy(x,€)?) for all z € M and that Usyp is radially
symmetrical, we obtain

/ U ' dv, = / g (expf () (1 + O(|2[2) U2, da + O(35°7* ')
M B, (0)

/B (0)(%(5) + 20, g (expf (€)) + O(|2*)UZ, dw + O(6°%)

n+2

@0(5)/ U(sg,:fldw +0 (/ |m|2U§;1daz) +0(672)
BTO(O) BT‘Q(O)
n+2

= iip(€)8°T / Uy lde +0 (5* / |:c|2U127*01dw> +0(67).
By /6(0) By /5(0)

Since Uy 9 < O(1 + |2[>)*~"/2, we obtain

/ Uiy lde = / ULy tdx + O(82)
B,y/5(0) Rn

and

/ |x|2U12;071dx =0(In(1/4)) forn > 1.
Biy/5(0)

Therefore, plugging all these estimates together yields

[ e, = a0(€5" [ U e+ 06 n(1/5))
M Rn
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Consequently, we obtain that for every 0 < < =5,

Tnito +U) = Juiio) + Jn(U) — i1 ()57 / U2 de
RTL

n 29

-I—/ (Ag’[l,o + hug — ’l~1,0 )Ud'l}g + O( )
M

Now, with the expansion (65), we obtain that for n > 7,
- - 1 « 1
(86)  Jn(to +U) = Ju(tio) + o U12,o dr + 59%(5)52 U12,0 dx

R™ R™
_ 7Kho £o)o* / |*UT o da + o(6%) — ug(&0)d / Uf(;ldx

+0(5"% (| Agiio + hito — 5 ~|oo + |0 — uoloc + dy (&, &0) + 57 7)),

Plugging together (83) and (86), we then obtain (85). This ends the proof of
Proposition 6.2. (]

We now estimate the derivatives of J,(W + ®):

Proposition 6.3. Assume that n > 7 and ug, Uy > 0. Then

81) Os(W +8) = en(©)3 [ Ugdo— Ky (605 [ [al*UEydo + (5"

n

n—2

wo(£0)5 / U2 i + 06" (([iio — woloe + 0(1))
+ | Agiio + hiig — @2 " Y|wod + [|Agio + hiig — a2 1|2 716 +D}i,515%)
and

1
(88) e, Jn(W + @) = 20, pn(€)07 i Ut g dzx +0(8°)

+ 008" (||ito — olloo + 0(1)) + | Agiiq + hiig — @2 || ood
+ | Agio + hitg — @3 ~Y|% 1T 4+ Do)
foralli=1,...,n, asd — 0, & = & and h — hgy in C*(M).

Proof of Proposition 6.3. We fix i € {0,...,n}. We have

6piJh(ﬂ0+U):/M(A o+ hiig— @2 ~1)8,,U dv, — (2* —1)/MﬂoU2*_28piUdvg

+ 0y, Jn(U) — / (g + U)? 1 = U~ — (2* = DagU? ~2)d,,U du,.
M
There exists C > 0 such that
|(iip + U)> =g = U 7 — (28 = D)agU* 3
< Clay<viy '+ Cly<g, U 7L

Since |0, U| < CU /5 (see (38)), arguing as in the proof of (81), we obtain

(i + U)> 1 — U =1 — (2% — D)apgU? ~2)0,,U dvg| < C5™7" .

M
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Furthermore, we obtain

/M(Agﬁo + hig — ﬂ’g*il)apiUdvg

< C|| Ao + hiig — @2 )06 " /M Udv,

n

< C||Ayito + hitg — @2 ) [|ood 167

Independently, using again (38), straightforward computations yield

/ ﬂoUQ*_QapiUdU.q = / (uo(&0) + O([lto — uolles + dg(-,€0)) UZ*_zamUdUg
M M
= ug(&) / U2 729,,U dv,
M
+OGI/Xmouﬂm+%@@wdA¢mﬂlmg
M

= uo(&o) /M U =20,U dvg + O(6 1677 (||ig — uolloe + dy (€, o) + 0)).

Arguing as in the proof of (71), we obtain

[ U0, udn = [ (AUP 20, (0 ) exp ) o
M Bry (0)

+0 6_1/ 2|0~ dx
BT‘D(O)

— [ A 0, (0 V) expl (@) do + O
Bro (O)

We first deal with the case where ¢ = 0, that is 9,, = J,, = 0s. With (18), we
obtain

/ (AU ~205(A'U) (exp (x)) di = / U2, 205Us o da
Byy (0) B,y (0)

= / U2 205Us odw = 671 (6" Upo(6~'2))> 26~ "% Zo(6 ') da
Bry(0) By (0)

n—2

= 5*157/ ULy > 2o da.
B,y 5(0)
Since Zy < CUj o, an asymptotic estimate yields

/B (o)(AgU)T_26‘5(AglU)(eng§ (x)) dz = 6_157%2/ U2y 2 Zydx + O(6%).

n

Note that for every é > 0, we have

U2 tde = 5;/ U2y e
R’Il ’ ]R'n, ’
Differentiating this equality with respect to § at 1, we obtain

* —_— 2 *
(2* — 1)/ ULy *Zydo = ”T/ Uty lda.
R"n, ]Rn

Therefore, we obtain

(2" — 1) /M U2 205U dv, =

n—2

5—15%’2/ U2y e +0(5°7).
Rn
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We now deal with the case ¢ > 1, that is 9,, = 0¢,. It follows from (75) and (76)
that

/B o (AP 20 (50 e () o

n—2

* —2 0 2
= Uz, 2 <_n ) —2x; + O(|z]*)) dx
/Bro(o) >0 2 ) (6% +x?)n/? ( )

*_ U§()
:o/ p2i-2_Ye0 34, :o/
( By 52+|l’|2| | B

Putting these results together yields

n—2

|x|U§;1dx> =0(5 7).

0 (0)

2 n— .
6170u0(£0)5715 22 U1210_1d$
R’VL

+ 0671677 (| Aglio + hitg — @2 o + lliio — uolloe + dy(€, &) +6))

foralli =0,...,n. Using the estimates (72) and (77) for the derivatives of Jj,(Us ¢),
we obtain

Be, Jn(ito + U) = B¢, Jn(U) — =

D (itg + U) = n (€)6716° /

n—2 n—4

w6 [ U e +o(d?)
R’Vl

+0(6"7 (| Agiio + hito — T~ oo + [0 = w0 low + dy (€, &) +6))

R R

n n

and

B 1
O, In(to +U) = 53&%(5)52 U}y dz + o(6*)
RTL

+0(5" ([ Agiio + hitg — @5 ~"loe + lliio — wolloc + dy (€, o) + 6)).
With (84), we then obtain (87) and (88). This ends the proof of Proposition 6.3. O

Theorem 1.5 for n > 7 will be proved in Section 11.

7. ENERGY AND REMAINDER ESTIMATES: THE CASE n = 6 AND ug, g > 0

In this section, we assume that ug, g > 0 and n = 6, that is 2* — 1 = 2. Here
again, we set By, 5¢ = 0, so that W, 5, 5.c = Wa,,5,¢ = tio+Us,¢ and the assumptions
of Proposition 4.1 are satisfied. The remark underlying this section is that

Ay(ug +U) + h(ug + U) — (ug + U)? = AU + (h — 2uo)U — U

Therefore, to obtain a good approximation of the blowing-up solution, we will
subtract a perturbation of 2ug to the potential. We first estimate R = R ¢:

Proposition 7.1. Assume that n = 6 and ug, g > 0. Then
(89) |IRlls/2 + 8ll0p Rllsj2 < C|Agiio + it — i]|oc + C6*(1+ Dag (In(1/8))?),
where

(90) Dhg = ||h — holloo + dy (€, &)*-
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Proof of Proposition 7.1. Since 2* — 1 = 2, we have

R = Ay(ig+ U) + h(ig + U) — (g + U)?

= Ayiig + hilg — g + AU + (h — 2i0)U — U?
and
Op R =0y, (AgU + (h — 200)U — U?)
for all i = 0,...,n. For convenience, we write
h:=h— 2@ and hg := ho — 2ug.
The estimate (89) then follows from (42). This ends the proof of Proposition 7.1. O
We now estimate the derivatives of J,(W + ®):

Proposition 7.2. Assume that n =6 and ug, g > 0. Then
1
(91) J(W + @) = Jp(ao) + 5/

— 2w Ky o (€0)0% In(1/8) + O(|| Agiio + hitg — 2]|% + || Agiio + hilg — 72 s002)
+0(8* In(1/8)(o(1) + Dy, ¢ (n(1/8))*%)),

* 1
Ubydo+ ponanl€)5° [ URgds

n n

(92) 06TV +®) = 21,5065 | Ul dz =95 K ()5 In(1/5)
+ O(|| Ayt + hitg — 43|00 + || Ayiio + hitg — G3||2.6™1)
+0(8*In(1/6)(o(1) + Dy, ¢ (In(1/5))"/%))
and
(93) 0TV +@) = 50600 (€)0° [ Uloda
+O([[Ago + hiig — 4|06 + [| Agito + hiio — 5[ 3,6 )
+0(8%In(1/8)(o(1) + bi,g (In(1/6))/3))

foralli =1,...,n, as § = 0, & = & and h — hy in C*(M), where ¢p a,,
Ko uo(€0) and D¢ are as in (5), (9) and (90).

Proof of Proposition 7.2. As one checks, since n = 6 and 2* = 3, we have
JIn (o + U) = Jh(fbo) + JE(U) +/ (Agﬂo + hiagy — ’ag) U dvg
M

and

0 Tl +U) = 0y, Jy(U) + [ (Byio + hio — ) 9, U o,
M

for all i = 0,...,n. Using the definition (24) and since |8,,U| < CU/§, we obtain

‘/M(Agao + hitg — @2)U dv,

< O||Agiig + hitg — 43)]| 0o /M Udv,

< O||Ayiig + hitg — 43)]| 006>
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and
‘/M(Agﬂo + hil — @2)y,U dv,| < C||Ayito + hitg — i2) | acd ™" /M Udv,

< C||Ayiig + hilg — 43) || od 02

Putting these estimates together with (6), (30), (33), (89), (65), (72) and (77), we
obtain (91), (92) and (93). This ends the proof of Proposition 7.2. O

Theorem 1.5 for n = 6 will be proved in Section 11.

8. SETTING AND DEFINITION OF THE MASS IN DIMENSIONS n = 3,4,5
In this section, we assume that n < 5. Our first lemma is a simple computation:

Lemma 8.1. There exist two functions (§,x) — fi(&,2), i = 1,2, defined and
smooth on M x M such that for every function f : R™ — R that is radially sym-
metrical, we have

(Ag + M) (xX(r)Ae(2) f(r)) = Ae(2)* " XApual(f(r) + f1(& @) f'(r) + fa(& 2) f(r)
+ hex(2)Ae () f(r)

for all x € M\{{}, where v := dy. (x,§) and iLg is as in (45). Furthermore,
fi(§,z) =0 when dg(x,§) > ro and there exists Cy > 0 such that

|f1(&,2)(2)| < Ondy(2, &)V and | f2(€,2)| < Cndy(x, )N 72 for all z,& € M.

The proof of Lemma 8.1 follows the computations in (47). We leave the details
to the reader.

We define
X(dge (2, §))Ae ()

Te(z) =
) G D 1dye (w67
for all x € M\ {¢}. Tt follows from Lemma 8.1 and the definition (14) that
(94) AgUse +hUse = U + F5(€,2)0"% + heUs,e
and

F ~ n—2
(Ag+ h)Te = 0¢ + %,:v) + hele, where ky, == (n — 2)w,—1y/n(n —2) * |
0¢ is the Dirac mass at & and (¢,&,z) — Fy(§, ) is of class C? on [0, 00) x M x M,
with p being as large as we want provided we choose N large enough. This includes
t = 0 and, therefore,

(95) lim F, = Fy in CP(M x M).
t—0
For every ¢ > 0, we define B,+¢ € Hf (M) as the unique solution to
Fi (& x . X (dg, (&, 2))Ae(x
%) <Ag+h>/3h,t,§:—< (©0) a6 A)
n (n = 2wn_1(t* + dg (§,7)%) =
U .
F&a) ;| ag ift>0
BT T

T if t =0.
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Since N > n —2 and n < 5, the right-hand-side is uniformly bounded in L(M) for

some q > %’ independently of t > 0, £ € Uy and h € C?(M) satistying ||| < A

and A1(Ag + h) > 1/A. Therefore, By 4 ¢ is well defined and we have
(97) 1Bh.t.e = Broellgz =o(1) ast =0

uniformly with respect to & and h. Furthermore, we have S, ;¢ € C?(M) when
t > 0. As one checks, with these definitions, we obtain that

Ghe :=T¢c+ Bnoe

is the Green’s function of the operator Ay + h at the point . We now define the
mass of Ay + h at the point &:

Proposition-Definition 8.1. Assume that 3 < n < 5 and N > n — 2. Let
h € C*(M) be such that A, + h is coercive. In the case where n € {4,5}, assume
in addition that there exists € € M such that or (&) = |Vpp(§)| = 0, where ¢y, is as
in (5). Then Bpo,e € CO(M). Furthermore, the number B,0.¢(€) does not depend
on the choice of N > n —2 and g¢ satisfying (21) and (23). We then define the
mass of Ay + h at the point € as mp (&) := Br0.¢(€).

Proof of Proposition-Definition 8.1. As one checks, when n = 3, we have

he(2)Te(x) = O(dy(2,6) ")
and when n € {4,5} and ¢, (&) = |Ven(§)| = 0, we have

he(x)Te(x) = O(dy(,)*™™).
Furthermore, we have
Fy(€,2) = O(dy (2, )N ").
When N > n — 2, this implies that £y, € C°(M). The fact that the number
Bh,0,e(&) does not depend on the choice of N and g¢ then follows from the unique-
ness of conformal normal coordinates up to the action of O(n) and the choice of

the metric’s one-jet at the point £ (see Lee—Parker [17]). This ends the proof of
Proposition-Definition 8.1. g

We now prove a differentiation result that will allow us to obtain Theorem 1.2:

Proposition 8.1. Assume that 3 < n <5. Let h € C*(M) be such that A, + h
is coercive. In the case where n € {4,5}, assume that there exists £ € M such
that op(€) = |[Ven(&)| = 0. Let H € C?(M) be such that H(E) = |[VH(£)| = 0.
Then mp1en(€) is well defined for small e € R and differentiable with respect to e.
Furthermore,

5e(mh+€H(§))|O E— y HG,QL6 dvg.

Proof of Proposition 8.1. In order to differentiate the mass with respect to the po-
tential function h, it is convenient to write

Ghe = Ge, Scal, ¢ + Bh.e,
where Bh,g € H}(M) is the solution to

(98) (Ag + h)Bh,& = 7§0thn Scalg,&-
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Under the assumptions of the proposition, we have Bh,5 € C°(M) and

Bre(&) = —/ onGe, scal, ¢ Gh.e dvg.
M
Furthermore, as one checks, we have

(99) mp(€) = Me, seal, (€) — Br.e(£).

It follows from standard elliptic theory that Bh+e H,¢ is differentiable with respect
to e. Differentiating (98) then yields

(Ag + h)ae(3h+eH,§)|o + HB;%& = —HG¢, Scal, ¢
which gives
(Ag + h)ae(Bh+eH7§)\0 = —HGpyg.
Therefore,

ae(Bh+€H7£(x))|O = —/ GhHGh ¢ dvg.
M

It then follows from (99) that

Oc(Mmpyer(§))jo = — /M HGY, ¢ dug.

This ends the proof of Proposition 8.1. (I

9. ENERGY AND REMAINDER ESTIMATES IN DIMENSIONS n = 3,4,5

In this section, we assume that n < 5 and ug = g = 0. When n € {4,5}, we
assume in addition that the condition (4) is satisfied. We define

n—2
(100) Wh,io.s.6 = Whise := Use + Bhse, where Bp e = knd = fBpse.

In order to use the C'—estimates of Proposition 4.1, our first step is to obtain
estimates for 3y, 5¢ and its derivatives in HZ(M):

Proposition 9.1. For 3 <n <5, let By, 5¢ be as in (100). Then (25) holds.
Proof of Proposition 9.1. Tt follows from (97) that

1Bh.s.¢llmz < C.
Differentiating (96) with respect to &;, i =1,...,n, we obtain
1 . Use + 0aU
(A + h) (0, Bnse) = 0 <8§iF5(§, )+ 3&;%6@ e (§5n_25> .
n 5 5

It follows from (95) that

With the definition (45) of izg, we obtain
Oe, he = O¢, (cn Scaly, AT%") = O(dy(-, €)).
Therefore, with (14), we obtain

. Use
O, hg —=
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With (73) and (74), we obtain

_n-2 1 dy(x,§)
6T 9., Use| < C — +C J :
| e, Us,e| (62 + dy(z,€)2) " (52+dg(x,§)2)"/2

The definition (45) of fzg and the assumption pp, (§0) = [Vn, (&0)| = 0 yield

(101) he(x) = O(dy (2, €)* + Di,e),
where Dj, ¢ is as in (43). Putting together these inequalities yields
dy(x, &) 6% +dg(z,§)
102) [(Ag+h) (O, Brse)l < C+C 4 —+CDy, 4 .
(102) |( g ) (0%, Bhr,s.e)l (57 +d9(x,§)2)72 h5(52 +dg(x7§)2)”/2
It then follows from standard elliptic theory and straightforward computations that
1 ifn=3
e, Bhsellmy < €4 (n(1/6))"* if n =4
5172 if n = 5.

Similarly, differentiating with respect to d, we obtain

003) 18y + 0 Ohs)] = [ (G6Fs ) +h0s(6~ Ui

d(dg(%,§)* + Dhe)
@ + dy(@,€)2)")2
and, therefore, elliptic estimates and straightforward computations yield
S 1 ifn=3
<C
7+ dy@ 077 | = S\ itn=15.

With the definition (100), all these estimates yield (25). This ends the proof of
Proposition 9.1. (I

S
kn

<Cc+C

0565l 2, < 0+ -

The sequel of the analysis requires a pointwise control for 8, 5¢ and its deriva-
tives. This is the objective of the following proposition:

Proposition 9.2. We have

1 ifn=23
(104) Brscx) < 1+ (8% +dg(2,6)?) | ifn=14
(52+d9($>f)2)71/2 ifn=2>5,
(105) 105 Bn.5.6(2)] < C + CDpe8n(1/8) (62 + dy(,€)2) 7
and
(106)
Dy [In(6% + dy (2, €)?)| ifn=3
—1/2

|0¢, Bn,6.6 ()] < C+CQ Dy (67 + dy(x,€)?) if n=4
(6% + dg(2,8)%)| + Dne(6® + dg(2,£)*) ™" ifn=5

foralli=1,...,n, where Dy ¢ is as in (43).
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Proof of Proposition 9.2. These estimates will be consequences of Green’s repre-
sentation formula and Giraud’s Lemma. More precisely, it follows from (96) that
(107)

_ Fs(&y) | X(dge (y,€))Ae(y) ”
Pragle) = /M Cnaly) < ky e (n = 2)wn—1(62 + dy, (975)2)”;2 ) o (¥)

for all x € M. With (95) and the standard estimates of the Green’s function
0 < Ghz(y) < Cdy(z,y)*> " for all z,y € M, x # y, we obtain

dy(z,y)* "
(108) Brsela)| < C+C [ S ()
f W0+ dy (5, 2T
Recall Giraud’s Lemma (see [11] for the present statement): For every «,f such

that 0 < a, 8 <m and z,z € M, x # z, we have
dy(z,2)*TP"  ifa+B<n
/ dy(z,y)* "dy(y,2)?"dvg(2) < C 14 |Indy(x,2)] fa+pB=n
M .
1 ifa+ B >n.
Therefore, (108) yields (104) when dy(z, &) > §. When d,(z,£) < 4, (108) yields

)Q—n

dy(z,
2 9( Y o\ =2 dvg(Q))
6% +dy(y,)?) 2

which in this case also yields (104). To prove (106), we use (102) and the same
method as for (104). The inequality (105) is a little more delicate. With (103) and
Green’s identity, we obtain

/M Gho(y) (Ag + h) 05Bn,s.¢(y) dvg(y)

2-n0(dg(y,)* + Dhe)
(0% + dg(y,€)*)"/?

Bhse(x)| < C+C /M :

058,56 ()| =

< C+C/M dy(z,y) dvg(y)-

We then obtain

|055n.5.(x)| < C+C6 /M dy(,y)* "y (y, €)° " duy(y)

dg(z,y)* ™"
CéD Ak dvg(y).
+ h,E/M O+ do (4, )2 vg(y)

We estimate the first two terms in the right-hand side by using Giraud’s lemma as
in the proof of (104). We split the integral of the third term as

dg(xa y)2—n
dv, (y) :/ —|—/ .
/M (0% +dy(y, )*)"/> 7 {dy (@) <dg (2.)/2) I {dy(2,0) 2y (2,6) 2}
Since dg(y, &) > dg(x,&)/2 when dy(z,y) < dg(z,§)/2, we have
/ dg(xu y)2—n
(dy () <dy (,6) /2y (02 + dg(y, §)?)"/2

< Cdy(z, )" / dy (2, )> " dvg(y) < Cdy(, €)™,
{dg(z,y)<dg4(x,6)/2}

dvg(y)



30 FREDERIC ROBERT AND JEROME VETOIS

As regards the second part of the integral, we have

dg(xa y)2—n
dvg(y)
/{dg<w7y>2dg<w7s>/2} (62 + dgy(y,&)2)n/2 7

< Ody(z,8)*" /M(52 +dy(y,€)?) " 2dv,(y) < Cdy(x,€)* ™ In(1/9).

This yields (105) when dy(x,€&) > §. Finally, we treat the case dg(x,£) < 6 in the
same way as (106). This ends the proof of Proposition 9.2. O

It is a direct consequence of Proposition 9.2 that (25) is satisfied. Therefore
Proposition 4.1 applies. It follows from (27), (30) and (33) that

(109) Tn(W + @) = Jn (W) + O(|[ Bl %, )

and, since n < 5,

(110)  9pdu(W + @) = 8,45 (W) + OO~ IR 2o, (IB] 2, + 810, 22 ),
where R = Rs¢ is as in (28). We prove the following estimates for R:

Proposition 9.3. We have
1) ifn=3
(111) IR 22, + 0l|0pR]| 20, < C 6% 1In(1/6) ifn =4
Dy 6% In(1/8) + 6% if n=5.

Proof of Proposition 9.3. Note that since n < 6, we have 2* > 3. The definitions
(96), (100) and (100) combined with (94) yield

(112)  R=(Ag+WU+(Ay+h)B—(U+BZX ="' —(U+B)?!
=—(2* = 1)U 2B+ OW* *B*+|B|* ),
where we have used that U > 0. Therefore,
IR|| 22, < CIU* 2Bl zn, + 1B | 2o,
n+2 n+2 n+2

Since B = knénT_z f, the pointwise estimate (104), the estimate U < CU and the
estimates (51) yield

0 ifn=3

|R|| 2o < C<{ 6°In(1/8) ifn=4
n+2

52 if n =5.

We now deal with the gradient term. We fix ¢ € {0,...,n}. We have
Op R =0, (U ' —(U+B)Y ™)
=—(2* = 1)((U+B)Y 2(8,,U + 9,,B) — U* 720,,U)
=—(2 - 1)((U+B)Y 2 -U%"29,,U + (U + B)Y ~%0,,B).
Using that 2* > 3 together with (32) and (38), we obtain
59, R| < CU* ~2|B| + CU|B|* ~2 + C6|d,, B|U* ~2.
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Since B = k:né%2 B, using the estimates of 8 and its derivatives in Proposition 9.2
and the estimates (51), long but easy computations yield
) ifn=3
8/10p, Rl 22, < C 6%1In(1/6) if n =4
Dy 6% In(1/8) + 6% if n = 5.
Therefore, we obtain (111). This ends the proof of Proposition 9.3. O

With (111), the estimates (109) and (110) become

52 ifn=3
Jn(W 4+ ®) = J, (W) + 0 | 6* (In(1/6))? ifn=4
5* + D (6 (In(1/5))* ifn=5
and
1) ifn=3
By, Jn (W + ®) = 9, Ju(W) 4+ O | 6°(In(1/5))” ifn=4

§° + D} (6°(In(1/6))* ifn=5
We now estimate J, (W + ®):
Proposition 9.4. We have
0 ifn=3
8wn—16*In(1/8) if n=4

1 * 1
52/ Uﬁodm ifn=>5

2

kQ
— g (6)6" 2 + (5" ?)
as 6 — 0, & — & and h — hg in C*(M).
Proof of Proposition 9.4. We have
1 1 x
(114) J(W) = 7/ (IVW* + hW?) dv, — —/ W3 do,
2 Ju 2% [

1 1 1 x
= i/M RWd’Ug + <2 - 2*> /M W+ d’Ug.

Using that U > 0, we obtain
(115) W2 = U+ B)Y =U? +2"BU? "1 + O (B2U*Y 72 +|B[*").
Plugging (112) and (115) into (114), and using (32) and (38), we obtain

]. * ]_ *
J(W) = —/ U? dvy — 5/ BU? ~'dv,
M M

n

+0 (/ (U 2B2 4+ U|B> ' + |B|2*)dvg) :
M
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Since B = k, 02" 3, the pointwise estimate (104), the definition (14) and (57) yield

5 ifn=3
(116) Jp(W) = %/ Uty da— % /M BU? “Ydv,+0 | 6*(In(1/6))® ifn=4
5t ifn=>5
The definitions (96) and (100) of 5 and B yield
(117) AyB+hB=U%"1—(A,U+hU) in M.

Therefore, we obtain

| BU* o, = [ B@E a0 w0 doy+ [ B+ b0 do,
M M M
:/ (|VB|2+th) dvg+/ (AyB+ hB)U dv,
M M

:/ (IVB|* + hB?) dvg—é%/ F5(£,-)Udvg—/ heU?dv,.
M M M

Since B = k,6"%" 3, using (97) and (95) together with Lebesgue’s convergence
theorem, we obtain

(118) /M BU* ~ldv, = 5”—2k3</M (IVBho0.el* + hBh o) dvg

1 .
—— | Fy(&, )T dvg) —/ heU?dvg + o(6"2).
kn Ju v

Since U(x)? < Co"2d, (&, 2)* 2", letting £ — & and h — hg in C?(M), integration
theory yields

/ iLgU2d1}g = 51@,21/ (hAo)EOI‘EO dvg + o(6) when n = 3.
M M

We now assume that n € {4,5}. We write
/ heU?dv, = he (€) / U?dvg + 9, he (€) / 2'U%dv,
M M M

+ /M@ he(€) — e he ()2 U vy,

where the coordinates are taken with respect to the exponential chart at £. As one
checks, there exists C' > 0 such that

|he — he(€) — B¢, he ()2 |U? < O™ 2dy (€, 2)°72"

for all z,& € M, x # €. Since n < 6 and £ remains in a neighborhood of £ (so that
the exponential chart remains nicely bounded), integration theory then yields

/ (he — he(€) — Dg,he(€)2")UPdvy = 6" 22 / (he — he(€) — D¢, he(€)a")TEdv,
M M
+ o(0"72).

Furthermore, letting & — &y, h — ho and using (4), we obtain

(19) [ (he = he(6) = e.he(€) )P, = 5728 [ (o) T2, vy +o(672)
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Via the exponential chart, using the radial symmetry of U, we obtain

n—2
(/xW%%zsmm—ﬂma d (=2 ) a+0(e]) de
M ’ By (0) 02 + |z|?

5 n—2
=0 / x2(> dx | = O(5" 2
< B,,.U(o)‘ o || o)

since n < 6. It then follows from (61), (62), (63) and the above estimates that

0 if n =3
8w, _10%1In(1/6) if n =4

| hetdu, = he(e)
N ﬁ/'m%m itn=>5
R’ﬂ

_Fén—Qkijgd(hokoFgodvg

+0(6"72).
Combining this estimate with (118), we obtain
0 ifn=3

8w,_162In(1/6) ifn =14

/M BU2*_1dv9 = _ilf(g) + 5n_2k1211h0,§0 + O((sn_2)7

52/ Uf’odm ifn=>5

where
1
(120) Iho,fo = /M (‘Vﬁhmo,fo'Z + hOBiO,O,SO) dvg - ki /M Fo(f, ')Fﬁo dvg

_L/’(hb)&lgoduy
M

Integrating by parts and using the definition (96), we obtain

Ihg ey = /M Bho,0,60 (DgBho,0,60 + hoBho,0,60) dvg

~ [ T (o Fule) + Gl T, )
M n

= / (ﬁho,07€0 + Ffo) (A96h0,07§0 + hoghoaoﬁo) d’Ug
M

= / Gho,to (D gBho,0,0 + 10Bho0.60) dvg-
M

We now use (107) at the point &y, which makes sense since 84,,0.¢, is continuous on
M. We then obtain

(121) Ihoyﬁo = 5h0,0£o (50) = Mpy, (60)

Putting these results together yields (113), which proves Proposition 9.4. a

We now estimate the derivatives of J,(W + ®):
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Proposition 9.5. We have

0 ifn=3
8wp_10In(1/5) ifn=4
5/ Uiodx ifn=>5

n—2
2

(122) 35 Jn(W + @) = 1 ()

kg (€0)6" 7 +0(6" %)
and

0 ifn=3
8wn_162In(1/0) ifn=4

1
(123) O Ju(W + @) = 50¢,#n(€)
52/ Ulgde  ifn=5

é ifn=3
+0 | 6%+ Dped®*In(1/8) ifn=4
6% + Dy, ¢6* ifn=>5

foralli=1,...,n, asd — 0, & — & and h — hgy in C%(M).

Proof of Proposition 9.5. We fix i € {0,...,n}. With (112), (38) and (32), we
obtain

Op, (W) = J;,(W)[0,, W] = /M(Agw + AW — W2 19, W dv, = /M RO, Wdv,
=—(2" - 1)/ Uz*—2Bapinvg +0 (/ (U2*—3B2 + |B|2*—1) 0, W| dvg>
M M

— (2 - 1)/ U2 ~2Ba,,W dv, + O <51/ (02**232 + U|B|2**1) dvg> .
M M

52 if n=3
=—(2* - 1)/ U 72B8,,W dvy + O(67 1) { 6* (In(1/6))® ifn=4
M 54 if n=>5.

The estimates (106) and (105) and the definition B = k, 6" 3 yield
52 ifn=3
/ U? ~2Bd,,Bdv, = O(671) { 6* (In(1/4))? ifn=4
M
§* + €ioDp 63 In(1/8) if n =5,
where ¢;q is the Kronecker symbol. Since W = U + B, we then obtain
O, (W) = —(2% — 1)/ U ~2Bd,,U dv,
M
52 ifn=3

+0(57 { 6% (In(1/6))? ifn=4
§* + €i0Dp 6% In(1/8) if n = 5,
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Differentiating (117), we obtain
(A, +h)8,, B = (2" —1)U? 720, U — (A, + h)d,,U.

Multiplying by B and integrating by parts, we then obtain
(124)

/M 0y B(A, + h)Bdv, = (2* — 1)/

U* ~2Ba,,U dv, — / 9, U(A, + h)B dv,.
M M

We begin with estimating the left-hand-side of (124). Using that B = k6" 3, we
obtain
/ Op, B(Ay + h)Bdv, = kié"_Q/ Op, B(Ay + h)B d,
M M

n —

5 2ki5"*2*1 /M B(AGB + hp) dv,.
With (96) and the pointwise estimates (106) and (105), we obtain

ifn=3,4
=C { 1+ D} In(1/6) ifn=5.

+ €0

‘/ 0p. B(Ag + h)Bdv,
M

Therefore, we obtain

-2
(125) / Op BIA + W) By = eio ™ =k25" 21 / BB+ hB) du,
M M

o on—2 if n=3,4

+ .
8%+ D3 (0°In(1/8) ifn=5

We now deal with the second term in the right-hand-side of (124). We first consider

the case where ¢ > 1, so that d,, = 0¢,. In this case, it follows from (73) that
0¢,U = —0,;,U + O(U). Then, using (96), we obtain

—/ 0¢,U(A,+h)Bdv, :/ 02, U(Ag+h)Bdvog+0 (/ U™ + |he|0) dvg>.
M M M

With (101), we obtain

) ifn=3
/ (027 4 he|0) dv, < C 4 62+ Dy e6®In(1/6) if n =4
M 5% + Dy 8 if n = 5.

With (96) and since 0,,U = o™z dg(z,£)'™™) (see the definition (24)), we obtain
/ 9., U(A, + h)Bdv, = —/ heUd,, U dvy + O(6"2).
M M
Putting together the above estimates yields
—(2F - 1)/ U? ~2B8;,U dv, = —/ heUd,, U dv,
M M
) ifn=3

+0 | 6%+ Dped*In(1/8) ifn=4
6% 4+ Dy, ¢0° ifn=>5
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Using the explicit expression (14) of U together with the facts that A¢(§) = 1,
VAe(§) =0 and |z]|0,,U = O(U), we obtain

/ heUd,. U dv, — / he(exp% (2))Us 002, Uso(1 + O(|[2)) da
M By (0)

+o</
By, (0)

70

e (expd* (2))]]Uf o dw) +0(6"7?)

With a Taylor expansion of Bg, using the radial symmetry of Us ¢ and the explicit
expressions given in (20), we then obtain that there exists ¢}, ¢5 > 0 such that

0 ifn=3
/ iLgU@szdvq = —85,90}1(5) 0252 111(1/5) ifn=4% + 0(6"_2)
M /2 :
c50 ifn=>5
and then
0 itn=3
Be, Jn(W) = 0e, 0 (€) { 46°In(1/6) ifn =4
6> ifn=>5
1 iftn=3
10| 0%+ Dyed?In(1/8) ifn=4
53+ Dh,§52 if n=>=5.

We now consider the case where i = 0, so that 9,, = Jp, = 0s. In this case, we
have

/ (%U(Ag + h)B dl]g = —/ }AlgUaéU d’Ug — (STLT_z / Fa(;U d’Ug
M M M
=~ [ (hel) + £ 00 ©)00U av,

- /M(a"T’zF + (he — he (&) — &' 0eshe (6))U)DsU duy,

where the coordinates are taken with respect to the exponential chart at £&. With
(18), (16) and (19), arguing as in the proof of (119), we obtain

n—2

= / (F + (he — he(€) — 20, he (€))6™
M

n

7 U)0sU du,

-2 F; -
= ke / (]:0 + hgorég) T dvg +o(6716"72).
M n
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Using (61) and arguing as in the estimate of (60), we obtain that there exist ¢}/, ¢/ >
0 such that

. o i
| (@) + at0che@vosan, = & [ w0250+ o675
M Bo(ro)
R 0 ifn=3
= % di6*In(1/8) ifn=43% 4o(5 16" 2).
cl6? ifn=>5

Putting these estimates together yields

R 0 ifn=3
-1 / U2 =2 Ba,,U dv, — hﬁéf) A2 n(1/5) ifn =4
M cls? ifn=>5

n—2

5 kaThge, 018" (3710 ),

where I, ¢, is as in (120). Since Ip, ¢, = mn, (o) (see (121)), we obtain (122) and
(123) up to the value of the constants. These values then follow from Proposition 9.4
together with the above estimates. This ends the proof of Proposition 9.4. (]

Theorem 1.4 for n € {4,5} will be proved in Section 10.

10. PROOF OF THEOREM 1.4

We let hg, f € CP(M), p > 2, and & € M satisfy the assumptions of Theo-
rem 1.4. For small € > 0 and 7 € R", we define

(126) he :=ho +ef and &(7) := expgi(’( €T).
We fix R > 0 and 0 < a < b to be chosen later.

10.1. Proof of Theorem 1.4 for n > 6. In this case, we let (dc)e>0 > 0 be such
that 6. — 0 as ¢ — 0. We define

(127) 0c(t) := 6t and F(t,7) := Jp, (Ug((t))gg(.,.) + (I)h€7075‘(t)’56(7-))
for all 7 € R™ such that |7| < R and ¢ > 0 such that a < ¢ < b. Using the
assumption @p, (§0) = |Ven, (§0)| = 0, we obtain

o, (7)) = 3V, (€0)[7.7le + F(E0)e + (o)

and

Ven. (€(7)) = Von, (o), JVe +0o(Ve)
as € — 0 uniformly with respect to 7| < R. We distinguish two cases:
Case n > 7. In this case, we set 0, := /€. It follows from (54) that

F(t,7)— 2 [, Uy dw
2

(128) lim

e—0 €

where

Eolt, ) = Co 5901 @17 7]+ £(60) ) = Doy (o)
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with

1
(129) Cn =5 Ui, dx and D, = 47/ |z|*U7 o da.
R n Jrn

Furthermore, we have

OF(t,7) = Ve (05 In, (Us,(t).e.(r) + Po.(1).6.(1)))
and
Or Fe(t,m) = Ve (O, Tn Us, (1.6 (r) + Po.(1).6.(r))) -

Therefore, it follows from (66) and (67) that the limit in (128) actually holds in
CL.((0,00) x R™). Assuming that f(&) x Kp, (&) > 0, we can define

loc
to = Cnf(§0)
0 2D, Kp, (§0)

As one checks, (to,0) is a critical point of Ey. In addition, the Hessian matrix at
the critical point (tg,0) is

—8t2D, Ky, (&) 0 )
V2E (£ 0) — on 0 .
0(t0,0) ( 0 t3C V20 (&0)

Therefore, if &, is a nondegenerate critical point of ¢y, then (tg,0) is a nonde-
generate critical point of Ey. With the convergence in Cl._((0,00) x R™), we then
obtain that there exists a critical point (., 7.) of F. such that (t.,7.) — (to,0) as
e — 0. It then follows from (29) that

Ue = U5e (te),Ee(Te) + @h€70’66(t6)’£6(7—6)

is a solution to (8). As one checks, u, — 0 weakly in L2 (M) and (u.). blows up
with one bubble at ;. This proves Theorem 1.4 for n > 7.

Case n = 6. In this case, we let §. > 0 be such that
(130) 62In(1/5.) = e.
As one checks, § — 0 as ¢ — 0. As in the previous case, we obtain

F.(t,7)— L [ U, dx
TN G Jun Ut dz _ Eo(t,€) in CL_((0,00) x R™),
e—0 6(562

where
Bult, ) = o (5 Vno (&) 7] + 1(6) ) = 2 (o)

for all ¢ > 0 and 7 € R™. As in the previous case, E; has a nondegenerate criti-
cal point (Zy,0), which yields the existence of a critical point of F, and, therefore,
a blowing-up solution to (8) satisfying the desired conditions. This proves Theo-
rem 1.4 for n = 6.
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10.2. Proof of Theorem 1.4 for n € {4,5}. When n € {4,5}, we define
Fe(t,7) = Jn (Us.(0)6.(r) + Bhese).6c(r) + Pheosc0),6.m):

where §.(t) will be chosen differently depending on the dimension.
Case n = 5. In this case, we set 0.(t) := te. It follows from (113) that

. F.(t,7) - %fRn Uy da
lim :

e—0 €3

- EO(t7£) in Cl%c((oﬂ OO) X Rn)7

where
2

Eoft. 1) = G ( 57%0l60)(r.7) + £(60) ) £ = Zonng (o)

It follows from the C!—estimates of Proposition 9.5 that the convergence holds in
CL.((0,00) x R™). Assuming that f(&y) x mp, (&) > 0, we then define

4Cs5 f (§o)
(n = 2)kimn, (So)
As in the previous cases, we obtain that (tg,0) is a nondegenerate critical point of
Fy, which yields the existence of a critical point for F. and, therefore, a blowing-up
solution to (8) satisfying the desired conditions. This proves Theorem 1.4 for n = 5.

to =

Case n = 4. In this case, we set d.(t) := e~¥/¢. It follows from the C'—estimates
of Proposition 9.5 that

lim (—ede(t) 2O Fe(t, 7), 0e(t) 20- Fe(t, 7)) = (o(t, 7), ¢ (¢, 7))
in CP.((0,00) x R™), where

n—2
2

o(t.7) 1= O (5 Pon @) ) + 560 ) £ = "5 R (&)

and 1
¢1(t>7') = §C4V290ho (60)[7—’ ]t

As one checks, since £ is a nondegenerate critical point of ¢y, , the function 1 has
a unique zero point in (0,00) x R™ which is of the form (¢¢,0) for some ¢ty > 0.
Furthermore, the nondegeneracy implies that the Jacobian determinant of 1 at
(to,0) is nonzero and, therefore, the degree of ¥ at 0 is well-defined and nonzero.
The invariance of the degree under uniform convergence then yields the existence
of a critical point (¢, 7) of F¢ such that (t.,7.) — (f0,0) as ¢ — 0. It then follows
from (29) that

Ue 1= Us, (1) £ () T Bhese(t),6e(r) + Phe,0,6.(1).6c(r)
is a critical point of .J,, that blows up at & and converges weakly to 0 in L2" (M).
This proves Theorem 1.4 for n = 4. 0 (I
11. PrROOF OF THEOREM 1.5

We let hg, f € CP(M), p > 2, ug € C*(M) and & € M satisfy the assumptions
of Theorem 1.5. We let h, be as in (8). We let &(7) and 0.(¢) be as in (126) and
(127). Since ug is nondegenerate, the implicit function theorem yields the existence
of € € (0,€0) and (up,c)o<ece, € C*(M) such that

(131) Agug,e + hetge =g, ", uge > 0in M
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and (ug,¢)e is smooth with respect to €, which implies in particular that
llug,e — uol|c2 < Ce.
We fix 0 < a < band R > 0 to be chosen later. We define
Fe(t,7) := Jn (uo,e + Us, (1),6.(r) F+ Pheu,c.00(7) £0(r))

for all 7 € R™ such that |7| < R and ¢ > 0 such that a < ¢ < b. With (85), we
obtain that for n > 7,

Ftr) = w0 + 5 [ UFyde s Co (59%0(@)n )+ 1(60) ) e

+0(€62) — Dy Ky (€0)t*0* + 0(6%) — Buuo(€o)t" 6.7 +0(6.2 )

as € — 0 uniformly with respect to a < t < b and |7| < R, where C,, and D,, are as
in (129) and

B, = / Uy da.
We distinguish three cases:

Case 7 <n <10, that is n > 7 and anz < 4. In this case, we set §, := €76, so
that

62 =67
We then obtain
. Fe t7 T)— Ae
(132) tim P A gy

uniformly with respect to a < ¢ < b and |7| < R, where

1 X
(133) Aci=In.(uo.e) + — / Uty da
and

Eo(t,7) = Co (570l (r7) + F(60))

n—2

— (Bnuo(&0) + 1n=10DnKpn, (o))t = .

Moreover, the estimates (87) and (88) yield the convergence (132) in Cf_((0,00) x
R™). Straightforward changes of variable yield

3/2 oo rodr oo stds

By _ 4 Jrro U1,{) dz Jo Arr2)0 740110 (11s5)0
- 3/2 - 0 pligy T 0 s5ds

D1o leo |$|2U1,{) dx fo (1+r2)8 fo (1+s)8

Integrating by parts, we then obtain

Bro A0x5xixixg [l aly 40x6xT[T afpr  40x6x 7 x2
Do 5 4.3, 2 1% ds < ds =
D Sxgx5xix3)y ahym 5Jo whep g

= 672.

The assumption K, 4, (£0) # 0 then gives B,uo(&o) + 1n=10DnKh, (&) # 0 with
same sign as f(&). As in the proof of Theorem 1.4 for n > 7, we obtain that
Ey has a unique critical point in (0,00) x R™, say (tg,0), and this critical point is
nondegenerate. Mimicking again the proof of Theorem 1.4 for n > 7, we obtain the
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existence of a critical point (¢.,7.) of F. such that (t,7) — (t0,0) as ¢ — 0. It
then follows that

te 1= o, + Us.(t),6.(r) + Pheuo.cde(t) &e(r)
is a solution to (8). As one checks, u, — 0 weakly in L2 (M) and (u.). blows up

with one bubble at ;. This proves Theorem 1.5 for 7 < n < 10.
Case 4 < "T_Q, that is n > 11. In this case, we set d. := /€, so that

n—2
€0 =62 and 5.7 = o(6}) as e — 0.
We then obtain

Fe(taT) —A

lim € = Ey(t,7) in CP((0,00) x R™),

e—0 5(562

where A, is as in (133) and
Eo(t,) = Cu  59%01(€)(r.7) + £() ) € = Doy (o)1

As in the previous case, we obtain that the convergence holds in CL_((0,00) x R™)

and Ey has a nondegenerate critical point in (0, 00) x R™, which yields the existence
of a blowing-up solution (u.). to (8) satisfying the desired conditions. This proves
Theorem 1.5 for n > 11.

Case n=6. Note that in this case, we have 2* — 1 = 2. Differentiating (131) with
respect to € at 0, we obtain

(Ag + ho — 2ug)(Ocuo,e) o + fuo =0 in M.
Using that ug is nondegenerate, we then obtain
(Bettn,)jo = —(Ag + ho — 2uo) ™' (fuo).
It follows that
Pheue = he = 2up,e — ¢ Scalg = Prgu, + fe +o(€) as € — 0,
where
fi=1+2(A8g + ho — 2uo) ™ (fuo)-
We let § > 0 be as in (130). With (91), we then obtain

F.(t,7)— A

lim € = Ey(t,7) in CP((0,00) x R™),

e—0 6(562

where A, is as in (133) and

Eo(t,’r) = CG (;V2<ph0 (fo)(T,’T) + f(fo)) t2 — 242M5Kh0’u0 (fo)t4.

As in the previous case, using (92) and (93), we obtain that the convergence holds in
Ct . ((0,00) x R™). Furthermore, using (10), we obtain that Ey has a nondegenerate
critical point in (0,00) X R™ and, therefore, that there exists a blowing-up solution

to (8) satisfying the desired conditions. This proves Theorem 1.5 for n = 6. (]
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12. PROOF OF THEOREM 1.2

We let hg € CP(M), 1 < p < o0, and &y € M be such that Ay + hg is coercive
and the condition (4) is satisfied. In the case where p = 1, a standard regularization
argument give the existence of (h¢)eso € C2(M) such that he — hg in C1(M) as
€ — 0. In the case where p > 2, we set he = hg. We then define

he = he + fe, where f.(z) := x(2)((ho — he)(€0) + (V(ho — he)(€0), ) + Acl[?),

where A\¢ > 0, x is a smooth cutoff function around 0 and the coordinates are
taken with respect to the exponential chart at ;. As one checks, for some suitable
Ac — 0, we then have that h, — hg in CP(M), ¢5,.(€0) = vne(&0) = 0, [Vey, (§0)| =
[Vone(§o)| = 0 and for small € > 0, & is a nondegenerate critical point of j, .

Assume first that n € {4,5}. Then the mass of he is defined at . As is
easily seen, there exists ¢ : (0,1) — (0,1) such that ¥(¢) — 0 as ¢ — 0 and
either {mﬁme)(&’) > 0foralle € (0,1)}, {mﬁw(e) (&) < Oforalle € (0,1)} or
{mﬁw(s)(go) = Oforalle € (0,1)}. If mp,, (§o) = 0 for all € € (0,1), then it
follows from Proposition 8.1 that if we choose . > 0 small enough, then we obtain
my, (§o) < 0 for small € > 0 with he = Bw(e) + pex| - |2 Therefore, in all cases, we
can assume that m;, (&o) # 0 for small € > 0, with a sign independent of e.

Assume now that n > 6. With a similar argument, we can assume that, for small
€ >0, Kj, (§0) # 0 with a sign independent of €, where Kj (&) is as in (7).

In all cases, we can now fix fo € C°°(M) such that fo(&o) x Kj, (§0) > 0 for
small € > 0. It then follows from Theorem 1.4 that there exist o > 0 and a family
(Te,a)0<a<a. Of solutions to the equation

~o*_

Agiie. + (he + afo)lica = U2 ", tea >0in M

such that ., — 0 weakly in L* (M) and (Te,a)a blows up with one bubble at &y
as a — 0. Therefore, we obtain that for every e > 0, there exists o > 0 such that

- o* o*
e o |* dvg — Uiodx
M R

/ |ﬂ€7a;|2*dvg <e.
M\ Bc(£o)

We then define u, := e o, so that

0 < a; < min(e,ac), [|[tearllz <e, <e

and

Ague + heue = u? ' in M, where he := he + o fo = ho + fo + o’ fo.

€

As one checks, u, — 0 weakly in L2 (M) and (u.). blows up with one bubble at &
as € — 0. This proves Theorem 1.2. O

13. PROOF OF THEOREM 1.3

We let hg € CP(M), 1 <p < oo, ug € C*(M) and & € M be such that A, + hg
is coercive, ug is a solution of (1) and the condition (6) is satisfied. We begin with
proving the following;:
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Lemma 13.1. There exists a neighborhood Qo of §o and families (he)eso € CP(M)
gnd (Gie)es0 € C?*(M) such that he — hg in CP(M), @ — ug in C*(M) as e — 0,

he = ho and te = ug in Qo and . is a nondegenerate solution of
(134) Agiie + hetie = a2 7Y, @ > 0 in M for all € > 0.

€

Proof of Lemma 13.1. For all v € CP*2(M) such that v > —ug, we define

2f—2 Agu(v)
u(v)

2*—1 _
u(v) :=ug + v and h(v) := u(v)? 2 — %o 5&1;0 + Agv = u(v)

so that
(135) Au(v) + h(v)u(v) = u(v)? ~in M.

By elliptic regularity, we have ug € CPT*(M). Since moreover hg € CP(M) and
v € CPT2(M), we obtain that u(v) € CPTH(M) and h(v) € CP(M). Furthermore,
we have that h(v) — hg in CP(M) and u(v) — ug in C?(M) as v — 0 in CP+2(M).
As is easily seen, to prove the lemma, it suffices to show that there exists a neigh-
borhood € of & and a family (v¢)eso € CPT2(M) such that v. — 0 in CPT2(M)
as € = 0, ve =0 in Qy and u(v.) is a nondegenerate solution of (135). Assume by
contradiction that this is not true, that is for every neighborhood €2 of &y, there
exists a small neighborhood Vg of 0 in CP*2(M) such that for every v € Vo, if
v =0 in Q, then u(v) is degenerate i.e. there exists ¢(v) € K, \ {0}, where

K,:={pe€ H} (M): Ayp+h(v)p= (2" —Du(v)? ~2¢ in M}.
By renormalizing, we can assume that ¢(v) € Sk, = {¢ € K, : [¢[/gz = 1}.
Since h(tv),u(tv) — ho,ug in C°(M) as t — 0, it then follows that there exists
¢y € Ko and (t;)ren > 0 such that ¢, — 0 and ¢(tv) — ¢, weakly in HZ(M).
By compactness of the embedding HZ(M) < L?(M), we obtain that ¢(t,v) — ¢,
strongly in L?(M). By standard elliptic theory that we apply to the linear equation

satisfied by ¢(txv), we then obtain that ¢(t,v) — ¢, strongly in HZ(M), so that
in particular ¢, € Sk,. We then define

'l/)k(v) — ¢(tkvt) B ¢v )
k
It is easy to check that i (v) satisfies the equation
(136) Agthi(v) + hotor(v) = (27 = Dug k() + fi(v)@(trv) in M,
where
Jr(v) = %((2* — D)(u(tyv)® =% —uf %) + ho — h(txv))
1 U Agv — vA U

- T((Q* — D (utpr)? "2 —u2 ) + 1y,
k

A straightforward Taylor expansion gives
(137) fru(v) = (2" —2)%u? S0 + uy P Agv — ug 2vAgug + o(1) = ug * Lo(v) + o(1),
as k — oo, uniformly in v € Vi, where
(138) Lo(v) := Agv + hov — (1 — (2% — 2)%)u2 2w,
It follows that
Mg (Vu()llz < Cllfe(0)@(tr0)|| 20, < Cll¢(trv)|| 20, < Cllg(Er0)|az < C,

).

uou(tgv)
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where 11 K& 18 the orthogonal projection of H? onto Kg and the letter C stands
for positive constants independent of k € N and v € Vq. Since (g1 (Vr(v)))x is

bounded in HZ(M), up to a subsequence, we may assume that there exists ¢, € Kg-
such that Iy (¢r(v)) = ¢y weakly in H2(M). Passing to the limit in (136) and
using (137), we then obtain that 1, satisfies the equation

Ang + ho% = (2* - 1)“3*_2% + UEILO(U)(ZSU in M.

In particular, since ¢, € Ky, multiplying this equation by ¢, and integrating by
parts yields

(139) / uy ' Lo(v)¢2 dv, = 0.
M

We now construct v contradicting (139). For every a > 0, we choose Q := B, (&)
and we consider the neighborhood Vg (¢,) of 0 in CPT2(M). We let ro € (0,) be
such that Boy(ra) C Vp, () and x € C*°(R) be such that x(t) = 0 for £ < 1 and
x(t) =1 for t > 2. We define

Ve () i= e % x(dy(x, &) /) ug(z) for all z € M and a > 0.
As one checks, for small @ > 0,
(140) Vo = 01in Bo(&o) and vy € Bo(ra) C Vb, (g0)-

Therefore, u(v,) is degenerate and the above analysis applies. Since [|¢y,, [|gz = 1,
bv, € Ko C C*(M) and K, is of finite dimension, up to a subsequence, we can
assume that there exists ¢g € Ky such that

(141) lim ,,, = do # 0 in C2(M).

Since Ly is self-adjoint, it follows from (139) that
/ vaLo(ug '¢2. ) dvg = 0 for all € > 0.
M

Since e'/*r v, — ug in L?(M) as a — 0, passing to the limit in this equation
and using (140) and (141), we obtain

/ uoLo(ug ' ¢3) dvy = 0.
M

Integrating again by parts and noting that Lo(ug) = (2* — 2)211(2)*_17 we then obtain

0 :/ uy td3 Lo (up) dvg = (2% — 2)2/ ud "242 dvy,
M

M

which is a contradiction since ug > 0 and ¢y # 0. This ends the proof of
Lemma 13.1. O

We can now end the proof of Theorem 1.3. We let Qq, (h¢)eso and (Ge)eso
be given by Lemma 13.1. Since he = ho and @ = up in Qy, we obtain that
Ph. i, = $Phouo 0 Qo and, therefore, ¢; - (&) = |Vey_; ()| = 0. For every
€ > 0, we can then mimick the first part of the proof of Theorem 1.2 to construct
a family (hea)aso € C™>*@®2 (M) such that heo — he in CP(M) as a — 0,
Ph. (o) = 0, & is a nondegenerate critical point of 7, L, and Koo (&) #0.
We now distinguish two cases: ’ ’
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Case n > 7. Note that in this case, we have ¢; = ¢j,.- Since U, is nonde-

e, le
generate and i~L€7a — he in CY(M) as a — oo, the implicit function theorem gives
that for small @ > 0, there exists a nondegenerate solution ., € C?(M) to the
equation

Ag’ae,a + ﬁe,aae,a = '112*_1, i}le)a >0in M

€,x
such that @ o — @ in C?*(M) as o — 0. Applying Theorem 1.5, we then obtain
that there exist fe o > 0, (he,a,8)0<p<peo € Cmax(P:2) (M) and (Te,0,8)0<B<Be.c €
C?(M) satisfying
Dyiicas + e plicas = UL 5 i M, dieap > 0forall 0< 8 < feq

and such that Be,a,ﬁ — iLe,a in Cmax(p’Q)(M), Ue,a,8 — Ue,o Weakly in Lz*(M) and
(Te,a,8)3 blows up with one bubble at & as § — 0. Therefore, we obtain that for
every € > 0, there exists a. € (0,¢) and S > 0 such that

||}~le,o¢6 - BGHCP < €, ||ae,o¢€ - '&%HCQ < €, O < 66 < min(eaﬂe,ae)7

2*clvg—/]R Uf;odx <e

e — ol <. | [ lica.s. = icn
M

and

- ~ 2%
M\ B (&)

We then define u¢ := ¢ . 8., SO that

2% —
€

Ague + heua =Uu ! in M7 where h/e = B€7a€7ﬁ5.

As one checks, he — hg in C?(M), ue — ug weakly in L?" (M) and (u.). blows up
with one bubble at &, as € — 0. This proves Theorem 1.3 for n > 7.

Case n = 6. In this case, we have ¢; - = ¢ —2u.. Furthermore, noting that
2* —1 =2 when n = 6, we can rewrite the equation (134) as

Agﬁe + (ﬁe - 2115)@5 = —’ELE in M.

Since he.o — 2iic — he — 20, in CO(M) as a — 0, a standard minimization method
gives that for small o > 0, there exists a unique nondegenerate solution 7. . to the
equation

Agiie o + (heo — 20e)iic o = —02

€,

Ue,o > 0in M.

As is easily seen, this equation can be rewritten as

(142) Ayiico + heaiicn = @2, Gieo >0 in M, where he o = heo — 2iic + 2iic.o-

€,

Since iLQa — h. in CP(M) as o — 0, we obtain that fOLE,a — h. in CP(M) and
Ue,q — Ue IN CPH(M) as @ — 0. Furthermore, since %, is nondegenerate, we have
that ., is nondegenerate for small o > 0. Similarly, since Kj (&) # 0, we

obtain that K

e arlle

(&) # 0 for small o > 0. Furthermore, we have

e arlle,a
.

= he,a — 2Ue,0 — Cp Scaly = BE,Q — 21 — ¢y Scaly = @5

e,a e, ’ e, Ue

“h

In view of the properties satisfied by i~L€7a, it follows that ¢;, 4 (&) = 0 and & is

€,

a nondegenerate critical point of i e Applying Theorem 1.5, we then obtain
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that there exist Beo > 0, (hea,p)ocp<p.. € C™*¥P2 (M) and (fic.a.8)0<p<p. . €
C?(M) satisfying

*

Agiicp+ he o plicas =2, 5 0 M, ficap >0 forall 0<f < feq

and such that he 5 — hea in C™@x(P2) (M), dic o 5 — @ic.o weakly in L2 (M) and
(Te,a,8)3 blows up with one bubble at £ as § — 0. Finally, as in the previous case,
we obtain the existence of a > 0 and . > 0 such that uc := tc o, g, satisfies the
desired conditions. This proves Theorem 1.3 for n = 6. O

14. NECESSITY OF THE CONDITION ON THE GRADIENT

Theorem 14.1. Let (M, g) be a compact Riemannian manifold of dimensionn > 4.
Let hg € CY(M) be such that Ay + hg is coercive. Assume that there exist families
(he)eso € CP(M) and (uc)eso € C%(M) satisfying (2) and such that he — ho
strongly in CY(M). Assume that (M, g) is locally conformally flat. If (uc). blows
up with one bubble at some point & € M and u, — 0 weakly as € — 0, then (4)
holds true.

Proof of Theorem 14.1. Let ¢p, be as in (5). The identity ¢p,(&) = 0 is a
consequence of the results of Druet [7,9]. Since (M, g) is locally conformally flat,

there exists A € C°°(M) positive such that g := Aﬁg is flat around &;. Define
fie := A "ue and h, = (he — ¢, Scaly) A2 4o, Scaly .

The conformal law (44) yields

(143) Agite + hette = 9271, G > 0 in M.

As one checks, on (M, §), e blows-up at & in the sense that 4. = Us,_¢. + o(1)
as € = 0 in Hf(M), where Us_g, is as in (24) (with respect to the metric §) and
(0c,€c) — (0,&) as € — 0. It then follows from Druet-Hebey—Robert [11] that
there exist C, ey > 0 such that for every € € (0, ¢),

1 Oe = R Oe =
(44) 7 <52 T d, (x,gef) Shlo)<C (52 T d, <x,§e>2>

for all x € M and, defining

Udz) = 0.7 x(2)ie(é + 0cx)

for all x € R™, where x is a cutoff function on a small ball centered at &y, we have

. n(n B 2) ’ : 2 n
(145) l% Ue = U]_7O = (]_4»||2> m ClOC(R )
Without loss of generality, via a chart, we may assume that ¢ is the Euclidean metric
on By, (&) for some v > 0. We fix i € {1,...,n}. Differentiating the Pohozaev

identity for @, on B, (&) (see for instance Ghoussoub-Robert [13, Proposition 7])
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and integrating by parts, we obtain

/ Oy, heti? dx:
Bu(&)

. ~ 12 72 ~2*
=/ o (e rhas %) <x,vae>amae do(z),
OB, (¢c) || 2 2 |z|

where do is the volume element on 0B, (). It follows from (144) that there exists
2

C(v) > 0 such that d.(z) < C(V)(S:% for all 2z € M \ B, /4(&) and € € (0,¢). It
then follows from (143) and standard elliptic theory that there exists C; > 0 such

n—2
that [Vi(z)| < C1oe* for all z € M\ B, 2(&) and € € (0,¢). Plugging these
inequalities into (146) yields

(146)

N | —

i

(147) / O, heti? dz = O(6"7%) as e — 0.
By (&)
On the other hand, with a change of variable, we obtain

/ O, het dx = 62 / (8, he) (Ec + 6ex)Ue(z)? daz.
BV(SE) Bu/5e (0)

The control (144) gives U, < CUj . Therefore, when n > 5, Lebesgue’s dominated
convergence Theorem and (145) yield

/ O, heti? dx = 62 (8%.?16(56) / U?oda+ 0(1)) as € — 0.
By (&) R™
Combining this identity with (147), we obtain that d,, (¢n,A>"2")(&) = 0 when

n > 5. Since A > 0 and @y, (&) = 0, it follows that 0,,¢n, (&) = 0 when n > 5.
We now assume that n = 4. With (144), we obtain

/ |z — & |62 dx = O(6?).
By (€)

Therefore, with (147), we obtain

-1
(148) Ox he(&) =0 | 62 < / ? d:c>
B, (&)
With the lower bound in (144), we then obtain
6 n—2
149 / a2 dr > c/ (> dx > C6%1In(1/6,).
U o™ be) \Z ¥ 2 &P - In(1/0)

It follows from (148) and (149) that 9, he(€) = o(1) as € — 0 and so again
Oz, 9ne(€0) = 0 when n = 4.

In all cases, we thus obtain that Vg, (§o) = 0. This ends the proof of Theo-
rem 14.1. g



48

(1]
2]
(3]
(4]
(5]
(6]
(7]
(8]
(9]
[10]
(11]
[12]

(13]

(14]
(15]
[16]
(17]
(18]
(19]
20]
21]
22]
23]

24]

[25]

[26]

FREDERIC ROBERT AND JEROME VETOIS

REFERENCES

Th. Aubin, Equations différentielles non linéaires et probléme de Yamabe concernant la
courbure scalaire, J. Math. Pures Appl. (9) 55 (1976), no. 3, 269296 (French).

G. Bianchi and H. Egnell, A note on the Sobolev inequality, J. Funct. Anal. 100 (1991), no. 1,
18-24.

S. Brendle, Blow-up phenomena for the Yamabe equation, J. Amer. Math. Soc. 21 (2008),
no. 4, 951-979.

S. Brendle and F. C. Marques, Blow-up phenomena for the Yamabe equation. II, J. Differential
Geom. 81 (2009), no. 2, 225-250.

W.Y. Chen, J. C. Wei, and S. S. Yan, Infinitely many solutions for the Schrédinger equations
in R™ with critical growth, J. Differential Equations 252 (2012), no. 3, 2425-2447.

M. del Pino, M. Musso, C. Romén, and J. Wei, Interior bubbling solutions for the critical
Lin-Ni-Takagi problem in dimension 3, J. Anal. Math. 137 (2019), no. 2, 813-843.

O. Druet, From one bubble to several bubbles: the low-dimensional case, J. Differential Geom.
63 (2003), no. 3, 399-473.

, Compactness for Yamabe metrics in low dimensions, Int. Math. Res. Not. 23 (2004),
1143-1191.

, La notion de stabilité pour des équations aux dérivées partielles elliptiques, Ensaios
Matemadticos, vol. 19, Sociedade Brasileira de Matemética, Rio de Janeiro, 2010 (French).
O. Druet and E. Hebey, Blow-up examples for second order elliptic PDEs of critical Sobolev
growth, Trans. Amer. Math. Soc. 357 (2005), no. 5, 1915-1929.

O. Druet, E. Hebey, and Frédéric Robert, Blow-up theory for elliptic PDEs in Riemannian
geometry, Mathematical Notes, vol. 45, Princeton University Press, Princeton, NJ, 2004.

P. Esposito, A. Pistoia, and J. Vétois, The effect of linear perturbations on the Yamabe
problem, Math. Ann. 358 (2014), no. 1-2, 511-560.

Nassif Ghoussoub and Frédéric Robert, The Hardy-Schrédinger operator with interior sin-
gularity: the remaining cases, Calc. Var. Partial Differential Equations 56 (2017), no. 5, Art.
149, 54.

E. Hebey, Compactness and stability for nonlinear elliptic equations, Zurich Lectures in
Advanced Mathematics, European Mathematical Society (EMS), Ziirich, 2014.

E. Hebey and J. C. Wei, Resonant states for the static Klein-Gordon-Mazwell-Proca system,
Math. Res. Lett. 19 (2012), no. 4, 953-967.

M. A. Khuri, F. C. Marques, and R. M. Schoen, A compactness theorem for the Yamabe
problem, J. Differential Geom. 81 (2009), 143-196.

J. M. Lee and T. H. Parker, The Yamabe problem, Bull. Amer. Math. Soc. (N.S.) 17 (1987),
no. 1, 37-91.

Y. Li and L. Zhang, Compactness of solutions to the Yamabe problem. II., Calc. Var. Partial
Differential Equations 24 (2005), no. 2, 185-237.

, Compactness of solutions to the Yamabe problem. III., J. Funct. Anal. 245 (2007),
no. 2, 438-474.

Y. Li and M. Zhu, Yamabe type equations on three-dimensional Riemannian manifolds, Com-
mun. Contemp. Math. 1 (1999), no. 1, 1-50.

F. C. Marques, A priori estimates for the Yamabe problem in the non-locally conformally
flat case, J. Differential Geom. 71 (2005), no. 2, 315-346.

F. Morabito, A. Pistoia, and G. Vaira, Towering phenomena for the Yamabe equation on
symmetric manifolds, Potential Anal. 47 (2017), no. 1, 53-102.

B. Premoselli and P.-D. Thizy, Bubbling above the threshold of the scalar curvature in di-
mensions four and five, Calc. Var. Partial Differential Equations 57 (2018), no. 6, 57-147.
A. Pistoia and G. Vaira, Clustering phenomena for linear perturbation of the Yamabe equa-
tion, Partial Differential Equations Arising from Physics and Geometry, London Mathemati-
cal Society Lecture Note Series, Cambridge University Press, Cambridge, 2019, pp. 311-331.
O. Rey, The role of the Green’s function in a nonlinear elliptic equation involving the critical
Sobolev exponent, J. Funct. Anal. 89 (1990), no. 1, 1-52.

F. Robert and J. Vétois, A general theorem for the construction of blowing-up solutions to
some elliptic nonlinear equations via Lyapunov-Schmidt’s reduction, Concentration Analy-
sis and Applications to PDE (ICTS Workshop, Bangalore, 2012), Trends in Mathematics,
Springer, Basel, 2013, pp. 85-116.




BLOWING-UP SOLUTIONS 49

[27] , Examples of non-isolated blow-up for perturbations of the scalar curvature equation,
J. Differential Geom. 98 (2014), no. 2, 349-356.

[28] R. M. Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature,
J. Differential Geom. 20 (1984), no. 2, 479-495.

, Notes from graduate lectures in Stanford University (1988). http://www.math.

washington.edu/pollack/research/Schoen-1988-notes.html.

, On the number of constant scalar curvature metrics in a conformal class, Differential
geometry, Pitman Monogr. Surveys Pure Appl. Math., vol. 52, Longman Sci. Tech., Harlow,
1991, pp. 311-320.

[31] N. S. Trudinger, Remarks concerning the conformal deformation of Riemannian structures
on compact manifolds, Ann. Scuola Norm. Sup. Pisa (3) 22 (1968), 265-274.

[32] J. Vétois and S. Wang, Infinitely many solutions for cubic nonlinear Schréodinger equations
in dimension four, Adv. Nonlinear Anal. 1 (2019), 715-724.

29]

(30]

FREDERIC ROBERT, INSTITUT ELIE CARTAN, UMR 7502, UNIVERSITE DE LORRAINE, BP 70239,
F-54506 VAND@UVRE-LES-NANCY, FRANCE
E-mazil address: frederic.robert@univ-lorraine.fr

JEROME VETOIS, MCGILL UNIVERSITY, DEPARTMENT OF MATHEMATICS AND STATISTICS, 805
SHERBROOKE STREET WEST, MONTREAL, QUEBEC H3A 0B9, CANADA
E-mail address: jerome.vetois@mcgill.ca



	1. Introduction and main results
	2. Existence results for h0 and u0
	3. Notations and general setting
	3.1. Euclidean setting
	3.2. Riemannian setting
	3.3. General reduction theorem

	4. C1-estimates for the energy functional
	5. Energy and remainder estimates: the case n6 and u000
	6. Energy and remainder estimates: the case n7 and u0,0>0
	7. Energy and remainder estimates: the case n=6 and u0,0>0
	8. Setting and definition of the mass in dimensions n=3,4,5
	9. Energy and remainder estimates in dimensions n=3,4,5
	10. Proof of Theorem 1.4
	10.1. Proof of Theorem 1.4 for n6
	10.2. Proof of Theorem 1.4 for n{4,5}.

	11. Proof of Theorem 1.5
	12. Proof of Theorem 1.2
	13. Proof of Theorem 1.3
	14. Necessity of the condition on the gradient
	References

