BLOWING-UP SOLUTIONS FOR SECOND-ORDER CRITICAL
ELLIPTIC EQUATIONS: THE IMPACT OF THE SCALAR
CURVATURE

FREDERIC ROBERT AND JEROME VETOIS

ABSTRACT. Given a closed manifold (M™, g), n > 3, Olivier Druet [5,7] proved
that a necessary condition for the existence of energy-bounded blowing-up
solutions to perturbations of the equation
Agu—l—hgu:u%, u>0in M

is that hg € C'(M) touches the Yamabe potential somewhere when n > 4
(the condition is different for n = 6). In this paper, we prove that Druet’s
condition is also sufficient provided we add its natural differentiable version.
For n > 6, our arguments are local. For the low dimensions n € {4,5}, our
proof requires to introduce a suitable mass that is defined only where Druet’s
condition holds. This mass carries global information both on hg and (M, g).

1. INTRODUCTION AND MAIN RESULTS

Let (M,g) be a compact Riemannian manifold of dimension n > 3 without
boundary and hg € CP(M), 1 < p < oco. We consider the equation

(1) Agu—l—hou:u?*l, u>01in M,

where A, := —divy(V) is the Laplace-Beltrami operator and 2* := -2 We inves-
tigate the existence of families (h¢)cso € CP(M) and (uc)eso € C?(M) satisfying
(2) Ague + heue = ug*_17 ue > 0in M for all € > 0,

and such that h, — hg in CP(M) and max; u. — o0 as € — 0. We say that (uc)eso
blows up at some point §o € M as € — 0 if for all 7 > 0, lim_,o maxp, (¢,) U = +00.
Druet [5,7] obtained the following necessary condition for blow-up:

Theorem 1.1 (Druet [5,7]). Let (M,g) be a compact Riemannian manifold of
dimension n > 4. Let hg € C*'(M) be such that A, + hg is coercive. Assume that
there exist families (he)eso € C1(M) and (ue)eso € C*(M) satisfying (2) and such
that he — hq strongly in C1(M) and u. — ug weakly in L% (M). Assume that (ue).
blows-up. Then there exists & € M such that (ue). blows up at & and

(3)  (ho —cnScaly) (&) =0 if n # 6 and (hg — ¢, Scalyg —2ug) (§0) =0 if n = 6.

Furthermore, if n € {4,5}, then ug = 0.

Here ¢, := 4&77_21) and Scaly is the Scalar curvature of (M, g). This result does
not hold in dimension n = 3. Indeed, Hebey—Wei [12] constructed examples of

blowing-up solutions to (2) on the standard sphere (S?, gg), which are bounded in
L% (S?) but do not satisfy (3).
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This paper is concerned with the converse of Theorem 1.1 in dimensions n > 4.
For the sake of clarity, we state separately our results in the cases ug = 0 in
dimension n > 4 (Theorem 1.2) and wy > 0 in dimension n > 6 (Theorem 1.3):

Theorem 1.2 (ug =0). Let (M,g) be a compact Riemannian manifold of dimen-
sionn > 4. Let hg € CP(M), 1 < p < o0, be such that A, + hg is coercive. Assume
that there exists a point £ € M such that

(4) (ho — cn Scaly) (o) = |V (ho — ¢n Scaly) (§0)] = 0.

Then there exist families (he)eso € CP(M) and (ue)eso € C2(M) satisfying (2) and
such that he — hq strongly in CP(M), uc — 0 weakly in L* (M) and (uc)eso blows
up at &p.

Theorem 1.3 (ug > 0). Let (M,g) be a compact Riemannian manifold of dimen-
sionn > 6. Let hg € CP(M), 1 < p < oo, be such that Ay~ hg is coercive. Assume
that there exist a solution ug € C2(M) of (1) and a point & € M such that

(5) (ho — ¢n Scaly) (§0) = |V (ho — ¢n Scaly) (0)] =0 if n # 6;
(ho — 2ug — cg Scaly) (o) = |V (ho — 2up — ¢¢ Scaly) (§0)| =0 if n = 6;

Then there exist families (he)eso € CP(M) and (he)eso € C2(M) satisfying (2)
and such that he — hq strongly in CP(M), ue — ug weakly in L (M) and (ue)eso
blows up at &.

Compared with Theorem 1.1, we have assumed here that condition (3) is also
satisfied at order 1. However, this stronger condition is actually expected to be
necessary for the existence of blowing-up solutions (see Theorem 12.1 in the last
section of this paper and the discussion in Druet [7, Section 2.5]). Note that we do
not make any nondegeneracy assumptions, neither on the solution ug, nor on the
critical point &g.

We refer to Section 11 for examples of functions hgy and wug satisfying the as-
sumptions of Theorem 1.3. Recently, Premoselli-Thizy [20] obtained a beautiful
example of blowing-up solutions showing that in dimension n € {4,5}, condition
(4) may not be satisfied at all blow-up points.

When hg = ¢, Scaly, that is when (1) is the Yamabe equation, several ex-
amples of blowing-up solutions have been obtained. In the perturbative case,
that is when h. # ¢, Scaly, examples of blowing-up solutions have been obtained
by Druet-Hebey [8], Esposito-Pistoia—Vétois [10], Morabito—Pistoia—Vaira [19],
Pistoia—Vaira [21] and Robert-Vétois [24]. In the nonpertubative case he = ¢, Scal,
we refer to Brendle [1] and Brendle-Marques [2] regarding the non-compactness of
Yamabe metrics. When solutions blow-up not only pointwise but also in energy,
the function hg — ¢, Scal, may not vanish (see Chen-Wei-Yan [3] for n > 5 and
Vétois—Wang [29] for n = 4).

When there does not exist any blowing-up solutions to the equations (2), then
equation (1) is stable. We refer to the survey of Druet [7] and the book of Hebey [11]
for exhaustive studies of the various concepts of stability. Stability also arises in
the Lin—Ni-Takagi problem (see for instance del Pino-Musso-Roman—Wei [4] for a
recent reference on this topic). In Geometry, stability is linked to the problem of
compactness of the Yamabe equation (see Schoen [27,28], Li-Zhu [17], Druet [6],
Marques [18], Li-Zhang [15, 16], Khuri-Marques—Schoen [13]).
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Let us give some general considerations about the proofs. Theorem 1.1 yields
local information on blow-up points. It is essentially the consequence of the concen-
tration of the L?-norm of the solutions at one of the blow-up points when n > 4.
However, in our construction, the problem may be both local and global. Indeed,
we reduce the problem to finding critical points of a functional defined on a finite-
dimensional space. The first term in the asymptotic expansion of the reduced
functional is local. This is due to the L?-concentration of the standard bubble in
the definition of our ansatz. The second term in the expansion plays a decisive role
for obtaining critical points. For the high dimensions n > 6, this term is also local
(see e.g. (30)). However, for n € {4,5}, the second term is global and we are then
compelled to introduce a suitable notion of mass, which carries global information
on hg and (M, g), and to add a corrective term to the standard bubble (see (49))
in order to obtain a reasonable expansion (see e.g. (60)). Unlike the case where
n = 3 or hg = ¢, Scaly, the mass is not defined at all points in the manifold, but
only at the points where the condition (5) is satisfied.

More precisely, Theorems 1.2 and 1.3 are consequences of Theorems 1.4 and 1.5
below. The latter are the core results of our paper. In these theorems, we fix a
linear perturbation h. = hg + €f for some function f € CP(M). Furthermore, we
specify the behavior of the blowing-up solutions that we obtain. Let HZ(M) be
the completion of C°°(M) for the norm || - [[z2 == || - ]2 + [|V - [[2. We say that
(ue)e blows up with one bubble at some point § € M if ue = ug + Us,_ ¢, + 0(1)
as € — 0 in H?(M), where ug € HZ(M) is such that u, — uy weakly in H?(M),
Us, ¢, is asin (17), (0¢, &) — (0,&) and o(1) — 0 strongly in H (M) as € — 0. For
convenience, for every hg,uy € C°(M), we define

ho — ¢p Scalg ifn#6

(6) o = ho = en Scaly and @ o = { ho — 2ug — ¢, Scal, if n = 6.

Our first result deals with the case where ug = 0 in dimension n > 4:

Theorem 1.4. Let (M, g) be a compact Riemannian manifold of dimension n > 4.
Let hg € CP(M), p > 2, be such that Agy+hg is coercive. Assume that there exists a
point & € M satisfying (4). Assume in addition that &y is a nondegenerate critical
point of hg — ¢y, Scalg and

M, (€o) ifn=4,5

) Knylo) =
@) Knol0) =9 A (o — e Sealy) (&) + T Weyly (€l ifn 26

# 0,

where mp, (§o) is the mass of Ag+ho at the point & (see Proposition-Definition 6.1),
and Weyl, is the Weyl curvature tensor of the manifold. We fix a function f €
CP(M) such that f(&) x Kp, (&) > 0. Then for small € > 0, there exists ue €
C?(M) satisfying

(8) Ague + (ho + ef)uc = u> 1 in M, u, >0,

€

and such that ue — 0 weakly in L*" (M) and (uc). blows up with one bubble at &.

The definition of Kp,(&n) outlines the major difference between high- and low-
dimensions that was mentioned above: for n > 6, it is a local quantity, but for
n € {4,5}, it carries global information (see Section 6 for more discussions).
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Next we deal with the case where ug > 0 in dimension n > 6. We assume that
ug is nondegenerate, that is, for every ¢ € HZ(M),

(9) Agp+hod = (2 — 1l 29 <= ¢=0.

Theorem 1.5. Let (M, g) be a compact Riemannian manifold of dimension n > 6.
Let hg € CP(M), p > 2, be such that Ay + hg is coercive. Assume that there exist
a nondegenerate solution ug € C*(M) to equation (1) and & € M satisfying (5).
Assume in addition that & is a nondegenerate critical point of Yny v, and

(10)

C, .
A giPho,uo(€0) + 5 | Weyly (60)]5 ifn=06
uo(&o) f7T<n<9
K, KN (5 ) = C . 7é 0.
om0 672u0 (o) + Agho,uo (§0) + %0|Weylg(§o)|§ if n =10
Cn ,
AgPhouo(§0) + €|Weylg(§o)|,2] ifn > 11

We fix a function f € CP(M) such that
[f+2(8g + ho — 2u0) " (fuo)] (&) if n=6 =0
(&) ifn>6 '

Then for small € > 0, there exists uc € C*(M) satisfying (8) and such that ue — g
weakly in L? (M) and (uc) blows up with one bubble at &.

(11) Kho,uo(ﬁo) X {

The paper is organized as follows. In Section 2, we introduce our notations
and discuss the general setting of the problem, including general C'-estimates. In
Sections 3, 4 and 5, we then compute a C'-asymptotic expansion of the energy
functional in the case where n > 6. In Section 6, we discuss the specific setting of
dimensions n € {4,5} and we define the mass of Ay + hg in this case. In Section 7,
we then deal with the C'-asymptotic expansion of the energy functional when
n € {4,5}. In Sections 8 and 9, we complete the proofs of Theorems 1.4 and 1.5,
respectively. In Section 10, we then prove Theorems 1.2 and 1.3. In Section 11, we
discuss the question of existence of functions hy and ug satisfying the assumptions
of Theorem 1.3. Finally, in Section 12, we deal with the necessity of condition (4)
on the gradient. The interested reader can find some computational details in [26].

2. NOTATIONS AND GENERAL SETTING

We follow the notations and definitions of Robert—Vétois [23].

2.1. Euclidean setting. We define

nn—2)\ °
Uro(z) == <1+|w|2> for all z € R™,

so that Uy is a positive solution to the equation AgualU = U2 -1in R"™, where
Eucl stands for the Euclidean metric. For every § > 0 and £ € R™, we define

n—2

(12)  Use(z):=0" U (67 Mz —-9) = <M> 2 for all x € R™.

7+ o= &P
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As one checks,

"En=2ome o — P-4

1 = -2 =

(13) O0sUs ¢ () n(n —2) B) 4 (02 + |z — E2)n/2
g2 n2 (@ —8)

(1) and g Use(e) = Vn(n=2) * (0 =20 = i — o

forall i =1,...,n. We denote p = (po,p1,...,0n) := (6,€) € (0,00) x R™.

2.2. Riemannian setting. We fix N > n — 2 to be chosen large later. It follows

from Lee—Parker [14] that there exists a function A € C°(M x M) such that,
defining A¢ := A(§, ), we have
(15) Ae >0, Ag(§) =1and VA () =0forall £ € M

and, defining the metric g¢ := Ag*_zg conformal to g, we have

Scaly (6) = 0, VScaly (€)= 0, A, Sealy, (€) = | Weyl, ()

(16)  and dvg (z) = (14 O(|z|")) dz via the chart exp* around 0,

where dz is the Euclidean volume element, dv,, is the Riemannian volume element
of (M, ge) and expgE is the exponential chart at £ for the metric g¢. There exists
7o > 0 such that the injectivity radius of the metric g¢ satisfies iy, (M) > 3rq for
all £ € M. We let x € C*°(R) be such that x(t) =1 for t < rg, x(t) =0 for t > 2rg
and 0 < x < 1. For every § > 0 and £ € M, we define the bubble

d0y/n(n —2) )7122

(17) Use(x) : = x(dge (2, ) A¢ (@) (52 + dge (2,6)?

2.3. General reduction theorem. For every 1 < ¢ < oo, we let ||-||, be the usual
norm of LY(M). For every h € C°(M), we define

2
where uy := max(u,0). We let (6,§) — Bhse = Bn(6,€) be a function in
C1((0,00) x M, H?(M)) such that for every § > 0, there exists ¢(§) > 0 inde-
pendent of h and £ such that
(18) [ Bh,s.ell 2 + 010pB.sel gz < €(0) for all p = (8, &) € (0,00) x M

and €(0) — 0 as § — 0. The function By s5¢ will be fixed later. We also let
g € C?(M). We define

1 1 *
Jn(u) == = /M (IVul? + hu?) dvg — o /M u? dvg for all u € HY (M),

Wh,ao,56 = to + Use + Bpse.
We fix a point § € M and a function hy € C°(M) such that A, + hg is coercive.
We let ug € C%(M) be a solution of the equation
Agug + houg = ug*fl, ug > 0in M.

It follows from the strong maximum principle that either ug = 0 or ug > 0. We
assume that ug is nondegenerate (see (9)). It then follows from [23] that there
exist eg > 0, Uy C M a small open neighborhood of & and ®, 4, € C1((0,¢€0) %
Uo, H}(M)) such that, when ||h — hgl|oo < €0 and ||@g — uo||c2 < €9, we have

(19) @m0 5l < C [ R l| 2
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for all (6,€) € (0, e9) x Up, where C' > 0 does not depend on (h, 4o, 6,§), Pp.ag.5,6 :=
(Ph,ﬂo (63 5) a‘nd

*

(20) Rs e = (g + M) Whagse — Whiaose)t -
Furthermore, for every (g, o) € (0, €y) x Uy, we have
(21) J;L(Wh,ﬁoﬁoéo + (I)hyﬁo#;o»fo) =0

<= (00, &0) is a critical point of (6,&) = Jrn(Wh.ao,6.6 + Ph,ii,5,¢)
(22)  and Jo(Wh,agb6 + Phaaosc) = Jn (Whaaosg) + O ®hao.66l72)

uniformly in (4,€) € (0,€) x Ug and (h, g) such that ||h — holleo < €0 and ||ag —
ugl|cz < €9. Moreover, assuming that

(23)  |Bhse(x)| + 8|10pBhse(x)| < C(Use(x) + 6Use(x)) for all 2 € M,

dy/n(n —2) >ﬂ;2

where Us ¢(z) := (52 I ERIE
e\

we have (see Esposito—Pistoia—Vétois [10])
(24)  Op (W + @) = 0p S (W) + O~ H|@l| 2 (1R 22, + 0l|Op R 20 + [|@|12))

+O(1n275_1|\¢’||§12_1),

where, to avoid unnecessarily heavy notations, we drop the indices (h, g, d, ), so
that W = Wh7ﬂ07§7§, D= @hvﬂo,&&', R = R&g, etc.

2.4. Conventions:

e The differentiation in (0,£) is denoted by 9,, and the differentiation in
x € M (or R™) by 0,.

e For every £ € Uy, we identify the tangent space T¢ M with R™.

e C denotes a positive constant that depends on n, (M, g), & € M, the
functions hg,ug € C?(M) and A > 0 such that ||A[|o. < Aand A\ (Ag+h) >
1/A. When ug > 0, we assume that [[uo||o. < A and ug > 1/A.

e For every f,g € R, the notations f = O(g) and f = o(g) will stand for
|f] < Clg| and |f] < Ce(h,d,€)|g|, respectively, where e(h,d,&) — 0 as
h — hg in C3(M), § — 0 and & — &.

3. ENERGY AND REMAINDER ESTIMATES: THE CASE n > 6 AND ug = ug =0

In this section, we consider the case n > 6 and ug = g = 0. We set By, 5¢ = 0.
Then W}, 44,5,¢ = Wse = Use. We prove the following estimates for R = Rs¢:

Proposition 3.1. Assume that n > 6 and ug = g = 0. Then

52 4 Dp 6% (In(1/6))** ifn =6

n—2
8% 4 Dy ed? if7<n<9
(25) IR 2z, + 0|10 R| 22, < C hé/r /
' ' §* (In(1/0))°"° + Dyed®  if n =10
5t + Dh7§(52 ifn > 11,

where D, ¢ := ||h — holloo + dg(&,&0)?.
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Proof of Proposition 3.1. Let Ly := Ay + ¢, Scaly be the conformal Laplacian. For
a metric ¢ = w* (=2 g conformal to g (w € C*(M) is positive), the conformal
invariance law gives that Ly ¢ = w*(Q**l)Lg(qu) for all ¢ € C*°(M). Therefore,
we have

= (&g + MU = U 7 = A7 (A (A U) = (A0 ) + he,
where ¢y, is as in (6) and
(26) iLg = op + CnA?*i2 Scalgg .

Via the exponential chart, using the radial symmetry of Uso : R® — R, we obtain

. Orr/ . O/
Agg (Ag_lU) - (Ag_lU)Q = AEuclUé,O + ﬁarUé,O - U(S,Q ' = &&”U&O

V1] V1l

around 0. It then follows from (16) that

(27)  R(@) = he(a)U(@) + "7 Os¢(x), where [O5.¢(a)| +10,05¢()] < C

for all (4,£) € (0,00) x Up and x € M. Computations then yield (25). This ends
the proof of Proposition 3.1. O

Plugging together (22), (19), (24) and (25), we obtain
' + D 6% (In(1/8))"* ifn =46

08 Wi =sw)sol| T DR Hrsns9
h + = Jp +
58 (1][1(1/5))6/5 + D26t ifn=10
8% + Dj 0" if n > 11
(29) and Op, Jn(W + @) = 0p, Jn(W)
§* + D2 ;6% (In(1/8)) "/ ifn=6
B T Dy e if7<n<9
o511 @ Dy ¢6%)* ! f7
ol (6* (In(1/6))*® + Dpe6*)> 1 ifn =10
(6% + Dy 63 71 ifn>11

for all i =0,...,n. We now estimate J, (W + ®):

Proposition 3.2. Assume that n > 6 and ug = g = 0. Then

1 * 1
(30) 8y =2 [ URide+ Eones [ 02,0
n R ’ 2 R ’
| [ 225K, (€0)5 0(1/3) + O(5*(o(In(1/6) + D ¢ (n(1/8))*) if n =6
" K,m(go)(s‘*/ 2 PU2 di + of6?) ifn>7
Rn

as § — 0, & — & and h — hg in C?(M), where Ky, (&) is as in (7).

Proof of Proposition 3.2. Integrating by parts, we obtain

1 *
J(U) = 5/M[(A +h)U — U? "YU dv, + / U? dv,.
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It follows from (27) and the volume estimate (16) that
1 - 1 x
Jn(U) = f/ heU?dv, + f/ Uiy dr +0O(6"72).
2 M n Jrn ’

With the change of metric, (16) and (17) yield
/ heU?dv, = / heU?dv, + O(6"72) = / Ay U2, dx + O(6"2),
M Byo (€) Bry (0) ’

where A, ¢(z) := (iAngg_z*)(expg5 (x)). Using the radial symmetry of Us,o together
with Taylor expansions and the explicit form of Us o, we obtain

1 x 1
B B0 = [ Uk + 5on(© [ Ulgda
1 24%w5 K,y (£0)6* In(1/6) + 0 (6* In(1/6)) ifn=6
" K, (50)54/ U2y de + o(5%) itn>T.
R’IL

Plugging together (28) and (31), we obtain (30). This proves Proposition 3.2. O

With some extra care, arguing similarly as Esposito—Pistoia—Vétois [10], see also
additional details are in [26], we also obtain the differentiable version:

Proposition 3.3. Assume that n > 6 and ug = g = 0. Then
(32) OsIn(W + @) = n(£)d | Ufoda
R’!‘L

24%w5 Ky (£0)8° In(1/6) + 0 (8*In(1/6)) + O(D} (6°(In(1/8))*%) if n =6

Kn, (50)53/ (42U di + o(6%) + O(DZ 16%5%) ifn>7

n

SRS

1
(33) and O, Jn(W + @) = Qa&@h(g)ﬁ / Ui, da
]Rn,

0(0%1n(1/8)) + O(D3} (6* (In(1/6)*?) ifn=6
o(8%) + O(DZ 167=) ifn>7
foralli=1,...,n, asd — 0, £ = & and h — hg in C*(M).

Theorem 1.4 for n > 6 will be proved in Section 8.

4. ENERGY AND REMAINDER ESTIMATES: THE CASE n > 7 AND uq, g > 0

In this section, we assume that ug, % > 0 and n > 7, that is 2* — 1 < 2. Asin
the previous case, we set By, s.¢ = 0, so that W}, 5.6, = Wag .56 = o + Us ¢ and we
are in the framework of Section 2. We prove the following estimates for R = Rs¢:

Proposition 4.1. Assume that n > 7 and ug, Uy > 0. Then
(34)
~ ~ ~2* n==6
IR 22, < CllAgtio +hitg— g~ loc +C(Dpg +82+677 )5% and |9, R|| 2, < C4,

where Dy, ¢ is as in (25).
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Proof of Proposition 4.1. We have
R = (Agiip + hitg — @2 ~Y) + R® — ((ap + U)?" ' — a2~ —U?" 1)
and 9, R = 8,,R* — (2* — 1)((0 + U)* =2 = U? =2)9,,U

for all i = 1,...,n, where R® := A U + hU — U? ~. Arguing as in [22], we then
obtain (34), which proves Proposition 4.1. O

Plugging (34) together with (22), (19) and (24), we obtain
(35)  Jn(W + @) = Ju(W) + O(||Agio + hitg — @3 |2 + DE (6% + 6% +6"72)

(36) and 8y, Ju(W + ®) = 9, Jn(W) + O(||Ayiio + hiig — @2 || 20 5

A o+ hitg— 2 Y2 T 6T 4 (D e +02+6"27)2 152 4D, 553+65+5”/2)
for all i =0,...,n. We now estimate Jp, (W + ®):

Proposition 4.2. Assume that n > 7 and ug, Gy > 0. Then
1 * 1
(31 I+ @) = i)+ [ URydo+ 5n©F [ URgds
R™ R™

1 n—2 *
— E11(,10(;30)54/ |*UT o da + o(6) —uo(&))éT/ Uiy tde
O(| Agiio+hitg — a3 ™2, +6"F (| Agiio+hito — i3 ~|oo + |0 — ol +0(1)))
as 6§ — 0, & — & and h — hg in C?(M).
Proof of Proposition 4.2. We first write

Jn(iig+ U) :Jh(ﬂo)JrJh(U)f/ aoUQ**lduﬁ/ (Agiio + hiig — @2 U du,
M M

1 * * * * *
—or [ (0 + ) —af — U —2%ag ~U = 2%U? ™) du,.
M

We then argue as in [22] to estimate the last term in the right-hand side of this
identity. The third term is estimated as in [25]. The second term is estimated by
using the expansion (31). Then (35) yields (37), thus proving Proposition 4.2. O

In the same spirit, arguing again as in Esposito-Pistoia—Vétois [10], see again
details in [26], we obtain the following estimates for the derivatives of J, (W + ®):

Proposition 4.3. Assume that n > 7 and ug, iy > 0. Then

1 .
(38) O5TuW + ) = 94(06 | VRodo— Koy (&)8° | |aPU2oda+ o)

n—2 n—4

s w(€)s s [ UE s+ 0"

~ ~ ~9* ~ _ * _ *_ n+6
+|Aydg + hitg — g 1H005+||Agu0+hu07ug HEs lJrDi5 Lon=2)

= (|liio — toleo + (1))

(39) and e Ju(W + @) — 385,.%(5)52 / U2, dz + o)
R

+0(577 (lio — ttoloo +0(1)) + | Agiio + hilg — @ ~*
HAgitg + hitg — g |20 + DY L57=2)
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foralli=1,...,n, asd — 0, & — & and h — hgy in C%(M).

Theorem 1.5 for n > 7 will be proved in Section 9.

5. ENERGY AND REMAINDER ESTIMATES: THE CASE n = 6 AND ug, g > 0

In this section, we assume that ug, 29 > 0 and n = 6, that is 2* — 1 = 2. Here
again, we set By s5¢ = 0, so that Wy, 40,6 = Way,5,¢ = o + Us,e and we are in the
framework of Section 2. The remark underlying this section is that since 2* —1 = 2,

Ay(ug +U) + h(ug +U) — (uo + U)? = AU + (h — 2uo)U — U?.

Therefore, to obtain a good approximation of the blowing-up solution, it suffices to
subtract a perturbation of 2ugy to the potential. With this remark, setting

h:=h—2ig and hg := hg — 2ug
and arguing as in the case where n > 7, we obtain the following:

Proposition 5.1. Assume that n = 6 and ug, g > 0. Then

1 * 1
(40) Ju(W + ®) = Jy (iig) + ~ / UZ)) de+ S onan () /
n Rn ’ 2 R

— 2405 K g o (€0)5* In(1/6) + O(|| Agig + hiig — G212, + [|Agiio + hiig — 3]|c0?)
+0(5*In(1/6)(o(1) + Dj ¢ (In(1/5)"/%)),

UIQ,O dz
n

(41) s I (W + @) = @na, ()8 | Ut gdz — 96ws Ky ue(£0)0” In(1/6)
R’!L

+O(|| Agiio + hilg — Tig||oe6 + || Agiio + hitg — 4|12, ")
+0(8*In(1/8)(0(1) + Dy, ¢ (In(1/6))/%))

1
(42) and B¢, J,(W + @) = 5(’9&.@,1,% ()82 5 Ut da

+O([|Ayiio + hitg — G3]|0od + || Agiio + hilg — g ||%0")
(43) +0(5% n(1/6)(o(1) + Dy ¢ (In(1/6))"/%))

foralli=1,....,n, a8 § — 0, & - &o cmdih - ho in C*(M), where @p gz, and
Khg uo (o) are as in (6), (10) and Dy ¢ == ||h — holloo + dg (&, &0)?.

Here again, additional details are in [26].

6. SETTING AND DEFINITION OF THE MASS IN DIMENSIONS 1 = 4,5
Following the computations in (27), we obtain the following:

Lemma 6.1. There exist two smooth functions (§,z) — fi(&,x), i = 1,2, on
M x M such that for every f:R™ — R that is radially symmetric, we have

(Ag + B)(x(r)Ae (@) £(r) = Ae(2)> " X Apuat (F(1) + f1(&,2) f(r) + fo(&, ) f(r)
+ hex(@)Ae(2) f(r)

for all x € M\{{}, where r := dy. (x,§) and ﬁg is as in (26). Furthermore,
fi(§,x) =0 when dg(x,§) > ro and there exists Cy > 0 such that

[f1(& x)(z)] < C’ng(x,f)Nfl and |f2(&, )| < C’]\;dg(ac,f)N*2 for all x,& € M.
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We define
_ X(dge(z,8))Ae ()
Fﬁ(‘r) = (n— Q)Wn—ldgg (z,&)n—2

for all x € M\ {¢}. Tt follows from Lemma 6.1 and the definition (12) that
(44)

AyUs e +hUse = Ui;il + Fg(f,ﬂ;‘)é%z + iLgU(s,g
F N n—2
and (Ag+ h)Te = 6¢ + ng’ ?) + hele, where ky, == (n — 2)w,—17/n(n —2) * |

d¢ is the Dirac mass at £ and (¢,&,x) — F(§, ) is of class C? on [0,00) x M x M,
with p being as large as we want provided we choose IV large enough. This includes
t = 0 and, therefore,

. i o
(45) %gr(l) Fy, =Fy in CP(M x M).
For every ¢t > 0, we define 8¢ € HZ(M) as the unique solution to
U,
Fi(&) tf_z ift>0
(46) (Ag + h)Bhie=— 3 —he$ kpt =
" T ift=0.

Since N > n —2 and n < 5, the right-hand-side is uniformly bounded in L%(M) for
some q > nQ—_fQ, independently of t > 0, £ € Uy and h € C?(M) satisfying ||h| < A

and A1 (Ay + h) > 1/A. Therefore, By ¢ is well defined and we have
(47) 1Bn.t.e = Brogllmz =o(1) as t =0

uniformly in ¢ and h. Furthermore, we have 8, +¢ € C?(M) when ¢ > 0. As one
checks, with these definitions, we obtain that

Ghg:=Te+ Pnog
is the Green’s function of the operator A, 4 h at the point &.

Proposition-Definition 6.1. Assume that n € {4,5} and N > n—2. Let h €
C?(M) be such that A, + h is coercive. Assume that there exists £ € M such that
on(€) = |Vn(€)| = 0, where ¢y, is as in (6). Then B o, € CO(M). Furthermore,
Bhr,0,e(&) does not depend on the choice of N > n — 2 and ge satisfying (15) and
(16). We then define the mass of Ay + h at the point & as mp(§) == Bro0.¢(§).

Proof of Proposition-Definition 6.1. We have he(z)T¢(z) = O(dy(z,€)*™") since
on(&) = [Ven(€)] = 0. We also have Fy(&,z) = O(dy(x,£)N~™). When N > n,
this implies that B0, € C°(M). One has that (5,0.¢(€) is independent of N and
ge (see Lee—Parker [14]). This ends the proof of Proposition-Definition 6.1. O

Note that when h = ¢, Scaly, the mass mc,, scal, (§) is defined for all £ € M, and one
recovers the concept of mass of Schoen—Yau when n = 3,4,5. When h = ¢, Scal,
and the manifold is locally conformally flat, here again, one recovers the concept
of Schoen—Yau. We now prove a differentiation result that will allow us to obtain
Theorem 1.2:



12 FREDERIC ROBERT AND JEROME VETOIS

Proposition 6.1. Assume that n € {4,5}. Let h € C*(M) be such that A, + h
is coercive. Assume that there exists & € M such that pp(§) = |Ven(§)| = 0. Let
H € C*(M) be such that H(¢) = [VH(£)| = 0. Then myy e (€) is well defined for
small € € R and differentiable in €. Furthermore,

De(mnter(§))jo = — /M HGY, ¢ dug.

Proof of Proposition 6.1. We set G ¢ = G¢, scal, ¢ + Bh,& where Bh,g is such that
(48) (Ag +1)Bre = =pnGe, scal, 65 Pre € HI (M),
Under the assumptions of the proposition, we have ﬁAh,g € C%(M) and

Bh;f (6) = - / (Pthn Scalg7§Gh7§ d’Ug.
M

As one checks, we have mp(§) = me, scal, (§) — Bh,g (¢). Elliptic theory gives that

h— Bh,s is differentiable. Differentiating (48) with respect to h in the direction H
yields

Oc(mpyer(§)))e=0 = —/ HG;, ¢ duy.
M
This ends the proof of Proposition 6.1. O

7. ENERGY AND REMAINDER ESTIMATES IN DIMENSIONS n = 4,5

Here we assume that n < 5, ug = g = 0 and (4) is satisfied. We define

(49)  Whaose = Whoe := Use + Bhse, where By se i=knd"7 Buog.
Our first step is to obtain estimates for (), 5¢ and its derivatives in HZ(M):
Proposition 7.1. Forn € {4,5}, let By, 5¢ be as in (49). Then (18) holds.

Proof of Proposition 7.1. It follows from (47) that [|Bns¢llgz < C. Differentiating
(46) in &;, i =1,...,n, we obtain

1 .U - 0. U
(A +1)(9e:Brse) = —7— (aﬂF&(irH@gihs D+ he— M)'

0=z 5§
Using the explicit pointwise control that we have for the right-hand side of this
identity, elliptic theory yields (18) for the derivative in &;. We then apply the same
method to estimate the derivative in §. This proves Proposition 7.1. O

We now need a pointwise control for 5 5¢ and its derivatives.

Proposition 7.2. We have

o[ O ] =1
50 -
( ) |5h,5-§(x)| = { (62 +dg(x7§)2)71/2 an _ 5’
(51) 105Bn.6.¢ ()| < C + CDye8In(1/5) (8> + dy(2,€)?) ™ = and
(52)

—1/2

D¢ (52 +dg($7f)2) ifn=4
(6% + dg(x,€)*)| + Dpe (8> + dg(2,£)*) ™" ifn=5

foralli=1,...,n, where Dy ¢ is as in (25).

|0¢, Bn.s.e(x)| < C + C{
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Proof of Proposition 7.2. Green’s representation formula together with (46) yields
(53)

F (67 y) 7 X(dgg (yv f))A (y)
Prae(@) = - /M Calt) < 6/€n e (n —2)wp—1(62 + dgj(ya £)2)"= ) 2aly)

for all z € M. Standard estimates of the Green’s function give 0 < Gy, ,(y) <
Cdy(z,y)*>™" for all z,y € M, x # y. Proposition 7.2 then follows from these
estimates together with (45) and Giraud’s lemma (see [9]). O

When the mass is defined at &, that is ¢p (§) = |Ver (§)] = 0, then B¢
is bounded. Otherwise, it is not. For instance, when n = 5, it behaves like
(h — ¢n Scaly) (§) dg (2,6) " asz — £ and § — 0.

It follows from Proposition 7.2 that (18) is satisfied and therefore, we are in the
framework of Section 2. Since n < 5, we then obtain

(54) Tn(W + @) = Jn (W) + O(|I Rl|%, )
(55)  and OpJi(W + @) = 0y Jp (W) + O(0 | Rl 2, (| Bl 22, + 3]10p R 22,))
where R = Rs¢ is as in (20). We prove the following estimates for R:

Proposition 7.3. We have

(56) IRl 22, + 00, Rl 2 < C

521n(1/6) ifn=4
Dy e6*In(1/8) + 6% if n=5.

Proof of Proposition 7.3. Note that since n < 6, we have 2* > 3. The definitions
(46), (49) combined with (44) yield

(57 R=U¥"1—(U+BY ' =2 - 1)U¥ 2B+OWU*Y B2+ B 1),
where we have used that U > 0. Therefore,
IRl 2a, < CIU” 2B 20+ 1B ) 2.
As regards the gradient term, letting ¢ € {0,...,n}, we have
OpR=—(2 — 1)(U+BY > ~U” "2)9,.U + (U + B)Y ,,B).
We then obtain
8|0, R| < CU* ~%|B| + CU|B|* ~2 + C4|8,, B|U* 2,

where U = 0575 is as in (23). Since B = k:n(SanzB, Proposition 7.2 together with
(50) and long but easy computations yields (56), thus proving Proposition 7.3. O

With (56), the estimates (54) and (55) become

§* (In(1/4))? ifn=4
54

(58) (W @)= I (W)+0{ D (64 (n(1/8))? if n =5

3 2 . B
(59)  and 8y, Ju(W + ®) = 8, Ju(W) + O <5 (In(1/4)) ifn = 4) |

6%+ D} (6°(In(1/6))* ifn=5
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Proposition 7.4. We have
8wn_162In(1/0) ifn=4
52/ Ulgde  ifn=5

k?L n—2 n—2
— S, (60)0" 2 4 06"

(60) I+ @)= [ UFydot gon(© {

asd — 0, & — & and h — hgy in C2(M).
Proof of Proposition 7.4. We have

1 11 .
(61) Jp(W) = 7/ RW duv, + ( - ) / W2 du,.
2 Jur 2 2 ) |y

Using that U > 0, we obtain
(62) W2 = (U +B)Y =U? +2*BU¥ "1 + 0 (B2U* 2 + |B*).
Plugging (57) and (62) into (61), and using (23), we obtain

1

. 1 .
Ja(W) = E/M U? dv, — §/M BU?* ~tdu,

+0 (/ (0¥ 2B2+ U|B|* ' + |B|2*)dvg) .
M

Since B = k,6"%" 3, the pointwise estimate (50) and the definition (12) yield

- o1 12

The definitions (46) and (49) of 5 and B yield
(63) AyB+hB=U?"1—(A,U+hU) in M.

Therefore, we obtain

/ BU?*dvg:/ (IVB|* + hB?) dugfa”%z/
M M

F5(§,~)Udvg—/ heU?dv,.
M M

Since B = k67 B, using (47) and (45) together with integration theory yields
60 [ B0Ftan, =22 ([ (VoeP +n o) v,
M M

1 A
- 7/ Fo(€,)T¢ dvg) —/ heU?dvg + o(6"2).
kn Jar M
Taking the exponential chart at £, we write
/ heU?dv, = he(€) / U2dvg + 9, he (€) / ' U%dv,
M M M

+ [ (e = hel€) = 0 he()a") 0o,
M
As one checks, there exists C' > 0 such that
| — he(€) — De he()a'|U? < CO™2dy (€, x)5 "
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for all z,& € M, x # €. Since n < 6 and £ remains in a neighborhood of £ (so that
the exponential chart remains nicely bounded), integration theory then yields
| (e = el6) = dcelpa )00, = 57202 | (e = hele) = de hele)a" 2o,
+0(6"72).

Furthermore, letting & — &, h — ho and using (4), we obtain
(65) / (he — he (€) — De, he (€)' Udv, = 6" 2k2 / (ho)e, T, dvg + o(6"72).
M M

Via the exponential chart, using the radial symmetry of U, we obtain

) 5 n—2
2 U%dv, = O / x|? () dz | = O(6"2
/M J ( By (0) = 62 + |z|? ( )

since n < 6. Using estimates on Us ¢ together with the above estimates, we obtain
8w, _10%1In(1/8) if n =4

heU?dvg = h
/M ¢ ! «©) 52/ Uﬁoda: ifn=>5
]Rn

22 /M (h}))gorgo dv,

+0(6"72).
Combining this estimate with (64), we obtain

8w, 162In(1/8) ifn =14

/ BUT_ldUg = _}3’5(5) + 5n_2k721[h0,§0 + O(dn_z)’
M

52/ Uigde ifn=5
R
1
(66) where Ihoéo ::/ (|Vﬂho,0>§0|2 + hOﬁlQm,O,Eo) dvg - kii/ FO(& ')FEO d’Ug
M n JM

_/ (ho)e, T2, dv,.
M

Integrating by parts and using the definition (46), we obtain

Ihgeo = /M Gho 0 (DgBho.0.60 + hoBho,0.60) Vg = Bho0.0(0) = Mg (&0)-

Putting these results together yields (7.4), which proves Proposition 7.4. (]

With similar arguments as in the proof of Proposition 7.4, we obtain the esti-
mates of the derivatives:

Proposition 7.5. We have

8wp—10In(1/6) ifn=4
67 OsJn(W + @) =
(67) s In(W + @) = o5 () 5[ Ulydzr ifn=5
RTL
n—2
2

kit (€0)6" 2 + 0(6" %)
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8w,_162In(1/8) ifn=4
(52/ Uﬁodx ifn=>5

6% + Dpe6*In(1/8) ifn=4
+
5 + Dh’g(SQ ifn=>5

(68)  and 9o Ju(W + ) = L0 ()

foralli=1,...,n, asd — 0, £ = & and h — hg in C*(M).

Here again, we refer the reader to [26] for additional details.

8. PROOF OF THEOREM 1.4

We let hg, f € CP(M), p > 2, and & € M satisfy the assumptions of Theo-
rem 1.4. For small € > 0 and 7 € R", we define

(69) he :==ho +ef and &(7) := expgjo( €T).

We fix R > 0 and 0 < a < b to be chosen later.

8.1. Proof of Theorem 1.4 for n > 6. In this case, we let (d¢)eso > 0 be such
that 6. — 0 as € — 0. We define

(70) be(t) == 6et and Fe(t, 7) == Jn, (Us. (),6.(r) + Ph.,0,6.(1).6.(r))
for all (¢,7) € (a,b) x R™ such that |7| < R. With (4), we obtain

o1, (6(7) = 5 V%000 (E0)[r,7le + F(E0)e +o(e)

and Vepy, (€(7)) = V¢n, (&0)[T, ]ve + o(Ve)

as € = 0 uniformly in |7| < R. We first assume that n > 7. In this case, we set
0 := /€. It follows from (30) that

F.(t,7)— L [, U%d
(71) lim (t7) = 5 Jon Utio do

e—0 62

where Eq(t,7) := C, (;VQQDhO (&o)[r, 7]+ f(fO)) t? — D, Ky, (&)t

= Eo(t,f) in Cl%c((()? OO) X Rn)7

for some constants C,,, D,, > 0. Furthermore, we have

OF(t,7) = Ve (05In, Us,t),6.(r) + Ps.().6.(r)))
and Or, F(t,7) = /€ (8¢, In. (Us, (1).¢.(r) + Pss.(1).6.(r))) -

Therefore, it follows from (32) and (33) that the limit in (71) actually holds in
CL.((0,00) x R™). Assuming that f(&) x Kp, (&) > 0, we then obtain oy > 0 such
that (¢0,0) is a nondegenerate critical point of Ey. Then, there exists a critical
point (t.,7.) of F, such that (¢.,7) — (to,0) as € — 0. Then (21) yields

te = Us (t),6.(re) T Phe0,6. () 60 (o)

is a solution to (8) satisfying the conclusion of Theorem 1.4 when n > 7. In the
case where n = 6, the proof is similar by choosing §, such that 62In(1/5.) =e. O
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8.2. Proof of Theorem 1.4 for n € {4,5}. When n € {4,5}, we define

Fe(t,7) = Jn (Us.(t).6c(r) + Bhoset).se(r) T Phe0.6.().60(m):
where J.(t) will be chosen differently depending on the dimension.
Case n = 5. In this case, we set 0.(t) := te. It follows from (60) that

. Etr)-2 .Ut da
lim d

e—0 63

- EO(t,g) in Cl%c(((L OO) X Rn)’
2

where Fy(t,7) := Cs (;VQWM (&o)(r,7) + f(§0)> t? — %mho (€0)t.

It follows from the C'—estimates of Proposition 7.5 that the convergence holds in
CL.((0,00) x R™). Assuming that f(£o) X mp, (€o) > 0, we conclude as when n > 7.

Case n = 4. We set 6(t) := e /¢. The C'—estimates of Proposition 7.5 yield
liH(l) (—€6e(t) 20 Fu(t,7), 0c(t) 20 Fu(t, 7)) = (Yo (t, 7),¢1(t, 7))
€—

in CP.((0,00) x R™), where
(t.7) 1= Ca (5 70n (@) ) + F60) ) £ = "5 2R ()

and ¥ (t,7) := %C4V2<Pho(50)[7'v Jt.

Arguing as in Esposito—Pistoia—Vétois [10], we then obtain the existence of a critical
point of J, which satisfies the conclusion of Theorem 1.4. O

9. PROOF OF THEOREM 1.5

We let ho, f € CP(M), p > 2, ug € C*(M) and & € M satisfy the assumptions
of Theorem 1.5. We let h. be as in (8). We let & (7) and d.(¢) be as in (69) and
(70). Since ug is nondegenerate, there exists (ug,)e>o € C?(M) such that

1

(72) Agug.e + heug e = ugjs_ , Uge > 0in M for small € > 0

and then ||ug, — upllc2 < Ce. Welet 0 < a < b, R > 0 to be fixed later. We define

Fﬁ(t7 T) = Jhe (uove + Uée(t)7£€(7-) + ¢h67u0,6766(t)7£e(T)
for all (¢,7) € (a,b) x R™ such that |7| < R. With (37), we obtain for n > 7,

Fitr) = w0 + 5 [ UFydet Co (57%0n(@)n )+ 1(60) ) e

n_z n=2 n=2
+0(€62) — Dy Ky (€0)t6% + 0(6%) — Buug(€0)t™7 62 +0(6.7 )
as € — 0 uniformly in a < t < b and |7| < R, where B,,C,, D, > 0. We set
0c 1= ens if 7 <n <10 and §. := /e if n > 11 and then argue as in the proof of
Theorem 1.4. In the case where n = 6, remarking that 2* — 1 = 2, differentiating
(72) in € and using the nondegeneracy of ug, we obtain

(Dctio,c)jo = —(Ag + ho — 2u0) ™" (fuo).

It follows that ¢y, . = he — 2ug,e — ¢, Scaly = Py uy + fe + o(€) as € — 0, where
fi=f+2(A;+ ho—2uo) ' (fug). We then conclude as in the previous cases. [
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10. PROOFS OF THEOREMS 1.2 AND 1.3

10.1. Proof of Theorem 1.2. We let hg € CP(M), 1 < p < o0, and §, € M
be such that Ay + hg is coercive and (4) is satisfied. We first easily construct a
suitable approximation (h¢)eso € C™*{2P} (M) such that h. — hg in CP(M) as

e = 0, 95, (&) = ¢no(§0) = 0, [Vz, (§0)| = [Vipny(&0)| = 0 and for small € > 0,
§o is a nondegenerate critical point of ¢;, . Using Proposition 6.1, we can assume
moreover that for small e > 0, Kj, () # 0 and the sign of Kj (&) is independent

€

of e. We fix fo € C°°(M) such that fo(éo) x Kj, (§0) > 0 for small € > 0. It then

follows from Theorem 1.4 that there exist o > 0 and (e q)o<a<a. Such that
Agite,o + (he + afo)iieq = 025", Geq > 0in M,

Ue,o — 0 weakly in L (M) and (Zie,o)o blows up with one bubble at & as a — 0.

A diagonal argument then yields (h¢)e and (u.). such that Theorem 1.2 holds. O

10.2. Proof of Theorem 1.3. We let hy € CP(M), 1 < p < oo, such that Ay + hg
is coercive, ug € C*(M), ug > 0 and & € M such that (1) and (5) are satisfied.

Lemma 10.1. There exists a neighborhood Qo of § and families (he)eso €~CP(M)
and (tie)eso € C*(M) such that he — hg in CP(M), @, — ug in C*(M), he = hg
and e = ug in Qo and Ue is a nondegenerate solution of

Agiic + heite = @2 7, @ >0 in M for all k € N.

Proof of Lemma 10.1. For all v € CPT2(M) such that v > —ug, we define u(v) :=
up + v and h(v) such that

A u(v) + h(v)u(v) = u(v)? ~in M.

By elliptic regularity, we have h(v) — ho in CP(M) and u(v) — ug in C%(M) as
v — 0 in CP*2(M). We assume by contradiction that for every neighborhood €2 of
€0, there exists a neighborhood Vg of 0 in CPT2(M) such that for every v € Vo, if
v =0in Q, then u(v) is degenerate i.e. there exists ¢(v) € K,\ {0}, where

K, :={pc HX (M): Ao+ h(v)p = (2* — 1)u(v)? ¢ in M}.

We can assume that ¢(v) € Sk, := {¢ € K, : [|¢||gz = 1}. Then there exists
¢y € Ko and (tx)ren > 0 such that ¢, — 0 and ¢(txv) — ¢, strongly in C1(M), so
¢v € Si,. We then define ¢y, (v) := ;' (¢(txv) — ¢»,). As one checks,

(73) Agthr(v) + hotbr(v) = (2* = D)ud > (v) + fr(v)$(tev) in M
for a suitable sequence (fy,)x satisfying fx(v) = ug ' Lo(v) +0(1) as k — +o0, where
Lo(v) := Agu+ hov — (1 — (2* — 2)2)u(2)*_21).

We then obtain that there exists 1, € K3 such that Mgt (Yr(v)) = ¥y weakly in
H%(M), where I+ is the projection onto K§-. Passing to the limit in (73) yields

Aghy + hothy = (25 — 1)u2 =24, + ug ' Lo(v) ¢, in M.

Since ¢, € Ky, multiplying this equation by ¢, and integrating by parts yields

(74) / ug ' Lo (v)¢2 dv, = 0.
M
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We now construct v contradicting (74). For every € > 0, we choose Q := B.(&)
and we consider the neighborhood V_(¢,) of 0 in CP™2(M) and x € C°°(R) be such
that x(¢t) =0 for ¢ <1 and x(¢t) = 1 for ¢t > 2. We define

ve(2) = Cex(dg(z,&0)/€)uo(x) for all z € M and € > 0.

For C. — 0 suitably chosen, v. = 0 in B.(&) and v, € VB. (&), S0 the above analysis
applies. Up to a subsequence, we then obtain the existence of ¢y € Ky such that

lim ¢, = ¢o # 0 in C*(M).
e—0

Applying (74) to ¢,,, integrating by parts and passing to the limit then yields a
contradiction since C 'v, — ug in L2(M). This ends the proof of Lemma 10.1. O

We can now end the proof of Theorem 1.3. Letting Qo, (he)eso and (@e)eso
be given by Lemma 10.1, we have ¢; ; = @n,u, in Qo and so ¢; 5 (§o) =
Vi, a.(60)] = 0. Theorem 1.3 then follows by mimicking the proof of Theorem 1.2.

11. EXAMPLES OF hg AND ug SATISFYING THE ASSUMPTIONS OF THEOREM 1.3.

Proposition 11.1. Let (M,g) be a compact Riemannian manifold of dimension
n > 3. Then there exists €y > 0 depending only on n and (M, g) such that g > 0 if
(M, g) is not conformally diffeomorphic to the standard sphere, ¢g = 0 otherwise,
and for every pg € CP(M), 1 < p < oo, satisfying vo(&o) = |Veo(&o)| =0 and

wo < € and M (Ag+ o +c,Scaly) >0  ifn#6

A (Ag + @o + ¢, Scalg) <0 if n =6,
there exists a solution ug € C*(M) of the equation (1) which satisfies (5) with
ho = o + ¢, Scaly if n # 6 and ho := o + ¢, Scalyg +2ug if n = 6.

Proof of Proposition 11.1: Since (M, g) is aspherical, its Yamabe quotient is below
the quotient of the round sphere. This property persists when adding a small
perturbation ¢q. It is standard that this property yields the existence of a solution
to the problem, which proves the proposition when n # 6. When n = 6, since

2* —1 = 2, we can rewrite the equation (1) as Agu+ (hg — 2u)u = —u?. A classical
variational method then yields the existence of a solution to (1). This ends the
proof of Proposition 11.1. ([l

12. NECESSITY OF THE CONDITION ON THE GRADIENT

Theorem 12.1. Let (M, g) be a compact Riemannian manifold of dimension n >
4. Let hg € CY(M) be such that A, + hg is coercive. Assume that there exist
(he)eso € CP(M), (ue)eso € C*(M) satisfying (2) and such that he — ho strongly
in C*(M). Assume that (M, g) is locally conformally flat. If (uc)e blows up with
one bubble at some point & € M and ue — 0 weakly as € — 0, then (4) holds true.

Proof of Theorem 12.1. Theorem 1.1 yields ¢p,(&) = 0. With the conformal
flatness, we can assume that & € R™ and there exists (i), € C?(B2(&)) such that
Aguaiie + hetie = 02 71, @ > 0in By(&) € R, he := (he — ¢, Scal,) A2

for some function A > 0. It follows from [9] that for some constant C' > 0 we have

n—2

1 5 N 5 2
- e < 1 < ¢ f 11 M
(75) o<5§+|x—5€|2> _ue(x)_c(6§+|a:—§e|2> orafee
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for small € > 0 and & — &. Differentiating the Pohozaev identity on Bj (&) yields

1

2

/ Oy, heti? dz
Bi(&)

&y (Vi bt 00} (12 i)Yo,
B S - 7vvue 8@“5 do(x).
/631(56) |z — &l 2 2% iz — £ (2)

By standard elliptic theory and (75), we then obtain

(76) / O, heti® dz = O(6"2) as € — 0.
Bi(&)

Estimating the left-hand side of (76) with (75) then gives Vp,(£p) = 0. This ends
the proof of Theorem 12.1. O
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