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Abstract. Given a closed manifold (Mn, g), n ≥ 3, Olivier Druet [5,7] proved
that a necessary condition for the existence of energy-bounded blowing-up

solutions to perturbations of the equation

∆gu + h0u = u
n+2
n−2 , u > 0 in M

is that h0 ∈ C1(M) touches the Yamabe potential somewhere when n ≥ 4

(the condition is different for n = 6). In this paper, we prove that Druet’s
condition is also sufficient provided we add its natural differentiable version.

For n ≥ 6, our arguments are local. For the low dimensions n ∈ {4, 5}, our

proof requires to introduce a suitable mass that is defined only where Druet’s
condition holds. This mass carries global information both on h0 and (M, g).

1. Introduction and main results

Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3 without
boundary and h0 ∈ Cp(M), 1 ≤ p ≤ ∞. We consider the equation

(1) ∆gu+ h0u = u2?−1, u > 0 in M,

where ∆g := −divg(∇) is the Laplace–Beltrami operator and 2? := 2n
n−2 . We inves-

tigate the existence of families (hε)ε>0 ∈ Cp(M) and (uε)ε>0 ∈ C2(M) satisfying

(2) ∆guε + hεuε = u2?−1
ε , uε > 0 in M for all ε > 0,

and such that hε → h0 in Cp(M) and maxM uε →∞ as ε→ 0. We say that (uε)ε>0

blows up at some point ξ0 ∈M as ε→ 0 if for all r > 0, limε→0 maxBr(ξ0) uε = +∞.
Druet [5, 7] obtained the following necessary condition for blow-up:

Theorem 1.1 (Druet [5, 7]). Let (M, g) be a compact Riemannian manifold of
dimension n ≥ 4. Let h0 ∈ C1(M) be such that ∆g + h0 is coercive. Assume that
there exist families (hε)ε>0 ∈ C1(M) and (uε)ε>0 ∈ C2(M) satisfying (2) and such
that hε → h0 strongly in C1(M) and uε ⇀ u0 weakly in L2?(M). Assume that (uε)ε
blows-up. Then there exists ξ0 ∈M such that (uε)ε blows up at ξ0 and

(3) (h0 − cn Scalg) (ξ0) = 0 if n 6= 6 and (h0 − cn Scalg −2u0) (ξ0) = 0 if n = 6.

Furthermore, if n ∈ {4, 5}, then u0 ≡ 0.

Here cn := n−2
4(n−1) and Scalg is the Scalar curvature of (M, g). This result does

not hold in dimension n = 3. Indeed, Hebey–Wei [12] constructed examples of
blowing-up solutions to (2) on the standard sphere (S3, g0), which are bounded in
L2?(S3) but do not satisfy (3).
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This paper is concerned with the converse of Theorem 1.1 in dimensions n ≥ 4.
For the sake of clarity, we state separately our results in the cases u0 ≡ 0 in
dimension n ≥ 4 (Theorem 1.2) and u0 > 0 in dimension n ≥ 6 (Theorem 1.3):

Theorem 1.2 (u0 ≡ 0). Let (M, g) be a compact Riemannian manifold of dimen-
sion n ≥ 4. Let h0 ∈ Cp(M), 1 ≤ p ≤ ∞, be such that ∆g +h0 is coercive. Assume
that there exists a point ξ0 ∈M such that

(4) (h0 − cn Scalg) (ξ0) = |∇ (h0 − cn Scalg) (ξ0)| = 0.

Then there exist families (hε)ε>0 ∈ Cp(M) and (uε)ε>0 ∈ C2(M) satisfying (2) and
such that hε → h0 strongly in Cp(M), uε ⇀ 0 weakly in L2?(M) and (uε)ε>0 blows
up at ξ0.

Theorem 1.3 (u0 > 0). Let (M, g) be a compact Riemannian manifold of dimen-
sion n ≥ 6. Let h0 ∈ Cp(M), 1 ≤ p ≤ ∞, be such that ∆g +h0 is coercive. Assume
that there exist a solution u0 ∈ C2(M) of (1) and a point ξ0 ∈M such that

(5)

{
(h0 − cn Scalg) (ξ0) = |∇ (h0 − cn Scalg) (ξ0)| = 0 if n 6= 6;

(h0 − 2u0 − c6 Scalg) (ξ0) = |∇ (h0 − 2u0 − c6 Scalg) (ξ0)| = 0 if n = 6;

Then there exist families (hε)ε>0 ∈ Cp(M) and (hε)ε>0 ∈ C2(M) satisfying (2)
and such that hε → h0 strongly in Cp(M), uε ⇀ u0 weakly in L2?(M) and (uε)ε>0

blows up at ξ0.

Compared with Theorem 1.1, we have assumed here that condition (3) is also
satisfied at order 1. However, this stronger condition is actually expected to be
necessary for the existence of blowing-up solutions (see Theorem 12.1 in the last
section of this paper and the discussion in Druet [7, Section 2.5]). Note that we do
not make any nondegeneracy assumptions, neither on the solution u0, nor on the
critical point ξ0.

We refer to Section 11 for examples of functions h0 and u0 satisfying the as-
sumptions of Theorem 1.3. Recently, Premoselli–Thizy [20] obtained a beautiful
example of blowing-up solutions showing that in dimension n ∈ {4, 5}, condition
(4) may not be satisfied at all blow-up points.

When h0 ≡ cn Scalg, that is when (1) is the Yamabe equation, several ex-
amples of blowing-up solutions have been obtained. In the perturbative case,
that is when hε 6≡ cn Scalg, examples of blowing-up solutions have been obtained
by Druet–Hebey [8], Esposito–Pistoia–Vétois [10], Morabito–Pistoia–Vaira [19],
Pistoia–Vaira [21] and Robert–Vétois [24]. In the nonpertubative case hε ≡ cn Scalg,
we refer to Brendle [1] and Brendle–Marques [2] regarding the non-compactness of
Yamabe metrics. When solutions blow-up not only pointwise but also in energy,
the function h0 − cn Scalg may not vanish (see Chen–Wei–Yan [3] for n ≥ 5 and
Vétois–Wang [29] for n = 4).

When there does not exist any blowing-up solutions to the equations (2), then
equation (1) is stable. We refer to the survey of Druet [7] and the book of Hebey [11]
for exhaustive studies of the various concepts of stability. Stability also arises in
the Lin–Ni–Takagi problem (see for instance del Pino–Musso–Roman–Wei [4] for a
recent reference on this topic). In Geometry, stability is linked to the problem of
compactness of the Yamabe equation (see Schoen [27, 28], Li–Zhu [17], Druet [6],
Marques [18], Li–Zhang [15,16], Khuri–Marques–Schoen [13]).
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Let us give some general considerations about the proofs. Theorem 1.1 yields
local information on blow-up points. It is essentially the consequence of the concen-
tration of the L2–norm of the solutions at one of the blow-up points when n ≥ 4.
However, in our construction, the problem may be both local and global. Indeed,
we reduce the problem to finding critical points of a functional defined on a finite-
dimensional space. The first term in the asymptotic expansion of the reduced
functional is local. This is due to the L2–concentration of the standard bubble in
the definition of our ansatz. The second term in the expansion plays a decisive role
for obtaining critical points. For the high dimensions n ≥ 6, this term is also local
(see e.g. (30)). However, for n ∈ {4, 5}, the second term is global and we are then
compelled to introduce a suitable notion of mass, which carries global information
on h0 and (M, g), and to add a corrective term to the standard bubble (see (49))
in order to obtain a reasonable expansion (see e.g. (60)). Unlike the case where
n = 3 or h0 ≡ cn Scalg, the mass is not defined at all points in the manifold, but
only at the points where the condition (5) is satisfied.

More precisely, Theorems 1.2 and 1.3 are consequences of Theorems 1.4 and 1.5
below. The latter are the core results of our paper. In these theorems, we fix a
linear perturbation hε = h0 + εf for some function f ∈ Cp(M). Furthermore, we
specify the behavior of the blowing-up solutions that we obtain. Let H2

1 (M) be
the completion of C∞(M) for the norm ‖ · ‖H2

1
:= ‖ · ‖2 + ‖∇ · ‖2. We say that

(uε)ε blows up with one bubble at some point ξ0 ∈ M if uε = u0 + Uδε,ξε + o(1)
as ε → 0 in H2

1 (M), where u0 ∈ H2
1 (M) is such that uε ⇀ u0 weakly in H2

1 (M),
Uδε,ξε is as in (17), (δε, ξε)→ (0, ξ0) and o(1)→ 0 strongly in H2

1 (M) as ε→ 0. For
convenience, for every h0, u0 ∈ C0(M), we define

(6) ϕh0 := h0 − cn Scalg and ϕh0,u0 :=

{
h0 − cn Scalg if n 6= 6

h0 − 2u0 − cn Scalg if n = 6.

Our first result deals with the case where u0 ≡ 0 in dimension n ≥ 4:

Theorem 1.4. Let (M, g) be a compact Riemannian manifold of dimension n ≥ 4.
Let h0 ∈ Cp(M), p ≥ 2, be such that ∆g+h0 is coercive. Assume that there exists a
point ξ0 ∈M satisfying (4). Assume in addition that ξ0 is a nondegenerate critical
point of h0 − cn Scalg and

(7) Kh0(ξ0) :=

mh0(ξ0) if n = 4, 5

∆g (h0 − cn Scalg) (ξ0) +
cn
6
|Weylg(ξ0)|2g if n ≥ 6

 6= 0,

where mh0(ξ0) is the mass of ∆g+h0 at the point ξ0 (see Proposition-Definition 6.1),
and Weylg is the Weyl curvature tensor of the manifold. We fix a function f ∈
Cp(M) such that f(ξ0) × Kh0

(ξ0) > 0. Then for small ε > 0, there exists uε ∈
C2(M) satisfying

(8) ∆guε + (h0 + εf)uε = u2?−1
ε in M, uε > 0,

and such that uε ⇀ 0 weakly in L2?(M) and (uε)ε blows up with one bubble at ξ0.

The definition of Kh0(ξ0) outlines the major difference between high- and low-
dimensions that was mentioned above: for n ≥ 6, it is a local quantity, but for
n ∈ {4, 5}, it carries global information (see Section 6 for more discussions).
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Next we deal with the case where u0 > 0 in dimension n ≥ 6. We assume that
u0 is nondegenerate, that is, for every φ ∈ H2

1 (M),

(9) ∆gφ+ h0φ = (2? − 1)u2?−2
0 φ ⇐⇒ φ ≡ 0.

Theorem 1.5. Let (M, g) be a compact Riemannian manifold of dimension n ≥ 6.
Let h0 ∈ Cp(M), p ≥ 2, be such that ∆g + h0 is coercive. Assume that there exist
a nondegenerate solution u0 ∈ C2(M) to equation (1) and ξ0 ∈ M satisfying (5).
Assume in addition that ξ0 is a nondegenerate critical point of ϕh0,u0

and
(10)

Kh0,u0
(ξ0) :=



∆gϕh0,u0
(ξ0) +

c6
6
|Weylg(ξ0)|2g if n = 6

u0(ξ0) if 7 ≤ n ≤ 9

672u0(ξ0) + ∆gϕh0,u0
(ξ0) +

c10

6
|Weylg(ξ0)|2g if n = 10

∆gϕh0,u0
(ξ0) +

cn
6
|Weylg(ξ0)|2g if n ≥ 11


6= 0.

We fix a function f ∈ Cp(M) such that

(11) Kh0,u0(ξ0)×

{ [
f + 2(∆g + h0 − 2u0)−1(fu0)

]
(ξ0) if n = 6

f(ξ0) if n > 6

}
> 0.

Then for small ε > 0, there exists uε ∈ C2(M) satisfying (8) and such that uε ⇀ u0

weakly in L2?(M) and (uε)ε blows up with one bubble at ξ0.

The paper is organized as follows. In Section 2, we introduce our notations
and discuss the general setting of the problem, including general C1-estimates. In
Sections 3, 4 and 5, we then compute a C1-asymptotic expansion of the energy
functional in the case where n ≥ 6. In Section 6, we discuss the specific setting of
dimensions n ∈ {4, 5} and we define the mass of ∆g + h0 in this case. In Section 7,
we then deal with the C1-asymptotic expansion of the energy functional when
n ∈ {4, 5}. In Sections 8 and 9, we complete the proofs of Theorems 1.4 and 1.5,
respectively. In Section 10, we then prove Theorems 1.2 and 1.3. In Section 11, we
discuss the question of existence of functions h0 and u0 satisfying the assumptions
of Theorem 1.3. Finally, in Section 12, we deal with the necessity of condition (4)
on the gradient. The interested reader can find some computational details in [26].

2. Notations and general setting

We follow the notations and definitions of Robert–Vétois [23].

2.1. Euclidean setting. We define

U1,0(x) :=

(√
n(n− 2)

1 + |x|2

)n−2
2

for all x ∈ Rn,

so that U1,0 is a positive solution to the equation ∆EuclU = U2?−1 in Rn, where
Eucl stands for the Euclidean metric. For every δ > 0 and ξ ∈ Rn, we define

(12) Uδ,ξ(x) := δ−
n−2
2 U

(
δ−1(x− ξ)

)
=

(√
n(n− 2)δ

δ2 + |x− ξ|2

)n−2
2

for all x ∈ Rn.
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As one checks,

∂δUδ,ξ(x) =
√
n(n− 2)

n−2
2 n− 2

2
δ
n−2
2 −1 |x− ξ|2 − δ2

(δ2 + |x− ξ|2)n/2
(13)

and ∂ξiUδ,ξ(x) =
√
n(n− 2)

n−2
2 (n− 2)δ

n−2
2

(x− ξ)i
(δ2 + |x− ξ|2)n/2

(14)

for all i = 1, . . . , n. We denote p = (p0, p1, . . . , pn) := (δ, ξ) ∈ (0,∞)× Rn.

2.2. Riemannian setting. We fix N > n − 2 to be chosen large later. It follows
from Lee–Parker [14] that there exists a function Λ ∈ C∞(M × M) such that,
defining Λξ := Λ(ξ, ·), we have

(15) Λξ > 0, Λξ(ξ) = 1 and ∇Λξ(ξ) = 0 for all ξ ∈M

and, defining the metric gξ := Λ2?−2
ξ g conformal to g, we have

Scalgξ(ξ) = 0, ∇Scalgξ(ξ) = 0, ∆g Scalgξ(ξ) =
1

6
|Weylg(ξ)|2g

and dvgξ(x) = (1 + O(|x|N )) dx via the chart exp
gξ
ξ around 0,(16)

where dx is the Euclidean volume element, dvgξ is the Riemannian volume element

of (M, gξ) and exp
gξ
ξ is the exponential chart at ξ for the metric gξ. There exists

r0 > 0 such that the injectivity radius of the metric gξ satisfies igξ(M) ≥ 3r0 for
all ξ ∈M . We let χ ∈ C∞(R) be such that χ(t) = 1 for t ≤ r0, χ(t) = 0 for t ≥ 2r0

and 0 ≤ χ ≤ 1. For every δ > 0 and ξ ∈M , we define the bubble

Uδ,ξ(x) : = χ(dgξ(x, ξ))Λξ(x)

(
δ
√
n(n− 2)

δ2 + dgξ(x, ξ)
2

)n−2
2

.(17)

2.3. General reduction theorem. For every 1 ≤ q ≤ ∞, we let ‖·‖q be the usual

norm of Lq(M). For every h ∈ C0(M), we define

Jh(u) :=
1

2

∫
M

(
|∇u|2g + hu2

)
dvg −

1

2?

∫
M

u2?

+ dvg for all u ∈ H2
1 (M),

where u+ := max(u, 0). We let (δ, ξ) 7→ Bh,δ,ξ = Bh(δ, ξ) be a function in
C1((0,∞) × M,H2

1 (M)) such that for every δ > 0, there exists ε(δ) > 0 inde-
pendent of h and ξ such that

(18) ‖Bh,δ,ξ‖H2
1

+ δ‖∂pBh,δ,ξ‖H2
1
< ε(δ) for all p = (δ, ξ) ∈ (0,∞)×M

and ε(δ) → 0 as δ → 0. The function Bh,δ,ξ will be fixed later. We also let
ũ0 ∈ C2(M). We define

Wh,ũ0,δ,ξ := ũ0 + Uδ,ξ +Bh,δ,ξ.

We fix a point ξ0 ∈ M and a function h0 ∈ C0(M) such that ∆g + h0 is coercive.
We let u0 ∈ C2(M) be a solution of the equation

∆gu0 + h0u0 = u2?−1
0 , u0 ≥ 0 in M.

It follows from the strong maximum principle that either u0 ≡ 0 or u0 > 0. We
assume that u0 is nondegenerate (see (9)). It then follows from [23] that there
exist ε0 > 0, U0 ⊂ M a small open neighborhood of ξ0 and Φh,ũ0

∈ C1((0, ε0) ×
U0, H

2
1 (M)) such that, when ‖h− h0‖∞ < ε0 and ‖ũ0 − u0‖C2 < ε0, we have

(19) ‖Φh,ũ0,δ,ξ‖H2
1
≤ C

∥∥Rδ,ξ∥∥ 2n
n+2
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for all (δ, ξ) ∈ (0, ε0)×U0, where C > 0 does not depend on (h, ũ0, δ, ξ), Φh,ũ0,δ,ξ :=
Φh,ũ0(δ, ξ) and

(20) Rδ,ξ := (∆g + h)Wh,ũ0,δ,ξ − (Wh,ũ0,δ,ξ)
2?−1
+ .

Furthermore, for every (δ0, ξ0) ∈ (0, ε0)× U0, we have

J ′h(Wh,ũ0,δ0,ξ0 + Φh,ũ0,δ0,ξ0) = 0(21)

⇐⇒ (δ0, ξ0) is a critical point of (δ, ξ) 7→ Jh(Wh,ũ0,δ,ξ + Φh,ũ0,δ,ξ)

and Jh(Wh,ũ0,δ,ξ + Φh,ũ0,δ,ξ) = Jh (Wh,ũ0,δ,ξ) + O(‖Φh,ũ0,δ,ξ‖2H2
1
)(22)

uniformly in (δ, ξ) ∈ (0, ε0) × U0 and (h, ũ0) such that ‖h − h0‖∞ < ε0 and ‖ũ0 −
u0‖C2 < ε0. Moreover, assuming that

(23) |Bh,δ,ξ(x)|+ δ|∂pBh,δ,ξ(x)| ≤ C(Uδ,ξ(x) + δŨδ,ξ(x)) for all x ∈M,

where Ũδ,ξ(x) :=

(
δ
√
n(n− 2)

δ2 + dgξ(x, ξ)
2

)n−2
2

,

we have (see Esposito–Pistoia–Vétois [10])

(24) ∂pJh(W + Φ) = ∂pJh(W ) + O(δ−1‖Φ‖H2
1
(‖R‖ 2n

n+2
+ δ‖∂pR‖ 2n

n+2
+ ‖Φ‖H2

1
))

+ O(1n≥7δ
−1‖Φ‖2

?−1
H2

1
),

where, to avoid unnecessarily heavy notations, we drop the indices (h, ũ0, δ, ξ), so
that W := Wh,ũ0,δ,ξ, Φ := Φh,ũ0,δ,ξ, R = Rδ,ξ, etc.

2.4. Conventions:

• The differentiation in (δ, ξ) is denoted by ∂p, and the differentiation in
x ∈M (or Rn) by ∂x.
• For every ξ ∈ U0, we identify the tangent space TξM with Rn.
• C denotes a positive constant that depends on n, (M, g), ξ0 ∈ M , the

functions h0, u0 ∈ C2(M) and A > 0 such that ‖h‖C2 < A and λ1(∆g+h) >
1/A. When u0 > 0, we assume that ‖u0‖C2 < A and u0 > 1/A.
• For every f, g ∈ R, the notations f = O(g) and f = o(g) will stand for
|f | ≤ C |g| and |f | ≤ Cε(h, δ, ξ) |g|, respectively, where ε(h, δ, ξ) → 0 as
h→ h0 in C2(M), δ → 0 and ξ → ξ0.

3. Energy and remainder estimates: the case n ≥ 6 and u0 ≡ ũ0 ≡ 0

In this section, we consider the case n ≥ 6 and u0 ≡ ũ0 ≡ 0. We set Bh,δ,ξ ≡ 0.
Then Wh,ũ0,δ,ξ = Wδ,ξ ≡ Uδ,ξ. We prove the following estimates for R = Rδ,ξ:

Proposition 3.1. Assume that n ≥ 6 and u0 ≡ ũ0 ≡ 0. Then

(25) ‖R‖ 2n
n+2

+ δ‖∂pR‖ 2n
n+2
≤ C



δ2 +Dh,ξδ
2 (ln(1/δ))

2/3
if n = 6

δ
n−2
2 +Dh,ξδ

2 if 7 ≤ n ≤ 9

δ4 (ln(1/δ))
3/5

+Dh,ξδ
2 if n = 10

δ4 +Dh,ξδ
2 if n ≥ 11,

where Dh,ξ := ‖h− h0‖∞ + dg(ξ, ξ0)2.
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Proof of Proposition 3.1. Let Lg := ∆g + cn Scalg be the conformal Laplacian. For

a metric g′ = w4/(n−2)g conformal to g (w ∈ C∞(M) is positive), the conformal
invariance law gives that Lg′φ = w−(2?−1)Lg(wφ) for all φ ∈ C∞(M). Therefore,
we have

R = (∆g + h)U − U2?−1 = Λ2?−1
ξ (∆gξ(Λ

−1
ξ U)− (Λ−1

ξ U)2?−1) + ĥξU,

where ϕh is as in (6) and

(26) ĥξ := ϕh + cnΛ2?−2
ξ Scalgξ .

Via the exponential chart, using the radial symmetry of Uδ,0 : Rn → R, we obtain

∆gξ(Λ
−1
ξ U)− (Λ−1

ξ U)2?−1 = ∆EuclUδ,0 +
∂r
√
|gξ|√
|gξ|

∂rUδ,0 −U2?−1
δ,0 =

∂r
√
|gξ|√
|gξ|

∂rUδ,0

around 0. It then follows from (16) that

(27) R(x) = ĥξ(x)U(x) + δ
n−2
2 Θδ,ξ(x), where |Θδ,ξ(x)|+ |∂pΘδ,ξ(x)| ≤ C

for all (δ, ξ) ∈ (0,∞) × U0 and x ∈ M . Computations then yield (25). This ends
the proof of Proposition 3.1. �

Plugging together (22), (19), (24) and (25), we obtain

Jh(W + Φ) = Jh(W ) + O


δ4 +D2

h,ξδ
4 (ln(1/δ))

4/3
if n = 6

δn−2 +D2
h,ξδ

4 if 7 ≤ n ≤ 9

δ8 (ln(1/δ))
6/5

+D2
h,ξδ

4 if n = 10

δ8 +D2
h,ξδ

4 if n ≥ 11

(28)

and ∂piJh(W + Φ) = ∂piJh(W )(29)

+ O
(
δ−1
)


δ4 +D2
h,ξδ

4 (ln(1/δ))
4/3

if n = 6

(δ
n−2
2 +Dh,ξδ

2)2?−1 if 7 ≤ n ≤ 9

(δ4 (ln(1/δ))
3/5

+Dh,ξδ
2)2?−1 if n = 10

(δ4 +Dh,ξδ
2)2?−1 if n ≥ 11

for all i = 0, . . . , n. We now estimate Jh(W + Φ):

Proposition 3.2. Assume that n ≥ 6 and u0 ≡ ũ0 ≡ 0. Then

(30) Jh(W + Φ) =
1

n

∫
Rn
U2?

1,0 dx+
1

2
ϕh(ξ)δ2

∫
Rn
U2

1,0 dx

− 1

4n


242ω5Kh0

(ξ0)δ4 ln(1/δ) + O(δ4(o(ln(1/δ) +D2
h,ξ(ln(1/δ))4/3)) if n = 6

Kh0
(ξ0)δ4

∫
Rn
|x|2U2

1,0 dx+ o(δ4) if n ≥ 7

as δ → 0, ξ → ξ0 and h→ h0 in C2(M), where Kh0(ξ0) is as in (7).

Proof of Proposition 3.2. Integrating by parts, we obtain

Jh(U) =
1

2

∫
M

[(∆g + h)U − U2?−1]U dvg +
1

n

∫
M

U2?dvg.
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It follows from (27) and the volume estimate (16) that

Jh(U) =
1

2

∫
M

ĥξU
2dvg +

1

n

∫
Rn
U2?

1,0 dx+ O(δn−2).

With the change of metric, (16) and (17) yield∫
M

ĥξU
2dvg =

∫
Br0 (ξ)

ĥξU
2dvg + O(δn−2) =

∫
Br0 (0)

Ah,ξU
2
δ,0 dx+ O(δn−2),

where Ah,ξ(x) := (ĥξΛ
2−2?

ξ )(exp
gξ
ξ (x)). Using the radial symmetry of Uδ,0 together

with Taylor expansions and the explicit form of Uδ,0, we obtain

(31) Jh(U) =
1

n

∫
Rn
U2?

1,0 dx+
1

2
ϕh(ξ)δ2

∫
Rn
U2

1,0 dx

− 1

4n


242ω5Kh0(ξ0)δ4 ln(1/δ) + o

(
δ4 ln(1/δ)

)
if n = 6

Kh0
(ξ0)δ4

∫
Rn
|x|2U2

1,0 dx+ o(δ4) if n ≥ 7.

Plugging together (28) and (31), we obtain (30). This proves Proposition 3.2. �

With some extra care, arguing similarly as Esposito–Pistoia–Vétois [10], see also
additional details are in [26], we also obtain the differentiable version:

Proposition 3.3. Assume that n ≥ 6 and u0 ≡ ũ0 ≡ 0. Then

∂δJh(W + Φ) = ϕh(ξ)δ

∫
Rn
U2

1,0dx(32)

− 1

n


242ω5Kh0

(ξ0)δ3 ln(1/δ) + o
(
δ3 ln(1/δ)

)
+ O(D2

h,ξδ
3(ln(1/δ))4/3) if n = 6

Kh0
(ξ0)δ3

∫
Rn
|x|2U2

1,0 dx+ o(δ3) + O(D2?−1
h,ξ δ

n+6
n−2 ) if n ≥ 7

and ∂ξiJh(W + Φ) =
1

2
∂ξiϕh(ξ)δ2

∫
Rn
U2

1,0 dx(33)

+ O

 o(δ3 ln(1/δ)) + O(D2
h,ξδ

3 (ln(1/δ))
4/3

) if n = 6

o(δ3) + O(D2?−1
h,ξ δ

n+6
n−2 ) if n ≥ 7


for all i = 1, . . . , n, as δ → 0, ξ → ξ0 and h→ h0 in C2(M).

Theorem 1.4 for n ≥ 6 will be proved in Section 8.

4. Energy and remainder estimates: the case n ≥ 7 and u0, ũ0 > 0

In this section, we assume that u0, ũ0 > 0 and n ≥ 7, that is 2? − 1 < 2. As in
the previous case, we set Bh,δ,ξ ≡ 0, so that Wh,ũ0,δ,ξ = Wũ0,δ,ξ ≡ ũ0 +Uδ,ξ and we
are in the framework of Section 2. We prove the following estimates for R = Rδ,ξ:

Proposition 4.1. Assume that n ≥ 7 and u0, ũ0 > 0. Then
(34)

‖R‖ 2n
n+2
≤ C‖∆gũ0 +hũ0− ũ2?−1

0 ‖∞+C(Dh,ξ + δ2 + δ
n−6
2 )δ2 and ‖∂pR‖ 2n

n+2
≤ Cδ,

where Dh,ξ is as in (25).
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Proof of Proposition 4.1. We have

R = (∆gũ0 + hũ0 − ũ2?−1
0 ) +R0 − ((ũ0 + U)2?−1 − ũ2?−1

0 − U2?−1)

and ∂piR = ∂piR
0 − (2? − 1)((ũ0 + U)2?−2 − U2?−2)∂piU

for all i = 1, . . . , n, where R0 := ∆gU + hU − U2?−1. Arguing as in [22], we then
obtain (34), which proves Proposition 4.1. �

Plugging (34) together with (22), (19) and (24), we obtain

(35) Jh(W + Φ) = Jh(W ) + O(‖∆gũ0 + hũ0 − ũ2?−1
0 ‖2∞ +D2

h,ξδ
4 + δ8 + δn−2)

(36) and ∂piJh(W + Φ) = ∂piJh(W ) + O(‖∆gũ0 + hũ0 − ũ2?−1
0 ‖ 2n

n+2
δ

+‖∆gũ0+hũ0−ũ2?−1
0 ‖2

?−1
∞ δ−1+(Dh,ξ+δ2+δ

n−6
2 )2?−1δ

n+6
n−2 +Dh,ξδ

3+δ5+δn/2)

for all i = 0, . . . , n. We now estimate Jh(W + Φ):

Proposition 4.2. Assume that n ≥ 7 and u0, ũ0 > 0. Then

(37) Jh(W + Φ) = Jh(ũ0) +
1

n

∫
Rn
U2?

1,0 dx+
1

2
ϕh(ξ)δ2

∫
Rn
U2

1,0 dx

− 1

4n
Kh0

(ξ0)δ4

∫
Rn
|x|2U2

1,0 dx+ o(δ4)− u0(ξ0)δ
n−2
2

∫
Rn
U2?−1

1,0 dx

+O(‖∆gũ0 +hũ0−ũ2?−1
0 ‖2∞+δ

n−2
2 (‖∆gũ0 +hũ0−ũ2?−1

0 ‖∞+‖ũ0−u0‖∞+o(1)))

as δ → 0, ξ → ξ0 and h→ h0 in C2(M).

Proof of Proposition 4.2. We first write

Jh(ũ0 +U) = Jh(ũ0) + Jh(U)−
∫
M

ũ0U
2?−1dvg +

∫
M

(∆gũ0 +hũ0− ũ2?−1
0 )U dvg

− 1

2?

∫
M

((ũ0 + U)2? − ũ2?

0 − U2? − 2?ũ2?−1
0 U − 2?ũ0U

2?−1) dvg.

We then argue as in [22] to estimate the last term in the right-hand side of this
identity. The third term is estimated as in [25]. The second term is estimated by
using the expansion (31). Then (35) yields (37), thus proving Proposition 4.2. �

In the same spirit, arguing again as in Esposito-Pistoia–Vétois [10], see again
details in [26], we obtain the following estimates for the derivatives of Jh(W + Φ):

Proposition 4.3. Assume that n ≥ 7 and u0, ũ0 > 0. Then

∂δJh(W + Φ) = ϕh(ξ)δ

∫
Rn
U2

1,0 dx−
1

n
Kh0

(ξ0)δ3

∫
Rn
|x|2U2

1,0 dx+ o(δ3)(38)

−n− 2

2
u0(ξ0)δ

n−4
2

∫
Rn
U2?−1

1,0 dx+ O(δ
n−4
2 (‖ũ0 − u0‖∞ + o(1))

+‖∆gũ0 + hũ0 − ũ2?−1
0 ‖∞δ + ‖∆gũ0 + hũ0 − ũ2?−1

0 ‖2
?−1
∞ δ−1 +D2?−1

h,ξ δ
n+6
n−2 )

and ∂ξiJh(W + Φ) =
1

2
∂ξiϕh(ξ)δ2

∫
Rn
U2

1,0 dx+ o(δ3)(39)

+ O(δ
n−4
2 (‖ũ0 − u0‖∞ + o(1)) + ‖∆gũ0 + hũ0 − ũ2?−1

0 ‖∞δ

+‖∆gũ0 + hũ0 − ũ2?−1
0 ‖2

?−1
∞ δ−1 +D2?−1

h,ξ δ
n+6
n−2 )
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for all i = 1, . . . , n, as δ → 0, ξ → ξ0 and h→ h0 in C2(M).

Theorem 1.5 for n ≥ 7 will be proved in Section 9.

5. Energy and remainder estimates: the case n = 6 and u0, ũ0 > 0

In this section, we assume that u0, ũ0 > 0 and n = 6, that is 2? − 1 = 2. Here
again, we set Bh,δ,ξ ≡ 0, so that Wh,ũ0,δ,ξ = Wũ0,δ,ξ ≡ ũ0 + Uδ,ξ and we are in the
framework of Section 2. The remark underlying this section is that since 2?−1 = 2,

∆g(u0 + U) + h(u0 + U)− (u0 + U)2 = ∆gU + (h− 2u0)U − U2.

Therefore, to obtain a good approximation of the blowing-up solution, it suffices to
subtract a perturbation of 2u0 to the potential. With this remark, setting

h̄ := h− 2ũ0 and h̄0 := h0 − 2u0

and arguing as in the case where n ≥ 7, we obtain the following:

Proposition 5.1. Assume that n = 6 and u0, ũ0 > 0. Then

Jh(W + Φ) = Jh(ũ0) +
1

n

∫
Rn
U2?

1,0 dx+
1

2
ϕh,ũ0

(ξ)δ2

∫
Rn
U2

1,0 dx(40)

−24ω5Kh0,u0
(ξ0)δ4 ln(1/δ) + O(‖∆gũ0 + hũ0 − ũ2

0‖2∞ + ‖∆gũ0 + hũ0 − ũ2
0‖∞δ2)

+ O(δ4 ln(1/δ)(o(1) +D
2

h,ξ (ln(1/δ))
1/3

)),

∂δJh(W + Φ) = ϕh,ũ0
(ξ)δ

∫
Rn
U2

1,0 dx− 96ω5Kh0,u0
(ξ0)δ3 ln(1/δ)(41)

+ O(‖∆gũ0 + hũ0 − ũ2
0‖∞δ + ‖∆gũ0 + hũ0 − ũ2

0‖2∞δ−1)

+ O(δ3 ln(1/δ)(o(1) +D
2

h,ξ (ln(1/δ))
1/3

))

and ∂ξiJh(W + Φ) =
1

2
∂ξiϕh,ũ0

(ξ)δ2

∫
Rn
U2

1,0 dx(42)

+ O(‖∆gũ0 + hũ0 − ũ2
0‖∞δ + ‖∆gũ0 + hũ0 − ũ2

0‖2∞δ−1)

+ O(δ3 ln(1/δ)(o(1) +D
2

h,ξ (ln(1/δ))
1/3

))(43)

for all i = 1, . . . , n, as δ → 0, ξ → ξ0 and h → h0 in C2(M), where ϕh,ũ0
and

Kh0,u0
(ξ0) are as in (6), (10) and Dh,ξ := ‖h̄− h̄0‖∞ + dg(ξ, ξ0)2.

Here again, additional details are in [26].

6. Setting and definition of the mass in dimensions n = 4, 5

Following the computations in (27), we obtain the following:

Lemma 6.1. There exist two smooth functions (ξ, x) 7→ fi(ξ, x), i = 1, 2, on
M ×M such that for every f : Rn → R that is radially symmetric, we have

(∆g + h)(χ(r)Λξ(x)f(r)) = Λξ(x)2?−1χ∆Eucl(f(r)) + f1(ξ, x)f ′(r) + f2(ξ, x)f(r)

+ ĥξχ(x)Λξ(x)f(r)

for all x ∈ M\ {ξ}, where r := dgξ(x, ξ) and ĥξ is as in (26). Furthermore,
fi(ξ, x) = 0 when dg(x, ξ) ≥ r0 and there exists CN > 0 such that

|f1(ξ, x)(x)| ≤ CNdg(x, ξ)N−1 and |f2(ξ, x)| ≤ CNdg(x, ξ)N−2 for all x, ξ ∈M.
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We define

Γξ(x) :=
χ(dgξ(x, ξ))Λξ(x)

(n− 2)ωn−1dgξ(x, ξ)
n−2

for all x ∈M\ {ξ}. It follows from Lemma 6.1 and the definition (12) that

∆gUδ,ξ + hUδ,ξ = U2?−1
δ,ξ + Fδ(ξ, x)δ

n−2
2 + ĥξUδ,ξ

(44)

and (∆g + h)Γξ = δξ +
F0(ξ, x)

kn
+ ĥξΓξ, where kn := (n− 2)ωn−1

√
n(n− 2)

n−2
2 ,

δξ is the Dirac mass at ξ and (t, ξ, x)→ Ft(ξ, x) is of class Cp on [0,∞)×M ×M ,
with p being as large as we want provided we choose N large enough. This includes
t = 0 and, therefore,

(45) lim
t→0

Ft = F0 in Cp(M ×M).

For every t ≥ 0, we define βh,t,ξ ∈ H2
1 (M) as the unique solution to

(∆g + h)βh,t,ξ = −Ft(ξ, ·)
kn

− ĥξ


Ut,ξ

knt
n−2
2

if t > 0

Γξ if t = 0.

(46)

Since N > n− 2 and n ≤ 5, the right-hand-side is uniformly bounded in Lq(M) for
some q > 2n

n+2 , independently of t ≥ 0, ξ ∈ U0 and h ∈ C2(M) satisfying ‖h‖∞ < A

and λ1(∆g + h) > 1/A. Therefore, βh,t,ξ is well defined and we have

(47) ‖βh,t,ξ − βh,0,ξ‖H2
1

= o(1) as t→ 0

uniformly in ξ and h. Furthermore, we have βh,t,ξ ∈ C2(M) when t > 0. As one
checks, with these definitions, we obtain that

Gh,ξ := Γξ + βh,0,ξ

is the Green’s function of the operator ∆g + h at the point ξ.

Proposition-Definition 6.1. Assume that n ∈ {4, 5} and N > n − 2. Let h ∈
C2(M) be such that ∆g + h is coercive. Assume that there exists ξ ∈ M such that
ϕh(ξ) = |∇ϕh(ξ)| = 0, where ϕh is as in (6). Then βh,0,ξ ∈ C0(M). Furthermore,
βh,0,ξ(ξ) does not depend on the choice of N > n − 2 and gξ satisfying (15) and
(16). We then define the mass of ∆g + h at the point ξ as mh(ξ) := βh,0,ξ(ξ).

Proof of Proposition-Definition 6.1. We have ĥξ(x)Γξ(x) = O(dg(x, ξ)
4−n) since

ϕh(ξ) = |∇ϕh(ξ)| = 0. We also have F0(ξ, x) = O(dg(x, ξ)
N−n). When N > n,

this implies that βh,0,ξ ∈ C0(M). One has that βh,0,ξ(ξ) is independent of N and
gξ (see Lee–Parker [14]). This ends the proof of Proposition-Definition 6.1. �

Note that when h ≡ cn Scalg, the mass mcn Scalg (ξ) is defined for all ξ ∈M , and one
recovers the concept of mass of Schoen–Yau when n = 3, 4, 5. When h ≡ cn Scalg
and the manifold is locally conformally flat, here again, one recovers the concept
of Schoen–Yau. We now prove a differentiation result that will allow us to obtain
Theorem 1.2:
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Proposition 6.1. Assume that n ∈ {4, 5}. Let h ∈ C2(M) be such that ∆g + h
is coercive. Assume that there exists ξ ∈ M such that ϕh(ξ) = |∇ϕh(ξ)| = 0. Let
H ∈ C2(M) be such that H(ξ) = |∇H(ξ)| = 0. Then mh+εH(ξ) is well defined for
small ε ∈ R and differentiable in ε. Furthermore,

∂ε(mh+εH(ξ))|0 = −
∫
M

HG2
h,ξ dvg.

Proof of Proposition 6.1. We set Gh,ξ = Gcn Scalg,ξ + β̂h,ξ, where β̂h,ξ is such that

(48) (∆g + h)β̂h,ξ = −ϕhGcn Scalg,ξ, β̂h,ξ ∈ H2
1 (M).

Under the assumptions of the proposition, we have β̂h,ξ ∈ C0(M) and

β̂h,ξ(ξ) = −
∫
M

ϕhGcn Scalg,ξGh,ξ dvg.

As one checks, we have mh(ξ) = mcn Scalg (ξ) − β̂h,ξ(ξ). Elliptic theory gives that

h 7→ β̂h,ξ is differentiable. Differentiating (48) with respect to h in the direction H
yields

∂ε(mh+εH(ξ))|ε=0 = −
∫
M

HG2
h,ξ dvg.

This ends the proof of Proposition 6.1. �

7. Energy and remainder estimates in dimensions n = 4, 5

Here we assume that n ≤ 5, u0 ≡ ũ0 ≡ 0 and (4) is satisfied. We define

(49) Wh,ũ0,δ,ξ = Wh,δ,ξ := Uδ,ξ +Bh,δ,ξ, where Bh,δ,ξ := knδ
n−2
2 βh,δ,ξ.

Our first step is to obtain estimates for βh,δ,ξ and its derivatives in H2
1 (M):

Proposition 7.1. For n ∈ {4, 5}, let Bh,δ,ξ be as in (49). Then (18) holds.

Proof of Proposition 7.1. It follows from (47) that ‖βh,δ,ξ‖H2
1
≤ C. Differentiating

(46) in ξi, i = 1, . . . , n, we obtain

(∆g + h)(∂ξiβh,δ,ξ) = − 1

kn

(
∂ξiFδ(ξ, ·) + ∂ξi ĥξ

Uδ,ξ

δ
n−2
2

+ ĥξ
∂ξiUδ,ξ

δ
n−2
2

)
.

Using the explicit pointwise control that we have for the right-hand side of this
identity, elliptic theory yields (18) for the derivative in ξi. We then apply the same
method to estimate the derivative in δ. This proves Proposition 7.1. �

We now need a pointwise control for βh,δ,ξ and its derivatives.

Proposition 7.2. We have

|βh,δ,ξ(x)| ≤ C

{
1 + | ln

(
δ2 + dg(x, ξ)

2
)
| if n = 4(

δ2 + dg(x, ξ)
2
)−1/2

if n = 5,
(50)

|∂δβh,δ,ξ(x)| ≤ C + CDh,ξδ ln(1/δ)
(
δ2 + dg(x, ξ)

2
)−n−2

2 and(51)

|∂ξiβh,δ,ξ(x)| ≤ C + C

{
Dh,ξ

(
δ2 + dg(x, ξ)

2
)−1/2

if n = 4∣∣ln(δ2 + dg(x, ξ)
2)
∣∣+Dh,ξ(δ

2 + dg(x, ξ)
2)−1 if n = 5

(52)

for all i = 1, . . . , n, where Dh,ξ is as in (25).
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Proof of Proposition 7.2. Green’s representation formula together with (46) yields
(53)

βh,δ,ξ(x) = −
∫
M

Gh,x(y)

(
Fδ(ξ, y)

kn
+ ĥξ

χ(dgξ(y, ξ))Λξ(y)

(n− 2)ωn−1(δ2 + dgξ(y, ξ)
2)

n−2
2

)
dvg(y)

for all x ∈ M . Standard estimates of the Green’s function give 0 < Gh,x(y) ≤
Cdg(x, y)2−n for all x, y ∈ M , x 6= y. Proposition 7.2 then follows from these
estimates together with (45) and Giraud’s lemma (see [9]). �

When the mass is defined at ξ, that is ϕh (ξ) = |∇ϕh (ξ)| = 0, then βh,δ,ξ
is bounded. Otherwise, it is not. For instance, when n = 5, it behaves like
(h− cn Scalg) (ξ) dg (x, ξ)

−1
as x→ ξ and δ → 0.

It follows from Proposition 7.2 that (18) is satisfied and therefore, we are in the
framework of Section 2. Since n ≤ 5, we then obtain

Jh(W + Φ) = Jh (W ) + O(‖R‖22n
n+2

)(54)

and ∂pJh(W + Φ) = ∂pJh(W ) + O(δ−1‖R‖ 2n
n+2

(‖R‖ 2n
n+2

+ δ‖∂pR‖ 2n
n+2

)),(55)

where R = Rδ,ξ is as in (20). We prove the following estimates for R:

Proposition 7.3. We have

(56) ‖R‖ 2n
n+2

+ δ‖∂pR‖ 2n
n+2
≤ C

{
δ2 ln(1/δ) if n = 4

Dh,ξδ
2 ln(1/δ) + δ2 if n = 5.

Proof of Proposition 7.3. Note that since n < 6, we have 2? > 3. The definitions
(46), (49) combined with (44) yield

R = U2?−1 − (U +B)2?−1
+ = −(2? − 1)U2?−2B + O(U2?−3B2 + |B|2

?−1),(57)

where we have used that U ≥ 0. Therefore,

‖R‖ 2n
n+2
≤ C‖U2?−2B‖ 2n

n+2
+ ‖|B|2

?−1‖ 2n
n+2

.

As regards the gradient term, letting i ∈ {0, . . . , n}, we have

∂piR = −(2? − 1)(((U +B)2?−2
+ − U2?−2)∂piU + (U +B)2?−2

+ ∂piB).

We then obtain

δ|∂piR| ≤ CŨ2?−2|B|+ CŨ |B|2
?−2 + Cδ|∂piB|Ũ2?−2,

where Ũ = Ũδ,ξ is as in (23). Since B = knδ
n−2
2 β, Proposition 7.2 together with

(50) and long but easy computations yields (56), thus proving Proposition 7.3. �

With (56), the estimates (54) and (55) become

Jh(W + Φ) = Jh (W ) +O

(
δ4 (ln(1/δ))

2
if n = 4

δ4 +D2
h,ξδ

4(ln(1/δ))2 if n = 5

)
(58)

and ∂piJh(W + Φ) = ∂piJh(W ) + O

(
δ3 (ln(1/δ))

2
if n = 4

δ3 +D2
h,ξδ

3(ln(1/δ))2 if n = 5

)
.(59)
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Proposition 7.4. We have

(60) Jh(W + Φ) =
1

n

∫
Rn
U2?

1,0 dx+
1

2
ϕh(ξ)


8ωn−1δ

2 ln(1/δ) if n = 4

δ2

∫
Rn
U2

1,0 dx if n = 5


− k2

n

2
mh0

(ξ0)δn−2 + o(δn−2)

as δ → 0, ξ → ξ0 and h→ h0 in C2(M).

Proof of Proposition 7.4. We have

Jh(W ) =
1

2

∫
M

RW dvg +

(
1

2
− 1

2?

)∫
M

W 2?

+ dvg.(61)

Using that U ≥ 0, we obtain

(62) W 2?

+ = (U +B)2?

+ = U2? + 2?BU2?−1 + O
(
B2U2?−2 + |B|2

?)
.

Plugging (57) and (62) into (61), and using (23), we obtain

Jh(W ) =
1

n

∫
M

U2?dvg −
1

2

∫
M

BU2?−1dvg

+ O

(∫
M

(Ũ2?−2B2 + Ũ |B|2
?−1 + |B|2

?

) dvg

)
.

Since B = knδ
n−2
2 β, the pointwise estimate (50) and the definition (12) yield

Jh(W ) =
1

n

∫
Rn
U2?

1,0 dx−
1

2

∫
M

BU2?−1dvg +O

(
δ4 (ln(1/δ))

3
if n = 4

δ4 if n = 5

)
.

The definitions (46) and (49) of β and B yield

(63) ∆gB + hB = U2?−1 − (∆gU + hU) in M.

Therefore, we obtain∫
M

BU2?−1dvg =

∫
M

(
|∇B|2 + hB2

)
dvg − δ

n−2
2

∫
M

Fδ(ξ, ·)U dvg −
∫
M

ĥξU
2dvg.

Since B = knδ
n−2
2 β, using (47) and (45) together with integration theory yields

(64)

∫
M

BU2?−1dvg = δn−2k2
n

(∫
M

(
|∇βh,0,ξ|2 + hβ2

h,0,ξ

)
dvg

− 1

kn

∫
M

F0(ξ, ·)Γξ dvg
)
−
∫
M

ĥξU
2dvg + o(δn−2).

Taking the exponential chart at ξ, we write∫
M

ĥξU
2dvg = ĥξ(ξ)

∫
M

U2dvg + ∂ξi ĥξ(ξ)

∫
M

xiU2dvg

+

∫
M

(ĥξ − ĥξ(ξ)− ∂ξi ĥξ(ξ)xi)U2dvg.

As one checks, there exists C > 0 such that

|ĥξ − ĥξ(ξ)− ∂ξi ĥξ(ξ)xi|U2 ≤ Cδn−2dg(ξ, x)6−2n
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for all x, ξ ∈M , x 6= ξ. Since n < 6 and ξ remains in a neighborhood of ξ (so that
the exponential chart remains nicely bounded), integration theory then yields∫

M

(ĥξ − ĥξ(ξ)− ∂ξi ĥξ(ξ)xi)U2dvg = δn−2k2
n

∫
M

(ĥξ − ĥξ(ξ)− ∂ξi ĥξ(ξ)xi)Γ2
ξdvg

+ o(δn−2).

Furthermore, letting ξ → ξ0, h→ h0 and using (4), we obtain

(65)

∫
M

(ĥξ − ĥξ(ξ)− ∂ξi ĥξ(ξ)xi)U2dvg = δn−2k2
n

∫
M

ˆ(h0)ξ0Γ2
ξ0 dvg + o(δn−2).

Via the exponential chart, using the radial symmetry of U , we obtain∫
M

xiU2dvg = O

(∫
Br0 (0)

|x|2
(

δ

δ2 + |x|2

)n−2

dx

)
= O(δn−2)

since n < 6. Using estimates on Uδ,ξ together with the above estimates, we obtain

∫
M

ĥξU
2dvg = ĥξ(ξ)


8ωn−1δ

2 ln(1/δ) if n = 4

δ2

∫
Rn
U2

1,0 dx if n = 5

+ δn−2k2
n

∫
M

ˆ(h0)ξ0Γ2
ξ0 dvg

+ o(δn−2).

Combining this estimate with (64), we obtain

∫
M

BU2?−1dvg = −ĥξ(ξ)


8ωn−1δ

2 ln(1/δ) if n = 4

δ2

∫
Rn
U2

1,0 dx if n = 5

+ δn−2k2
nIh0,ξ0 + o(δn−2),

where Ih0,ξ0 :=

∫
M

(
|∇βh0,0,ξ0 |2 + h0β

2
h0,0,ξ0

)
dvg −

1

kn

∫
M

F0(ξ, ·)Γξ0 dvg(66)

−
∫
M

ˆ(h0)ξ0Γ2
ξ0 dvg.

Integrating by parts and using the definition (46), we obtain

Ih0,ξ0 =

∫
M

Gh0,ξ0(∆gβh0,0,ξ0 + h0βh0,0,ξ0) dvg = βh0,0,ξ0(ξ0) = mh0(ξ0).

Putting these results together yields (7.4), which proves Proposition 7.4. �

With similar arguments as in the proof of Proposition 7.4, we obtain the esti-
mates of the derivatives:

Proposition 7.5. We have

∂δJh(W + Φ) = ϕh(ξ)


8ωn−1δ ln(1/δ) if n = 4

δ

∫
Rn
U2

1,0 dx if n = 5

(67)

− n− 2

2
k2
nmh0

(ξ0)δn−3 + o(δn−3)
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and ∂ξiJh(W + Φ) =
1

2
∂ξiϕh(ξ)


8ωn−1δ

2 ln(1/δ) if n = 4

δ2

∫
Rn
U2

1,0 dx if n = 5

(68)

+ O

(
δ2 +Dh,ξδ

2 ln(1/δ) if n = 4

δ3 +Dh,ξδ
2 if n = 5

)
for all i = 1, . . . , n, as δ → 0, ξ → ξ0 and h→ h0 in C2(M).

Here again, we refer the reader to [26] for additional details.

8. Proof of Theorem 1.4

We let h0, f ∈ Cp(M), p ≥ 2, and ξ0 ∈ M satisfy the assumptions of Theo-
rem 1.4. For small ε > 0 and τ ∈ Rn, we define

(69) hε := h0 + εf and ξε(τ) := exp
gξ0
ξ0

(
√
ετ).

We fix R > 0 and 0 < a < b to be chosen later.

8.1. Proof of Theorem 1.4 for n ≥ 6. In this case, we let (δε)ε>0 > 0 be such
that δε → 0 as ε→ 0. We define

(70) δε(t) := δεt and Fε(t, τ) := Jhε(Uδε(t),ξε(τ) + Φhε,0,δε(t),ξε(τ))

for all (t, τ) ∈ (a, b)× Rn such that |τ | < R. With (4), we obtain

ϕhε(ξε(τ)) =
1

2
∇2ϕh0

(ξ0)[τ, τ ]ε+ f(ξ0)ε+ o(ε)

and ∇ϕhε(ξε(τ)) = ∇2ϕh0
(ξ0)[τ, ·]

√
ε+ o(

√
ε)

as ε → 0 uniformly in |τ | < R. We first assume that n ≥ 7. In this case, we set
δε :=

√
ε. It follows from (30) that

(71) lim
ε→0

Fε(t, τ)− 1
n

∫
Rn U

2?

1,0 dx

ε2
= E0(t, ξ) in C0

loc((0,∞)× Rn),

where E0(t, τ) := Cn

(
1

2
∇2ϕh0

(ξ0)[τ, τ ] + f(ξ0)

)
t2 −DnKh0

(ξ0)t4,

for some constants Cn, Dn > 0. Furthermore, we have

∂tFε(t, τ) =
√
ε
(
∂δJhε(Uδε(t),ξε(τ) + Φδε(t),ξε(τ))

)
and ∂τiFε(t, τ) =

√
ε
(
∂ξiJhε(Uδε(t),ξε(τ) + Φsδε(t),ξε(τ))

)
.

Therefore, it follows from (32) and (33) that the limit in (71) actually holds in
C1

loc((0,∞)×Rn). Assuming that f(ξ0)×Kh0
(ξ0) > 0, we then obtain t0 > 0 such

that (t0, 0) is a nondegenerate critical point of E0. Then, there exists a critical
point (tε, τε) of Fε such that (tε, τε)→ (t0, 0) as ε→ 0. Then (21) yields

uε := Uδε(tε),ξε(τε) + Φhε,0,δε(tε),ξε(τε)

is a solution to (8) satisfying the conclusion of Theorem 1.4 when n ≥ 7. In the
case where n = 6, the proof is similar by choosing δε such that δ2

ε ln(1/δε) = ε. �
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8.2. Proof of Theorem 1.4 for n ∈ {4, 5}. When n ∈ {4, 5}, we define

Fε(t, τ) := Jhε(Uδε(t),ξε(τ) +Bhε,δε(t),ξε(τ) + Φhε,0,δε(t),ξε(τ)),

where δε(t) will be chosen differently depending on the dimension.

Case n = 5. In this case, we set δε(t) := tε. It follows from (60) that

lim
ε→0

Fε(t, τ)− 1
n

∫
Rn U

2?

1,0 dx

ε3
= E0(t, ξ) in C0

loc((0,∞)× Rn),

where E0(t, τ) := C5

(
1

2
∇2ϕh0(ξ0)(τ, τ) + f(ξ0)

)
t2 − k2

5

2
mh0(ξ0)t3.

It follows from the C1−estimates of Proposition 7.5 that the convergence holds in
C1

loc((0,∞)×Rn). Assuming that f(ξ0)×mh0
(ξ0) > 0, we conclude as when n ≥ 7.

Case n = 4. We set δε(t) := e−t/ε. The C1−estimates of Proposition 7.5 yield

lim
ε→0

(
−εδε(t)−2∂tFε(t, τ), δε(t)

−2∂τFε(t, τ)
)

= (ψ0(t, τ), ψ1(t, τ))

in C0
loc((0,∞)× Rn), where

ψ0(t, τ) := C4

(
1

2
∇2ϕh0

(ξ0)(τ, τ) + f(ξ0)

)
t− n− 2

2
k2
nmh0

(ξ0)

and ψ1(t, τ) :=
1

2
C4∇2ϕh0

(ξ0)[τ, ·]t.

Arguing as in Esposito–Pistoia–Vétois [10], we then obtain the existence of a critical
point of Jhε which satisfies the conclusion of Theorem 1.4. �

9. Proof of Theorem 1.5

We let h0, f ∈ Cp(M), p ≥ 2, u0 ∈ C2(M) and ξ0 ∈ M satisfy the assumptions
of Theorem 1.5. We let hε be as in (8). We let ξε(τ) and δε(t) be as in (69) and
(70). Since u0 is nondegenerate, there exists (u0,ε)ε>0 ∈ C2(M) such that

(72) ∆gu0,ε + hεu0,ε = u2?−1
0,ε , u0,ε > 0 in M for small ε > 0

and then ‖u0,ε − u0‖C2 ≤ Cε. We let 0 < a < b, R > 0 to be fixed later. We define

Fε(t, τ) := Jhε(u0,ε + Uδε(t),ξε(τ) + Φhε,u0,ε,δε(t),ξε(τ )

for all (t, τ) ∈ (a, b)× Rn such that |τ | < R. With (37), we obtain for n ≥ 7,

Fε(t, τ) = Jhε(u0,ε) +
1

n

∫
Rn
U2?

1,0 dx+ Cn

(
1

2
∇2ϕh0

(ξ0)(τ, τ) + f(ξ0)

)
t2εδ2

ε

+ o(εδ2
ε )−DnKh0

(ξ0)t4δ4
ε + o(δ4

ε )−Bnu0(ξ0)t
n−2
2 δ

n−2
2

ε + o(δ
n−2
2

ε )

as ε → 0 uniformly in a < t < b and |τ | < R, where Bn, Cn, Dn > 0. We set

δε := ε
2

n−6 if 7 ≤ n ≤ 10 and δε :=
√
ε if n ≥ 11 and then argue as in the proof of

Theorem 1.4. In the case where n = 6, remarking that 2? − 1 = 2, differentiating
(72) in ε and using the nondegeneracy of u0, we obtain

(∂εu0,ε)|0 = −(∆g + h0 − 2u0)−1(fu0).

It follows that ϕhε,uε = hε − 2u0,ε − cn Scalg = ϕh0,u0 + f̃ ε + o(ε) as ε → 0, where

f̃ := f + 2(∆g + h0 − 2u0)−1(fu0). We then conclude as in the previous cases. �
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10. Proofs of Theorems 1.2 and 1.3

10.1. Proof of Theorem 1.2. We let h0 ∈ Cp(M), 1 ≤ p ≤ ∞, and ξ0 ∈ M
be such that ∆g + h0 is coercive and (4) is satisfied. We first easily construct a

suitable approximation (h̃ε)ε>0 ∈ Cmax{2,p}(M) such that h̃ε → h0 in Cp(M) as
ε → 0, ϕh̃ε(ξ0) = ϕh0(ξ0) = 0, |∇ϕh̃ε(ξ0)| = |∇ϕh0(ξ0)| = 0 and for small ε > 0,
ξ0 is a nondegenerate critical point of ϕh̃ε . Using Proposition 6.1, we can assume

moreover that for small ε > 0, Kh̃ε
(ξ0) 6= 0 and the sign of Kh̃ε

(ξ0) is independent

of ε. We fix f0 ∈ C∞(M) such that f0(ξ0) ×Kh̃ε
(ξ0) > 0 for small ε > 0. It then

follows from Theorem 1.4 that there exist αε > 0 and (ũε,α)0<α<αε such that

∆gũε,α + (h̃ε + αf0)ũε,α = ũ2?−1
ε,α , ũε,α > 0 in M,

ũε,α ⇀ 0 weakly in L2?(M) and (ũε,α)α blows up with one bubble at ξ0 as α→ 0.
A diagonal argument then yields (hε)ε and (uε)ε such that Theorem 1.2 holds. �

10.2. Proof of Theorem 1.3. We let h0 ∈ Cp(M), 1 ≤ p ≤ ∞, such that ∆g +h0

is coercive, u0 ∈ C2(M), u0 > 0 and ξ0 ∈M such that (1) and (5) are satisfied.

Lemma 10.1. There exists a neighborhood Ω0 of ξ0 and families (h̃ε)ε>0 ∈ Cp(M)

and (ũε)ε>0 ∈ C2(M) such that h̃ε → h0 in Cp(M), ũε → u0 in C2(M), h̃ε ≡ h0

and ũε ≡ u0 in Ω0 and ũε is a nondegenerate solution of

∆gũε + h̃εũε = ũ2?−1
ε , ũε > 0 in M for all k ∈ N.

Proof of Lemma 10.1. For all v ∈ Cp+2(M) such that v > −u0, we define u(v) :=
u0 + v and h(v) such that

∆gu(v) + h(v)u(v) = u(v)2?−1 in M.

By elliptic regularity, we have h(v) → h0 in Cp(M) and u(v) → u0 in C2(M) as
v → 0 in Cp+2(M). We assume by contradiction that for every neighborhood Ω of
ξ0, there exists a neighborhood VΩ of 0 in Cp+2(M) such that for every v ∈ VΩ, if
v ≡ 0 in Ω, then u(v) is degenerate i.e. there exists φ(v) ∈ Kv\ {0}, where

Kv := {φ ∈ H2
1 (M) : ∆gφ+ h(v)φ = (2? − 1)u(v)2?−2φ in M}.

We can assume that φ(v) ∈ SKv := {φ ∈ Kv : ‖φ‖H2
1

= 1}. Then there exists

φv ∈ K0 and (tk)k∈N > 0 such that tk → 0 and φ(tkv)→ φv strongly in C1(M), so
φv ∈ SK0 . We then define ψk(v) := t−1

k (φ(tkv)− φv). As one checks,

(73) ∆gψk(v) + h0ψk(v) = (2? − 1)u2?−2
0 ψk(v) + fk(v)φ(tkv) in M

for a suitable sequence (fk)k satisfying fk(v) = u−1
0 L0(v)+o(1) as k → +∞, where

L0(v) := ∆gv + h0v − (1− (2? − 2)2)u2?−2
0 v.

We then obtain that there exists ψv ∈ K⊥0 such that ΠK⊥0
(ψk(v)) ⇀ ψv weakly in

H2
1 (M), where ΠK⊥0

is the projection onto K⊥0 . Passing to the limit in (73) yields

∆gψv + h0ψv = (2? − 1)u2?−2
0 ψv + u−1

0 L0(v)φv in M.

Since φv ∈ K0, multiplying this equation by φv and integrating by parts yields

(74)

∫
M

u−1
0 L0(v)φ2

v dvg = 0.
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We now construct v contradicting (74). For every ε > 0, we choose Ω := Bε(ξ0)
and we consider the neighborhood VBε(ξ0) of 0 in Cp+2(M) and χ ∈ C∞(R) be such
that χ(t) = 0 for t ≤ 1 and χ(t) = 1 for t ≥ 2. We define

vε(x) := Cεχ(dg(x, ξ0)/ε)u0(x) for all x ∈M and ε > 0.

For Cε → 0 suitably chosen, vε ≡ 0 in Bε(ξ0) and vε ∈ VBε(ξ0), so the above analysis
applies. Up to a subsequence, we then obtain the existence of φ0 ∈ K0 such that

lim
ε→0

φvε = φ0 6= 0 in C2(M).

Applying (74) to φvε , integrating by parts and passing to the limit then yields a
contradiction since C−1

ε vε → u0 in L2(M). This ends the proof of Lemma 10.1. �

We can now end the proof of Theorem 1.3. Letting Ω0, (h̃ε)ε>0 and (ũε)ε>0

be given by Lemma 10.1, we have ϕh̃ε,ũε ≡ ϕh0,u0
in Ω0 and so ϕh̃ε,ũε(ξ0) =

|∇ϕh̃ε,ũε(ξ0)| = 0. Theorem 1.3 then follows by mimicking the proof of Theorem 1.2.

11. Examples of h0 and u0 satisfying the assumptions of Theorem 1.3.

Proposition 11.1. Let (M, g) be a compact Riemannian manifold of dimension
n ≥ 3. Then there exists ε0 ≥ 0 depending only on n and (M, g) such that ε0 > 0 if
(M, g) is not conformally diffeomorphic to the standard sphere, ε0 = 0 otherwise,
and for every ϕ0 ∈ Cp(M), 1 ≤ p ≤ ∞, satisfying ϕ0(ξ0) = |∇ϕ0(ξ0)| = 0 and{

ϕ0 ≤ ε0 and λ1(∆g + ϕ0 + cn Scalg) > 0 if n 6= 6

λ1(∆g + ϕ0 + cn Scalg) < 0 if n = 6,

there exists a solution u0 ∈ C2(M) of the equation (1) which satisfies (5) with
h0 := ϕ0 + cn Scalg if n 6= 6 and h0 := ϕ0 + cn Scalg +2u0 if n = 6.

Proof of Proposition 11.1: Since (M, g) is aspherical, its Yamabe quotient is below
the quotient of the round sphere. This property persists when adding a small
perturbation ϕ0. It is standard that this property yields the existence of a solution
to the problem, which proves the proposition when n 6= 6. When n = 6, since
2?− 1 = 2, we can rewrite the equation (1) as ∆gu+ (h0− 2u)u = −u2. A classical
variational method then yields the existence of a solution to (1). This ends the
proof of Proposition 11.1. �

12. Necessity of the condition on the gradient

Theorem 12.1. Let (M, g) be a compact Riemannian manifold of dimension n ≥
4. Let h0 ∈ C1(M) be such that ∆g + h0 is coercive. Assume that there exist
(hε)ε>0 ∈ Cp(M), (uε)ε>0 ∈ C2(M) satisfying (2) and such that hε → h0 strongly
in C1(M). Assume that (M, g) is locally conformally flat. If (uε)ε blows up with
one bubble at some point ξ0 ∈M and uε ⇀ 0 weakly as ε→ 0, then (4) holds true.

Proof of Theorem 12.1. Theorem 1.1 yields ϕh0(ξ0) = 0. With the conformal
flatness, we can assume that ξ0 ∈ Rn and there exists (ûε)ε ∈ C2(B2(ξ0)) such that

∆Euclûε + ĥεûε = û2?−1
ε , ûε > 0 in B2(ξ0) ⊂ Rn, ĥε := (hε − cn Scalg) Λ2−2?

for some function Λ > 0. It follows from [9] that for some constant C > 0 we have

(75)
1

C

(
δε

δ2
ε + |x− ξε|2

)n−2
2

≤ ûε(x) ≤ C
(

δε
δ2
ε + |x− ξε|2

)n−2
2

for all x ∈M
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for small ε > 0 and ξε → ξ0. Differentiating the Pohozaev identity on B1(ξε) yields

1

2

∫
B1(ξε)

∂xi ĥεû
2
ε dx

=

∫
∂B1(ξε)

(
(x− ξε)i
|x− ξε|

(
|∇ûε|2 + ĥεû

2
ε

2
− û2?

ε

2?

)
−
〈
x− ξε
|x− ξε|

,∇ûε
〉
∂xi ûε

)
dσ(x).

By standard elliptic theory and (75), we then obtain

(76)

∫
B1(ξε)

∂xi ĥεû
2
ε dx = O(δn−2

ε ) as ε→ 0.

Estimating the left-hand side of (76) with (75) then gives ∇ϕh0
(ξ0) = 0. This ends

the proof of Theorem 12.1. �
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[22] F. Robert and J. Vétois, Sign-changing blow-up for scalar curvature type equations, Comm.

Partial Differential Equations 38 (2013), no. 8, 1437–1465.

[23] , A general theorem for the construction of blowing-up solutions to some elliptic non-
linear equations via Lyapunov-Schmidt’s reduction, Concentration Analysis and Applications

to PDE (ICTS Workshop, Bangalore, 2012), Trends in Mathematics, Springer, Basel, 2013,

pp. 85–116.
[24] , Examples of non-isolated blow-up for perturbations of the scalar curvature equation,

J. Differential Geom. 98 (2014), no. 2, 349–356.

[25] , Sign-changing solutions to elliptic second order equations: glueing a peak to a de-

generate critical manifold, Calc. Var. Partial Differential Equations 54 (2015).

[26] , Blowing-up solutions for second-order critical elliptic equations: the impact of the
scalar curvature, extended, arXiv:1912.09376 (2019).

[27] R. M. Schoen, Notes from graduate lectures in Stanford University (1988). http://www.math.

washington.edu/pollack/research/Schoen-1988-notes.html.
[28] , On the number of constant scalar curvature metrics in a conformal class, Differential

geometry, Pitman Monogr. Surveys Pure Appl. Math., vol. 52, Longman Sci. Tech., Harlow,

1991, pp. 311–320.
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