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Abstract. Continuing the analysis of [1, 9, 10], we discuss in this note the influence

of the Kernel of the bi-harmonic operator ∆2 on the behavior of families of solu-

tions to ∆2u = e4u on a four-dimensional domain of the Euclidean space. We also
make a remark on the Paneitz-type equation in the context of compact Riemannian

manifolds.

1. Introduction. Let Ω be a nonempty open domain of R4. Consider a sequence
(Vi)i∈N ∈ C0(Ω) such that limi→+∞ Vi = 1 in C0

loc(Ω). Given Λ > 0, we consider
a sequence of functions (ui)i∈N ∈ C4(Ω) which are solutions to the fourth order
equation

∆2ui = Vie
4ui in Ω (E)∫

Ω

Vie
4ui dx ≤ Λ (1)

where ∆ := −
∑
i ∂ii is the Laplacian with minus sign convention. Continuing the

analysis of [1, 9, 10], we aim at describing asymptotics for ui when i → ∞. This
equation has its origins in conformal geometry: we refer the interested reader to [3]
and [8]. A fairly natural and simple behavior would be that, up to a subsequence,
there exists u ∈ C3(Ω) such that

lim
i→+∞

ui = u in C3
loc(Ω). (2)

When (2) holds for a subsequence, we say that (ui)i∈N is relatively compact. Equa-
tion (E) enjoys a scaling invariance. Indeed, let (µi)i∈N ∈ R>0 and (xi)i∈N ∈ Ω and
define

ũi(x) := ui(xi + µix) + lnµi

for all x ∈ µ−1
i (Ω − xi). It is straightforward that ∆2ũi = Vi(xi + µix)e4ũi , an

equation like (E). This scaling invariance forces situations more subtle than (2)
to occur: consider a sequence (µi)i∈N ∈ R>0 such that limi→+∞ µi = 0 and the
functions

fi(x) := ln

√
96µi√

96µ2
i + |x|2
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for all i ∈ N and all x ∈ R4. Then, we get that fi satisfies (E) with Vi ≡ 1 and

lim
i→+∞

fi(0) = +∞ and lim
i→+∞

fi(x) = −∞ for all x 6= 0.

Clearly, (2) does not hold for any subsequence of (fi). Concerning terminology, we
say that the ui’s blow-up if, up to any subsequence, (2) does not hold. In particular,
the fi’s above blow-up. This fourth order problem corresponds to the pde ∆u = e2u

in dimension two: this equation has been studied, among others, by Brézis-Merle
[2], Li-Shafrir [6] and Tarantello [12]. In particular, one has the following result:

Theorem 1. [Li-Shafrir [6]] Let Σ be a bounded domain of R2, (V̄i)i∈N ∈ C0(Σ) be
a sequence of functions such that limi→+∞ V̄i = 1 in C0

loc(Σ), and (ūi)i∈N ∈ C2(Σ)
be a sequence such that

∆ūi = V̄ie
2ūi

in Σ for all i ∈ N, and such that there exists Λ ∈ R such that
∫

Σ
V̄ie

2ūi dx ≤ Λ for

all i ∈ N. Then either (i) the sequence (ūi)i∈N is relatively compact in C1(Ω), or
(ii) there exists N ∈ N, there exist x̄1, ..., x̄N ∈ Ω, there exists ᾱ1, ...ᾱN ∈ N? such
that

lim
i→+∞

V̄ie
2ūi dx =

N∑
p=1

4πᾱpδx̄p

in the sense of measures. Moreover,

lim
i→+∞

ūi = −∞ uniformly locally in Σ \ {x̄1, ...x̄N}.

In particular, when N = 0, limi→+∞ ūi = −∞ uniformly locally in Σ.

This result can be seen as a quantization result since blow-up implies that the
energy is quantified (in general, it is a multiple of 4π). Concerning the proof of
this result, it is important to note that it uses a sup+inf inequality due to Shafrir.
More precisely, Given Σ an open subset of R2, Shafrir [11] proved that any solution
u ∈ C2(Σ) to ∆u = V e2u with a ≤ V ≤ b satisfies

sup
ω
u+ C1 inf

Σ
u ≤ C2

for all ω ⊂ Σ compact, where C1, C2 depend only on a, b, ω and Σ (when ‖∇V ‖∞ ≤
A, it is possible to take C1 = 1). This inequality is crucial in the proof of Theorem
1.

Naturally, one is tempted to prove a similar result for our fourth order problem (E).
Let us say right now that this is impossible: indeed, it was proved in [1] that any
positive value of the energy can be assumed. More precisely, we have that

Proposition 1. [Adimurthi-Robert-Struwe [1]] Let λ ∈ (0,+∞). Let B be the unit
ball of R4. Then there exists (vi)i∈N ∈ C4(B) such that ∆2vi = e4vi in B and
limi→+∞

∫
B
e4ui dx = λ. Moreover, the vi’s blow-up.

The fundamental reason for this difference of behavior is due to the different struc-
tures of the Kernel of the linear operators that are considered in 2D or in 4D. As is
well known,

Ker ∆ = { harmonic functions }
and harmonic functions enjoy two important properties. First, Hopf’s comparison
principle asserts that a nonnegative nontrivial harmonic function is positive. Sec-
ond, and this can be considered as a consequence of the first point, nonnegative
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harmonic functions satisfy the Harnack inequality: more precisely, for any ω ⊂⊂ Σ,
there exists c(ω) > 0 depending only on ω such that

sup
ω
u ≤ c(ω) inf

ω
u (3)

for all u ∈ C2(Σ) such that ∆u = 0 and u ≥ 0. These two properties are of
great importance in the proof of Theorem 1. When one considers the Kernel of the
bi-Laplacian (the dimension is pointless here), that is

Ker ∆2 = { bi-harmonic functions }
the two properties above have no equivalent. For instance, a nonnegative nontrivial
bi-harmonic function is not necessary positive, as shown in the following example:
we have that

∆2|x|2 = 0, |x|2 ≥ 0 and |0|2 = 0.

The Harnack inequality is also not satisfied in general by bi-harmonic function:
inequality (3) is clearly not satisfied by the function x 7→ |x|2 above when 0 ∈ ω.
Despite it is quite naive, this example is generic for fourth order equations and
perfectly illustrates the difficulties one has to face in this context. Note that this is
not just a technical point: as already mentioned, the expected quantization theorem
is false in dimension four (see Proposition 1).

To overcome this difficulties, one can search out for natural hypothesis to carry out
the asymptotic study. A first idea is to consider radial functions: in this situation,
Ker ∆2 is explicit and Ker ∆2 = {a+b|x|2/ a, b ∈ R}, and a complete study of radial
solutions to (E) was carried out in [9]. Another idea is to find a context in which the
considered bi-harmonic functions are bound to satisfy a Harnack-type inequality.
Indeed, consider the family of functions AM :=

(
Ker ∆2

)
∩ {u ∈ C2(Ω)/ ‖∆u‖1 ≤

M}: it follows from standard elliptic theory that for any ω ⊂⊂ Ω, there exists
C(ω,M) > 0 depending only on ω and M such that

sup
ω
v ≤ C(ω,M) inf

ω
v + C(ω,M)

for all v ∈ AM such that v ≥ 0. Therefore, we have a kind of Harnack inequality,
since a control on the infimum yields a control on the maximum. In this spirit, we
prove the following result in [10]

Theorem 2. [Robert [10]] Let Ω be a domain of R4, (Vi)i∈N ∈ C0(Ω) be a sequence
such that limi→+∞ Vi = 1 in C0

loc(Ω), and (ui)i∈N be a sequence of functions in
C4(Ω) such that (E) holds, and such that there exists Λ > 0 such that (1) holds.
Assume there exist C > 0 and ω0 ⊂⊂ Ω a nonempty open set such that ‖(∆ui)−‖1 ≤
C and

‖∆ui‖L1(ω0) ≤ C
for all i ∈ N. Then (i) either (ui)i∈N is relatively compact in C3

loc(Ω), or (ii) there
exists N ∈ N, there exist x1, ..., xN ∈ Ω,there exists α1, ..., αN ∈ N? such that

lim
i→+∞

Vie
4ui dx =

N∑
p=1

16π2αpδxp

in the sense of measures. Moreover,

lim
i→+∞

ui = −∞ uniformly locally in Ω \ {x1, ...xN}.

In particular, when N = 0, limi→+∞ ui = −∞ uniformly locally in Ω.
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This result can be seen as a fourth order analogous to Theorem 1. However, in
the hypothesis of Theorem 1, one gets that

∫
Σ
|∆vi| dx =

∫
Ω
e2vi dx is uniformly

bounded. Therefore, concerning the fourth order problem, we have two natural
possibilities for the hypothesis:

(i) either assume that there exists Λ > 0 such that
∫

Ω
e4ui dx ≤ Λ for all i ∈ N,

(ii) or assume that there exists Λ > 0 such that
∫

Ω
|∆ui| dx ≤ Λ for all i ∈ N.

In Theorem 2, we have chosen to assume that (i) was satisfied. X.X.Chen and
G.Tarantello suggested that the quantization result of Theorem 2 should also be
true and that a sup+inf inequality was possible under assumption (ii) and not (i).
Indeed, by using the analysis in [10], we prove here that this is the case:

Theorem 3. Let Ω be a bounded domain of R4. Let a sequence (Vi)i∈N ∈ C0(Ω)
such that limi→+∞ Vi = 1 in C0

loc(Ω). Let (ui)i∈N be a sequence of functions in
C4(Ω) such that

∆2ui = Vie
4ui (E)

in Ω for all i ∈ N. We assume that there exists C1 > 0 such that∫
Ω

|∆ui| dx ≤ C1 (4)

for all i ∈ N. Then, there exists a set J ⊂ N, there exists (xp)p∈J ∈ Ω such that for
all ω ⊂⊂ Ω, we have that ω ∩ {xp/p ∈ J} is finite, there exists (αp)p∈J ∈ N? such
that

lim
i→∞

Vie
4ui dx =

∑
p∈J

16π2αpδxp

in the sense of measures. Moreover

lim
i→+∞

ui = −∞ uniformly locally in Ω \ {x1, ...xN}.

In particular, when N = 0, limi→+∞ ui = −∞ uniformly locally in Ω.

In addition, for all ω ⊂⊂ Ω, there exists C2 = C2(ω,Ω,Λ, C1) > 0 depending only
on ω,Ω,Λ, C1 such that

(1 + o(1)) sup
ω
ui + inf

Ω
ui ≤ C2

for all i ∈ N, where limi→+∞ o(1) = 0.

Section 2 is devoted to the proof of Theorem 3. In Section 3, we discuss the
influence of the nontrivial Kernel in the Riemannian context.

2. Proof of Theorem 3. We prove Theorem 3 through the two following claims.

Claim 1: we claim that for any ω ⊂⊂ Ω, there exists C3(ω) > 0 such that∫
ω

e4ui dx ≤ C3(ω) (5)

for all i ∈ N.

Proof of Claim 1: We let x0 ∈ Ω and δ > 0 such that Bδ(x0) ⊂⊂ Ω. We let
δ2 > δ1 > δ such that Bδ2(x0) ⊂⊂ Ω. It follows from (4) that∫ δ2

δ1

(∫
∂Br(x0)

|∆ui| dσr

)
dr =

∫
Bδ2 (x0)\Bδ1 (x0)

|∆ui| dx ≤
∫

Ω

|∆ui| dx ≤ C1,
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where dσr is the volume element on ∂Bri(x0). In particular, there exists a sequence
(ri)i∈N ∈ [δ1, δ2] such that ∫

∂Bri (x0)

|∆ui| dσri ≤
C1

δ2 − δ1
(6)

for all i ∈ N. We let ϕi ∈ C2(Bri(x0)) such that{
∆ϕi = 0 in Bri(x0)
ϕi = ∆ui in ∂Bri(x0)

}
Since δ < δ1 ≤ ri for all i ∈ N, it follows from elliptic theory and (6) that there
exists C4(δ) > 0 such that

|ϕi(x)| ≤ C4(δ) (7)

for all x ∈ Bδ(x0) and all i ∈ N. For any i ∈ N, we let Hi be the Green’s function for
∆ on Bri(x0) with Dirichlet boundary condition. Green’s representation formula
yields

∆ui(x) =

∫
Bri (x0)

Hi(x, y)Vi(y)e4ui(y) dy + ϕi(x)

for all x ∈ Bri(x0) and all i ∈ N. Integrating the above equality on Bδ(x0) and
using Fubini’s theorem, we get that∫

Bri (x0)

(∫
Bδ(x0)

Hi(x, y)Vi(y)e4ui(y) dy

)
dx ≤

∫
Bδ(x0)

(|∆ui|(x) + |ϕi(x)|) dx.

Since ri > δ, we get with (4) and (7) that∫
Bδ(x0)

(∫
Bδ(x0)

Hi(x, y)Vi(y)e4ui(y) dy

)
dx ≤ C5(δ).

Since δ < δ1 ≤ ri, there exists C6(δ) > 0 such that Hi(x, y) ≥ C6(δ) for all
x, y ∈ Bδ(x0), x 6= y. Therefore, since limi→+∞ Vi = 1 in C0

loc(Ω), we get that there
exists C7(δ) > 0 such that ∫

Bδ(x0)

e4ui(y) dy ≤ C7(δ)

for all i ∈ N. The claim follows from a covering argument. �

Claim 2: We prove the theorem. The first part of the theorem is a simple conse-
quence of Theorem 2 applied on compact subsets of Ω exhausting Ω. Note that in
case #J = ∞, limp→+∞,p∈J d(xp, ∂Ω) = 0, and ∂ω ∩ {xp/p ∈ J} is at most finite
when ω ⊂⊂ Ω.

We prove the sup+inf inequality. We let ω ⊂⊂ Ω. It follows from Claim 1 that
there exists C > 0 such that

∫
ω
e4ui dx ≤ C for all i ∈ N. It then follows from

Robert ([10], Proposition 3.1) that, up to taking ω ⊂⊂ Ω larger,

(i) either (ui)i∈N is uniformly bounded in C3
loc(ω),

(ii) or there exist N ∈ N, x1, ..., xN ∈ ω such that limi→+∞ ui = −∞ uniformly
locally in ω \ {x1, ..., xN}.
Moreover, in addition to case (ii), we have that

(ii.a) ∆ui is uniformly bounded in L∞loc(ω \ {x1, ..., xN}) for i→ +∞,

and
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(ii.b) in case N > 0, there exists a sequence (xi)i∈N ∈ ω such that limi→+∞ xi =
x∞ ∈ ω, supω ui = ui(xi)→ +∞ when i→ +∞ and

lim
i→+∞

ui(xi + e−ui(xi)x)− ui(xi) = ln

√
96√

96 + |x|2

for all x ∈ R4. Moreover, this convergence holds in C3
loc(R4). This is always possible,

up to taking ω larger.

In case (i) or when N = 0 in (ii), the conclusion of the theorem holds. We assume
now that we are in case (ii) and that N > 0. Let δ > 0 such that B2δ(y1) ⊂⊂ ω,
and let Gi be the Green’s function for ∆2 on Bδ(xi) with Navier condition on the
boundary, that is {

∆2Gi(x, ·) = δx in D′(Bδ(xi))
Gi(x, ·) = ∆Gi(x, ·) = 0 on ∂Bδ(xi).

It follows from Green’s representation formula that

ui(xi) =

∫
Bδ(xi)

Gi(xi, y)Vi(y)e4ui(y) dy + ψi(xi),

where ψi ∈ C4(Bδ(xi)) such that

∆2ψi = 0 in Bδ(xi) and ψi = ui, ∆ψi = ∆ui on ∂Bδ(xi).

It follows from points (ii) and (ii.a) above and from the maximum principle that
there exists C8(δ) > 0 such that ψi(xi) ≥ inf∂Bδ(xi) ui −C8(δ) for all i ∈ N. We let
R > 0. Since Gi > 0 and limi→+∞ ui(xi) = +∞, we get that

ui(xi) ≥
∫
B
Re−ui(xi)

(xi)

Gi(xi, y)Vi(y)e4ui(y) dy + inf
∂Bδ(xi)

ui − C8(δ)

for all i ∈ N. It follows from standard properties of the Green’s function that there
exists C9(δ) > 0 such that Gi(xi, y) ≥ 1

8π2 ln 1
|xi−y| − C9(δ) for all x ∈ Bδ/2(xi).

With the change of variable y = xi + e−ui(xi)z, we get that

ui(xi) ≥
∫
BR(0)

(
ui(xi)

8π2
+

1

8π2
ln

1

|z|
− C9(δ)

)
Vi(xi + e−ui(xi)z)e4ũi(z) dz

+ inf
∂Bδ(xi)

ui − C8(δ)

for all i ∈ N, where

ũi(x) := ui(xi + e−ui(xi)x)− ui(xi)

for all x ∈ Bδeui(xi) and all i ∈ N. Letting i → +∞ and then R → +∞ and using
(ii.b), one gets that

(1 + o(1))ui(xi) + inf
∂Bδ(xi)

ui ≤ C10(δ)

where limi→+∞ o(1) = 1. Since ui(xi) = supω ui we get that

(1 + o(1)) sup
ω
ui + inf

Ω
ui ≤ C10(δ)

and the claim is proved. �
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3. The Kernel in the Riemannian context. Let (M, g) be a compact Riemann-
ian manifold of dimension four without boundary. Given two sequence (ai), (bi)i∈N ∈
C0,θ(M), θ ∈ (0, 1), converging respectively to a∞, b∞ in C0,θ(M), we consider a
sequence of functions (ui)i∈N ∈ C4(M) solutions to the problem:

(Sλ)

{
Pu+ ai = bie

4u in M∫
M
e4ui dvg ≤ Λ

Here, P : C4(M)→ C0(M) is defined as

Pu := ∆2
gu− divg(A(∇u)])

for all u ∈ C4(M), where ∆g := −divg(∇) is the Laplace-Beltrami operator
and divg(A(∇u)]) := gij∇i(Ajα∇αu), given A ∈ Λ(2,0)(M) a smooth symmetric
(2, 0)−tensor on M (we have raised the indices with the metric and we have adopted
Einstein’s summation convention). As already mentioned, systems like (SΛ) have
their origin in conformal geometry (see [3] or [8]). Here again, we focus on the
Kernel of the operator P , a Kernel that contains the constant functions. Since M
is compact without boundary, integrating by parts, we get that Ker ∆2

g = R, the
constant functions. A natural hypothesis on P is then to assume that Ker P = R
(this holds for the Paneitz operator when the Yamabe invariant is positive, see
Gursky [5]). Under this hypothesis, it is possible to carry out the asymptotic study
of solutions to (SΛ): in [4] and [7], it was proved that when there is no relative com-
pactness of solutions, then limi→+∞

∫
M
be4ui dvg ∈ 16π2N. In the analysis provided

in [4], we prove and use use the following proposition:

Proposition 2. Let (ai)i∈N, (bi)i∈N ∈ C0,θ(M) as above. Let (ui)i∈N ∈ C4(M)
satisfying (SΛ). We assume that

Ker P = R,
and that there exists C0 > 0 such that

ui(x) ≤ C0

for all i ∈ N and all x ∈M . Then there exists C1 > 0 such that |∇ui|g(x) ≤ C1 for
all x ∈M . In particular, we are in one an only one of the following situation:

(i) limi→+∞ ui = −∞ uniformly in M , or
(ii) there exists u∞ ∈ C4(M) such that limi→+∞ ui = u∞ in C4(M).

In this section, we show that the hypothesis on the Kernel of P is not removable:

Proposition 3. Let (M, g) be a compact Riemannian manifold without boundary.
We assume that Ker P 6= R. Let a∞ ∈ C0,θ(M) such that a∞ ∈ (Ker P )⊥ (for the
L2−product). Then there exists (ai)i∈N, (bi)i∈N ∈ C0,θ(M) such that limi→+∞ ai =
a∞, limi→+∞ bi = b∞ > 0 in C0,θ(M), there exists (ui)i∈N ∈ C4,θ(M) satisfying
(SΛ) for some Λ > 0, there exists exists Ω an open subset of M such that Ω 6= ∅,
Ω 6= M and such that

(i) there exists C0 > 0 such that ui(x) ≤ C0 for all i ∈ N and all x ∈M ,
(ii) limi→+∞ ui = −∞ uniformly locally in Ω,
(iii) there exists C1 > 0 such that |ui(x)| ≤ C1 for all x ∈M \ Ω and all i ∈ N.

In particular, we do not have the dichotomy of Proposition 2. The rest of this
section is devoted to the proof of Proposition 3. Let ϕ0 ∈ (Ker P ) \ R and let
ϕ := ϕ0 − minM ϕ0. We then have that Pϕ ≡ 0, ϕ ≥ 0, ϕ 6≡ 0 and there exists
x0 ∈M such that ϕ(x0) = 0. We denote by π : C4(M)→ C4(M) the L2−projection
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on Ker P (this is relevant since weak solutions to Pu = 0 are smooth). We let
ψi ∈ C4(M) be the unique solution to the problem{

Pψi + a∞ = e−4iϕ − π
(
e−4iϕ

)
ψi ∈ (Ker P )⊥.

}
It follows from standard elliptic theory that limi→+∞ ψi = ψ∞ in C3(M), where
ψ∞ ∈ C4(M) is the only solution to{

Pψ∞ + a∞ = 0
ψ∞ ∈ (Ker P )⊥.

}
We let ai := a∞ + π

(
e−4iϕ

)
and bi := e−4ψi for all i ∈ N. Letting

ui := −iϕ+ ψi,

we get that
Pui + ai = bie

4ui in M.

Clearly, we have that limi→+∞ ai = a∞ and limi→+∞ bi = b∞ := e−4ψ∞ in C0,θ(M)
for all θ ∈ (0, 1). Since (ψi)i∈N is uniformly bounded in C3(M), we get the conclu-
sion of the proposition by taking Ω = ϕ−1((0,+∞)).
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[2] H.Brézis and F.Merle. Uniform estimates and blow-up behaviour for solutions of −∆u =

V (x)eu in two dimensions. Comm. Partial Differential Equations, 16, (1991), 1223-1253.

[3] S.-Y.A.Chang. On a fourth-order partial differential equation in conformal geometry. Har-
monic analysis and partial differential equations (Chicago, IL, 1996), 127-150, Chicago Lec-

tures in Math., Univ. Chicago Press, Chicago, IL, 1999.

[4] O.Druet and F.Robert. Bubbling phenomena for fourth-order four-dimensional PDEs with
exponential growth. Proc. Amer. Math. Soc., 134, (2006), 897-908.

[5] M.J.Gursky. The Weyl functional, de Rham cohomology, and Kähler-Einstein metrics. Ann.

of Math. 148, (1998), 315-337.
[6] Y.Li and I.Shafrir. Blow-up analysis for solutions of −∆u = V eu in dimension two. Indiana

Univ. Math. J., 43, (1994), 1255-1270.
[7] A.Malchiodi. Compactness of solutions to some geometric fourth-order equations. J. Reine

Angew. Math., 594, (2006), 137-174.

[8] S.Paneitz. A quartic conformally covariant differential operator for arbitrary pseudo-
Riemannian manifolds. Preprint, 1983.

[9] F.Robert. Concentration phenomena for a fourth order equations with exponential growth:

the radial case. J.Differential Equations, 231, (2006), 135-164.
[10] F.Robert. Quantization effects for a fourth order equation of exponential growth in dimension

four. Proc. Royal Soc. Edinburgh Section A, to appear.

[11] I.Shafrir. A Sup + Inf inequality for the equation −∆u = V eu. C.R.Acad. Sci. Paris Sr. I
Math., 315, (1992), 159-164.

[12] G.Tarantello. A quantization property for blow-up solutions of singular Liouville-type equa-

tions. J. Funct. Anal., 219, (2005), 368-399.

Received September 2006.

E-mail address: frobert@math.unice.fr


