STRUWE’S COMPACTNESS FOR FREE FUNCTIONALS INVOLVING THE
BI-HARMONIC OPERATOR

FREDERIC ROBERT

ABSTRACT. In 1984, Struwe gave a complete description of Palais-Smale sequences for a functional
arising in the study of nonlinear elliptic equations with critical Sobolev growth. Hebey and the
author gave a similar description in the Riemannian context for a functional involving the bi-
harmonic operator. We extend this result to more general functionals with nearly critical Sobolev
growth.

1. INTRODUCTION AND STATEMENT OF THE RESULTS

Let (M, g) be a compact Riemannian manifold of dimension n > 5. Let H3(M) be the standard
Sobolev space defined as the completion of C*°(M) w.r.t. the norm

[l rzam) :\// (Agu)deng/ |Vu|gdvg+/ 2 du,,
M M M

where A, = —divy(V) is the Riemannian Laplacian and dvg is the Riemannian volume element on
M. We denote by 2% = % the critical exponent for the Sobolev embeddings, that is H3 (M) <
Li(M) for ¢ < 2% is continuous, and compact if and only if ¢ < 2%. A classical question is to find
conditions to obtain positive smooth solutions for the problem

Agu+au= fu? inM

where a, f are functions on M. This problem is well understood when g < Z—f%, but the critical case
q= Z—fg is quite intricate and has been intensively studied in the past years. We now generalize

this equation to the bi-harmonic operator and investigate for solutions u € H2(M) satisfying
(1) Agu — divg(AVu) + au = f|u\2u_2u in M

where A € A(()z,o) (M) is a continuous symmetrical (2,0)—tensor field, a, f € C°(M). Such a solution
to our problem will be smooth at the cost of slightly further assumptions on A,a and f. As easily
checked, the problem of finding HZ—solutions to (1) is precisely that of finding critical points for
the functional

1 1 1 1
I(u) = 5 /M(Agu)Q d’Ug =+ 5 /M A(VU, VU) d’Ug + 5 /M au2 dvg — ﬂ /M f|u‘2‘j d'Ug

In their celebrated paper [AmRal], Ambrosetti and Rabinowitz introduced the mountain pass lemma
and constructed some Palais-Smale sequences for the functional I. We say that u, € H3(M) for
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all n € N is a Palais-Smale sequence for [ if

I(uy) is bounded
dI(u,) =0  strongly in H2(M)'
It is natural to inquire whether u,, converges, and in which sense, to a function u solution of (1).

The lack of compactness due to the critical exponent 2f leads to serious difficulties. Therefore the
study of Palais-Smale sequences attempted to be crucial for the study of equation (1).

In 1984, Struwe studied Palais-Smale sequences for the following functional:

-2 n
T = [ 1Vultdvg =22 [ jul? e,

where (2 is an open bounded subset of R™, ¢ is the Euclidean metric and u € H 1270(9), the completion
of smooth functions with compact support in € w.r.t. the norm

ful = [ 1vul? due
Q

In [Str], he gave a complete description of Palais-Smale sequences for the functional J.

In [HeRo], Hebey and the author rewrote this result for the functional I with f a positive constant
function. Our aim here is to generalize this result to the more general functional

1 1 1
I.(u) = 3 /M(Agu)2 dvg + 3 /M A(Vu, Vu) dvg + 3 /M au® dv,

1 fo
T /M Flul* == dug,

where u € H2(M) and 0 < e < 2% — 2. It turns out that finding sequences verifying that

I (ue) is bounded
dI.(uc) — 0  strongly in H2(M)'
is easy through the mountain-pass lemma applied to the functional I.. We say that such a sequence

is a Palais-Smale sequence for I..
To describe these sequences, we need some definitions. Let f € C°(M). For p € M, we define

1 1
&(0) =5 [ (Bevdue— ) [ 0P dug

for all v € DZ(R™), where D3(R") is the completion of C2°(R™), the set of smooth functions with
compact support in R”, w.r.t. the norm

Jul = / (Aeu)? dog.

We denote by is(M) > 0 the injectivity radius of (M, g), and take ¢ €]0, W[ We choose
71 € C*°(R™) such that 7(z) = 1 if |z| < § and 7j(x) = 0 if |z| > 26. We then define, for p € M,
np(x) = (exp, ! (x)) for dy(x,p) < ig(M) and 0 elsewhere.

Our result concerning Palais-Smale sequences is the following:
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Theorem 1. Let (uc)eso € H3(M) be a Palais-Smale sequence for I., where a, f € C°(M) and
Ae A(()Q,O)(M) is a continuous symmetrical (2,0)—tensor field. We assume that (u.) is bounded in
H3 (M) (this occurs if f >0 or if A2 — divg(AV) + a is coercive). Then
(i) Jug € H3(M) a weak solution of (1)
(i) there exists p € N, there exist xe1 — x1 € M, ..., x.p = xp € M such that f(z;) > 0 for
alli=1,...,p,
(i) there exist k. ; > 0 such that k. ; — 0 and kZ ; — ¢; €]0,1], i =1,...,p,
(iv) there exist v; € D3(R™), i = 1,...,p, weak nonzero solutions of

t_
Aévi = f(:vl-)|vl-|2 *vs,

verifying that, up to a subsequence,

P

"ue —Uup — Z Na. Ueyi

i=1

e (e @
UE,i(Z‘) = /’(’E,i Vi 7]{; :
€,i

| 200y — 0,

where

for dg(z, . ;) < ig(M), and

1—en

ks,i = Hey

—4
8

Moreover, we have the following:

P _ (n—1)?
Ie(ue) = Io(uo) + Zci 5 & (vi) +o(1),

i=1

where the ¢;’s, given by point (i) above, are positive constants in ]0,1].
Let us make a few remarks:

Remark 1: If f. € C°(M) converges to f € C°(M) in C%norm, let

1

1 1
I(u) = —/ (Agu)?dv, + = A(Vu,Vu)dvg—i—f/ au® dv,
2 Sy 2 2

1 o
e el A AL
- M

and

N 1 1 1
IE(’U/) = 5 /M(Agu)Q d’l}g + 5/ A(V’U/, Vu) d’Ug + 5 /M au2 d’Ug
1

M
_ 2f ¢
s |l

for u € H3(M). Then an HZ(M)—bounded Palais-Smale sequence for I. is an H3(M)—bounded
Palais-Smale sequence for I. and we can apply the theorem.

Remark 2: It is natural to inquire whether ¢; = 1 for all ¢ = 1, ..., p, that is ke, — 1. Actually,

¢; can assume any value in ]0, 1], as shown in the following example. Let § €]0, W[, ¢ €]0,1],



4 FREDERIC ROBERT

2o € M and v € C*°(R™) a positive solution of Agv =21

solutions). We set

(see [Lin] for the explicit form of these

exp;ol (x)

ue(w) = pie v < k.

) ateant @)

with

1—enzd

uszc%andksz,ug 5.

As easily checked, (u) is a Palais-Smale sequence for the functional

1 1 e
U= /M(Agu)2 dvg — T /M [ul? =% do,.

However kS = ¢ €]0, 1. For the case ¢ = 1, we can take k. = ¢.

The proof of Theorem 1 follows closely the proof of Theorem 2.1 in [HeRo]. Here, the difficulty
is that the function f is allowed to change sign and that the exponent 2% — ¢ is subcritical.

2. WEAK CONVERGENCE OF 1,

Let (u.) € H3(M) be an HZ—bounded Palais-Smale sequence for the functional I.. There exists
u® € HZ(M) verifying that, up to a subsequence

ue — u® weakly in H3 (M)
ue — u” strongly in HZ(M)

ue(x) — u®(z) for almost every z € M

Let ¢ € C*°(M). We observe that

(dI-(ue), @) :/ AguEAggo—I—/ A(VUG,V@)dvg—i—/ auegodvg—/ f|u€\2u_2_sue<pdvg.
M M M M

Through classical arguments, u” is a weak solution of
Aiuo — divg (AVUY) + au’ = f|u0|2u72u0.

Moreover, if we set v. = u. — u’, then (v.) is an H3—bounded Palais-Smale sequence for the
functional

1 1 g
1.0) =5 | A= [l an,

and

Je(ve) = I (ue) — In(u®) + o(1).
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3. CRITICAL ENERGY

Assume that Sup,,f > 0. We define
2

_n _n—4
B = ﬁKo “(Supp f)T T
where
1 f n (Agu)Q d’l)g
(2) K= InquD%(R")—{O}% > 0.
0 (fRn |ul? dU€> =

Its value has been explicitly computed in [EFJ], [Lie],[Lio]. We assume that J.(v.) = 8+ o(1) with
B < #. The fact that v, is a Palais-Smale sequence for .J, implies that

| Bgoan, = [ flu e oy + o) = 55+ o)
M M 2
We then have that § > 0 and

2”*5
. F
/ Floc[¥ =2 dvy < (Supyy f) Voly (M) (/ IUEQn_Edv_«;) 2
M M

Now, with [DHL], we know that for all v > 0, there exists B, > 0 such that the following Sobolev

inequality holds:
b
2
(/ |v|211 dvq) < (Ko+v) / (Agv)? dv, + B,,/ v? dv,

for all v € H2(M). We then obtain that
2”*5

28+ 0(1) < (Supy ) (L+o(1) (Ko +0)(58+o(1)) +o(1))

Letting € go to zero, and then v to zero, the preceding inequality becomes

off
n n 2
58< (Supyf) (KoZB) ",
if 8 > 0, then
2 _n _n—4
B2 Ky (Supy, )T = Bt

A contradiction. Thus 8 = 0 and v. goes to zero strongly in H3(M).
If f <0, similar arguments show that (v.) goes to 0 strongly in H2(M). We then have proved
the proposition

Proposition 1. If f <0, or if Sup,,f > 0 and B < 7, then v. goes to zero strongly in H3(M).

4. FUNDAMENTAL LEMMA
The next lemma is the main step in proving Theorem 1.

Lemma 1. Let (v.) a Palais-Smale sequence for J. such that v. — 0 weakly in H3(M), but not
strongly. Then there exist x. — xg € M such that f(xo) > 0, ue > 0 such that u. — 0 and
ue — ¢ €]0,1], and v° € D3(R™) a weak nonzero solution of

t_
AR = [la) P2,
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such that the following holds: if we define
n—4 -1
(o) =i F o0 ()
ke

n—4
l—e5=

for all x € M such that dy(z,x.) < ig(M), and O elsewhere, where k. = fic , then, for all
ig(M
5 €lo, G0,
We = Ve — 77955175
is a Palais-Smale sequence for J. and

_ (n74)2

Je(we) = Je(ve) — ¢ Exo (vo) +o(1),

where o(1) = 0 as e — 0.

Remark: Observe that, since v° # 0, the optimal Euclidean Sobolev inequality (2) leads us to

_ (71—4)2

¢y (00) > BT

Proof of the lemma:
Since (v:) does not go to zero strongly, with section 3, we get that Sup,,f > 0 and J.(ve) >
B% 4 o(1). Therefore

i n
/M Floef® =< dvg > 58% + o(1).
We will need the following lemma. It is proved in detail in [HeRo].

Lemma 2. Let (M, g) a smooth compact Riemannian n—manifold. Then, there exist r €]0,i,(M)],
(Q)ics an open covering of M, and C(M,r) > 1 such that the following holds: VR > 1, Vy € M,
if we note gy r(z) = expyg (%), then
1
Gar Lo @et v < [ (8,0 dug < 00LY) [ (w2 dug

for all w € D3(R™) having the property that Suppu € Be¢(0,7R), and

1
W /]Rn |U‘ d'Ug § /]Rn |U| d'l}gy)R S C(M, T) /Rn |u| d'UE
for all uw € L*(R™) having the property that Suppu € B¢ (0,7R).

4.1. Blow-up of v.. For 0 < k., \. <1, 2. € M and |z| < Z"](C—M) we set

n—4
Oe(x) = Ae 2 ve(expy, (kex)),
g=(z) = (exp}_g)(k.z).

Let 0 < Cp < 2,0 <eg <ig(M), (€i)ics an open covering of M such that for all : € J

dg(expru, expyv) < Colu — vl
for all z € Q;, and u,v € T, M such that |u|,|v] < 9. Now, let z € R™ and 6 > 0 such that

ig (M)

|z| +0 < -2

B A n—4
/ <A55U6)2 dvg, = (;) / (Ag”a)z dug
Be(z,9) € expy, (ke Be(2,9))
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and
~2f /\g " —enzd oft _
/ Feape ) baalic = dos, = (3£) 27 | o= v,
Be(z, 5) € expy, (ke Be(2,0))
For |z| + 6 < =, we observe that
expy, (keBe(z,0)) C Bylexps, (kez), Codke),

and that
ETPx, (k€B§ (Ov C’06)) = Bg (xa 005k6)
with § < IQ(M) . For 0 < u <1, we now set
'
M (p) = Sup,e flve|* ¢ duy,
By (x,Codp)

and V = limsup, g [, \v€|2m_‘E dvy. We claim that there exist 21 € M, A > 0 such that
limsup/ f|v€\2LE dvg = A
=0 (z1,Codp)

Otherwise, for all x € M,
limsup/ f|v5|2n_5 dvg <0.
B, (z,Cobu)

e—0

Let My ={z € M/f(xz) > 0} C UL, By(z:,Codp) with f(z;) > 0 (compactness of My ). Then,

' ' f_
/ flve|? “dvy, < flve|? Edvgg/q flve|? “dv,
M M UBg(Zi, Coéﬂ) n M+
i=1

< Floe* == dv
Z / (z4,Codp) ) 7
chot;lt)
#
Floe|* =% duv,
/ U Bg(Zi7CO5,LL) ﬂM+

Bg(zi,CQ(S/J,)ﬁMi;é@
where M* =M — M,. Let 0 < a < % and 8 > 0 such that

dg(z,y) < B = |f(z) — f(y)| < e

As one easily checks, with § < g, we obtain that for all z € By(z;, Codp) such that By(z;, Codp) N
M* #0, |f(x)|] < 2a. Then,

/ flo =, < % / Floel* =< dv,
M 4 By (zi,Codp)

By (2:,Co81)

+2a/ Floel® = d,.
U Bg(Zi,Coaﬂ)mM+

i=1...q
By (zi,Codpu)NM* #0

Now, letting € — 0, one obtains that gﬂ# < 2aV. A contradiction. The claim is proved.
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Then, for all 0 < p < 1, there exists ; € M and A > 0 such that

limsup/ f|v€\2ﬁ_E dvg = .
Bg(z1,Codp)

e—0

Up to a subsequence, M.(p) > % for all e > 0 and M.(0) = 0. Now let 0 < A <
fixed later. The continuity of M. yields the existence of 0 < k. < 1 such that M, (k
compactness of M allows us to choose x. € M satisfying

(3) A= / Flocl? == dv, = SupmeM/ Floc = dv,.
B, (z.,Cobk.) B, (z,Codke)

4.2. H3—bound for ¥.. Let r > 0 as in Lemma 2. Let Q. = Be(0, 7). We now choose 7, €
C>°(R™) such that n, =1 on B¢(0,7/4) and 7, = 0 on R"™ — B¢(0,7/2). We set 7.(z) = n,(k.z).
As easily checked,

2. will be
s) =

A. The

~ A n—4
/ (Aéavs)z dvg, = (k’ / (Agvs)2 dvg
Q. £ By (ze,r)
C

IN

1 A n—4
Vi3 dvg. = - <6> / |V |? dv
/QE =9 g k? k'a By (ze,r) sl

IA
Q
| —
&
~—
3
it

Thus 7.9. € D3(R™) and
)\5 n—4
| @anipan <o ()
n €

If we choose A\: = O(k.), then, with Lemma 2, the preceding inequality becomes
|70 | 2 Ry = O(1),
so, up to a subsequence, there exists v € D3(R") having the property that
7e0e — v’
weakly in D3(R™).

4.3. An estimate on kZ. In this subsection, we rule out the case when £ goes to zero. We first

observe that

Ae " n—4
f(empzs(kax))lﬁeﬁE‘Qn_E dvéa - () ()\6_8) o
35(0,005) kE

Moreover, thanks to Lemma 2,

/ |ﬁ566|2“76 dvg. < C (1 —|—/ |ﬁ€f)€|2“ dv£> .
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We take Ac = k.. In view of (2) and subsection 4.2,

/ 17.5:12 < dv, = O(1).
35(0,006)

n—4
Consequently, A (AZ¢) 2 = O(1), then k¢ 4 0. We now let ¢ €]0,1] such that k¢ — ¢ (up to a
subsequence, of course).

n—4

4.4. Strong convergence for 7.9.. We now define p. > 0 chosen such that k. = u;_TE. As
n—4

easily checked, E—E — ¢~ 78 # 0. We can apply the preceding results with A, = p.. Without loss of

generality, we can assume that v. € C°°(M). Let yo € R™. Since the embedding Hj (B¢ (yo, p)) —
Hg/z(aBg(yo, p)) is compact, there exists p € [4,2d] such that

TeVe|dBe (yo.p) — U\OaBE(yo,p) strongly in H§/2(8Bg(yo7p)).
Let 2. € H3(B¢(yo,36) — Be(yo, p)) such that

Az = 0in Be(yo,30) — Be(yo, p)
ze = 0 on 0B¢(yo,39)
_ =~ .90
Ze = MU — UV ON aB& (Z/o, p)a
and
7e0e — v in Be(yo, p)
Ye(z) =< 2z in Be(yo, 30)
0 elsewhere.

Clearly ||zs||H§(Rn,B£(y0’p)) =0(1) and 9. € D3(R"). We define
~ —n—d exp. Mz .
Ye(r) =pe 2 e (pzii()) if dg(x,z.) < 60,
= 0 elsewhere.

Under the assumption that |yo| < %, we have 1. € H2(M). Moreover, if § < 55, then n, (exp, ! (x)) =
1 as soon as dg4(z,z.) < 6. Some computations yield

(n—1)2
- 8

(AT (02), B} = (1) ( B et g bedvs, — [ flenpe. (bl nsvewadvgi).

In view of the fact that [¢). |20y = O(|¥e] p2(rry)s that (ve) is a Palais-Smale sequence for Je,
and that u — ¢ # 0, the equation becomes

~ o~ = 7 u7 - 2 7 7
/ A 00 e dvg, :/ flexps, (ksw))‘%%F ? “NeVeedvg, + o(1).
n ]R’n,
With the definition of ).,

(4) / (Bg o) dvg, = [ fleap,, (kea) el % dvg, + ().

Rn
Basically,

[ $ewps () o dos. < (1+ o(1)) Supye ) ( | dv§5>1_2€” .

n
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Since |yo| + 36 < 7=, we have Suppv). C Be(0, 1-). Therefore, Lemma 2 and (2) yield

ot 2t 1=5F
(5) f(expxi(kex))lwe\ﬂ‘sdvggS(Supr)C(M,T)HTuKOQ (/ (Aggwefdvgs) E

Rn
Independently, (4) and (5) together give

([ stcans. oo~ as, )

7)1

2 %(1_
6 [ 1— (Suppf) COL Y2 KE ( f(e:vng(kew))wsl2n‘6dvga> < o(1).

RTL
Recall that we have [, f(exps. (ko)) |12 ¢ dvg, = fBg(yw,) Flexp,, (kex))e| ¥~ dvg, + o(1).

Three different cases arise considering the sign of f:
o First case: f(expy, (kex)) < 0 for all x € Be(yo,30). Since p < 3d, one easily gets that
Jgn (A 02)? dvg. = o(1), and then, with Lemma 2,
Y. — 0 in D3(R™).
e Second case: f(exp, (k.x)) changes sign in Be(yo,39).
Let a > 0 that will be chosen later and 8 > 0 such that d,(z,y) < 8 = |f(z)—f(y)| < .
As in the beginning of subsection 4.1, with § < £ and § < g, we clearly obtain that
|f(expy. (kex))| < 20 V& € Be(yo, 30).
Then, with Lemma 2

f(expws(kax))|z/}5|2ﬁ_€ dng’ < 2aC(M,T)/ |w5|2”‘5 dve + o(1).
R Be (y0,0)

— 15 5 0
|W}E"L”(Ba(ymp)) o ”725135 v HLZ“(Bs(yo,p))
< ”nEUEHLZ”(B&(yo,p)) +v |L2“(Ba(yo7p))
then
lim inf el 2t (g, (y,pp) < 2HMIDE[7eTe] 128 g, 4,
Note that we have that

~ o~ f n #
/ 7.5:|% dve < C(M, ) (‘,j) / [ve[** du.
Be¢(yo,9) e M

In view of the fact that u. < k., the inequality becomes

o b, 202t 1. . 24
< M X .

hgn_g(r)lf Be¢ (yo,p) |"/}€| dvE = C( ,7“) 2 (hg—}(glf HUE ”LQn(M))
Then,

2 28 e
1= ) 0L ([ fleap., (rea)loe = vy )
Rn
EECLE z

CPLEP]
C(M,r)2*2 2K ? liminf |v.]”, 2
e—0

1,24 (M)Oé

DN | =

>1— (Supy, f)2 +o(l) >
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with a small enough. Then (6) yields

s Fleapy, (kox)) | |* ¢ dvy, < o(1)

and
/n (Ag.)? dvg, = o(1),
with Lemma 2, we get that
Y. — 0in D3 (R™).

o Third case: We now assume that f(exp, (k-x)) > 0 for all € Be(yo, 36). Let L € N* such
that there exists 91, ...,z € Be¢(0,2) having the property that

L
Be(0,2) [ Be(3is 1)
i=1

Then, there exist y1, ...,y € Be(yo,29) such that

L
Be(yo,26) € | Be(vi:9)-
i=1
Standard integration theory yields

e b
Flexpy, (ko)) |ve|* = dvg, = / Flexpy, (ko)) |ve|? — dvg, + o(1)
Rn® B¢ (yo,p)
- / Fleapy. (kew))|.[% ¢ dvg. — / Fleapy. (kex)) |00 =€ dvg. + o(1)
Be (yo,p) B¢ (yo,p)

< / F(eapa, (k) 75|~ dug, + o(1)
Be (y0,20)

L
-~ #_
> / F(expa, (ko)) |7be[2 =5 dug, + o(1)
Be(y:,20)

i=1

L n
/'LE _ n—4 g_
<> (5) e | Floal? % dvy + o(1)
i=1 € By (exps, (keyi),Codke)

n
(these computations are valid provided 6 < €9/4 and § < r/16). But (‘é—:) (poe)(nsty =
(n74)2

(ug)~ = < 1. The definition of A in (3) yields

€

A Fleapa, (kex))|the|* ¢ dvg. < AL+ o(1).

As a consequence,

F(-g)1

)

of  2f
1— (Supy f) C(M, )= K¢? ( R

F(eapa (ke)) el dvgg>

off

2 ﬁ —2
> 1 (Supy f) C(M, 1)+ 5 K2 (AL)*% + o(1).
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Choosing A such that
1

off ﬁ
(2 (Suparf) COM, 1)1+ E KE )

0< A<

we obtain, as in the second case, that [p, f(exps. (kex))\wEFLE dvg, < o(1) and that
Y. — 0 in D3(R™).
We have proved that
NeVe — v’
strongly in H3 (B¢ (yo,d)) for all yo € R™ such that |yo| < % fore = 0. But k. <1, Cp < 2 and
Be¢(0,Cy0) is covered by some balls of radius ¢ and having their center in B¢(0,6). Then
fleve — v” strongly in H3(Bg (0, Cyd)).
Observe that

- ko \" enza ot
= Flof? fdvg=() b e el o
Bg(msacl)gks) ILLE Bg(O,Co(S)

Noting that f(z) = lim._,o f(expe. (kez)) and §(z) = lim._,o §.(z), we get

(n—4)2 ~ #
A=c 8 / FIv°)* dug
B¢ (0,C06)

so v9 # 0. As a consequence, k. — 0. If not, since v. goes to 0 weakly, then ¥, would also go to 0
weakly. But 0¥ # 0, a contradiction. Thus 7.9, goes to v° strongly in H3(Bg¢(yo,d)) for all yo € R™.
This evidently shows that

0. — vY strongly in HQQJOC(R”).
Now let ¢ € C°(R™) and R > 0 such that Suppp C B(0, R). We define ¢, as follows:

_n—4 (ezpmal(x)
o | el

905(:'6) = He ks

and 0 otherwise. Then ¢. € C*°(M) and [p:|gzar) = O(1). Since v, is a Palais-Smale sequence
for J.,

) if dg(z,2.) < kR

(ﬁ*) 4( JB(0.1) B30 8.0 dvg
= (5) 0% Jygq i Fleomn (a2 ooy, ).

Letting € — 0 and noting that k. = uiis%, the preceding equation becomes

/ A’ Agip dve :/ f(x0)|v0|2u72v0<pdv5

R'ﬂr R’n

where lim. o z. = 2. Then v° € D3(R"™) attempts to be a weak solution of
i

(7) Agv® = f(o)[°[* 200

Multiplying by v° and integrating, we remark that f(xg) > 0.
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Now, let 7.(z) = nr(exp; ! (x)) for |z < ig(M) and 0 elsewhere. We define

Vila) = 00 (xpk o)

and
We = Ve — V.

The function V is usually called a bubble.

4.5. Weak limit of V.. We briefly prove the weak convergence of V.. Let ¢ € C*>°(M). For all

R >0,
n—4 2%
ke 2 0)2*
Ve dug Clolo | — 077 dvg
M—Bg(xc,Rk.) He Be(0,7%)—Be(0,R)

ke % ntd 0
[ ey < Clela () T RT[ flan
By (xc,Rke) He B¢ (0,R)

With similar estimates for fM(VVE, V)4 dvg and fM AyVeAgp dug, we prove that V. goes to zero
weakly, and then

IA

IA

w. — 0 weakly in Ha(M).
4.6. Strong convergence of dJ.(w.). We now estimate (d.J.(w.), ¢).
/ Aqw:Agpdvg — / f|w€|2ﬁ_2_5wg<p dvy
M ’ ’ M

AgveAgpdog — / AgVeAgpdvoy — / floe — Ve|2u_2_€(vs — Vo)pdv,
M M M

<dJE (’U)E), @)

/AQVEAgcpdvg = / AgVeAgp du,
M By (ze,r)

= / Aexp;ggve O €XTPy, Ae;cp;gg‘ﬂ O TPy, dvexp;gg
Bg (0,0é)

/ AGVeAgpdyg
Bg(xsvr)_BQ(xeva)

for all 0 < o < r. We have that

[N

/ AVibgpdvy| < Cloluany (/ <Agmgw>dvg)
Bg(xavr)_Bg(xsva) Bg(xsvr)_Bg(xeva)
1
ke n 202
< C“‘P”HQZ(M) — |V5”| dug
He R™—Bg (0, 2)
<

0(”947HH22(M))~
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The fact that the exponential map is a normal chart at 0 yields
[ Bavtedny = [ Aiocap, Acpocap., du+O(alpluzon) +olllaian)
M B5 0,

Now, let v € C*(R™) such that v, = 1 in B¢(0,/2) and vo = 0 in R"™ — B¢(0,3a/4). We
define @, € C*°(R™) such that
n—4
Pe(@) = pe® valkex)p o exps, (kew)

and 0 elsewhere. We obtain that

if dg(z,2.) < %

[ Bavtedny = [ Adioca. Acupo cape, duc+O(alelizon) +ollelaan)
50,0¢

k n—4 B
- (u) [ 8 8. dug + Olalelngan) + olelnzan):
5 n

Classical integration arguments assert that
: B\ (ko n-4 ’
o=V vopdn, = (5) (5 00 faw) [ 0P 20, o
M He He n
+0(aleluz ) + OE(B) el uzan) + ollelmzan):

where e(R) goes to zero when R goes to +00. Then

(dJe(we), ) = / AgvsAggpdvg—/ f|v€|2u7275v5<pdvg
M M
k" O — ) 012¢—2, 0—
e A Aev Ao, dve — (1) = f(o) A [v7]" "0 P, dug

+0(alelmzary)) + Oe(R)l el nz(ar)) + ollel uzan)-
n—4
In view of k. = s ° ® and (7), we obtain that

(dJe(ws), o) = Olaleluzany) + O(e(B) el uzan)) + ol mz(an))-

Taking o > 0 small and R large enough, the preceding formula can be written as

dJ.(w.) — 0 strongly in H2(M)'.

4.7. Convergence of J.(w.). Concerning the energy J.(w.), we similarly get that

(Agws)2 dvg = (Agvs)2 dvg — E " (Agvo)2 dve + o(1),
M M n

He

/ f|we|2u7€ dvg = / f|va|2ﬁiE dvg +o(1)
M—Bg(zc,r/4) M—Bgy(xc,r/4)

and that

ka n—4
/ Flwe*== dvg = () (/ f(expa, (kew)) |0z — °F = d%) +o(1).
By(z2,r/4) He Be (0,75 )—Be(0,R)
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Let estimate the following;:

f_
/ 00 dug,
Be(0,35,7)—Be(0,R)

Tk
e 1_ =
2 012t 28
< O(M,r) (deo,i)—Bg(o,R) dvi) X (fBg(Qi)—Bg(O,R) [0° dvi)
1— <
1 0128 2ff
S C(kg)l/Qﬁ (f]R"—Bg(O,R) |U | d’l)g)

The fact that k¢ — ¢ # 0 and v° € L* (R™) imply that

/ o do, < <(R),
B (0,757)—B:(0,R)
where limpg_, 1 o £(R) = 0. There exists C' > 0 such that

0|2“75 SC<|1~ja|2u7176|1}0‘+|U0|2“7175|1~}E|+|U0|2”75).

[EA e G
The same kind of computations as before yield

i k n—4 ~ §
/ flue? == dv, = () / Fleapa. (ko)) dvg,
By(ze,r/4) He Bg (0, 7%= )—Be(0,R)

+o(1) + O(e(R))

_ / Floel® < du,
Bg(zsar/4)

ks n—4 o ~
- (M.g) /B§(07R) flexpy. (kox))|0e[* ~F dvg. + o(1) + O(e(R))

Thus, considering the limit of k. /u., we obtain that

_ (n—4)?

Jo(we) = Jo(we) — ¢

which ends the proof of the lemma.

Ey (1°) 4+ 0(1),

We apply the result of Lemma 1 to prove Theorem 1. Since c_%&ro (v%) > 3%, we inductively
remove some bubbles from u.. In a finite number of times, we obtain a Palais-Smale sequence of
energy strictly less than S#. With section 3, this last sequence goes to zero strongly, and the
theorem is proved.
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