STRUWE'S COMPACTNESS FOR FREE FUNCTIONALS INVOLVING THE BI-HARMONIC OPERATOR

FRÉDÉRIC ROBERT

Abstract

In 1984, Struwe gave a complete description of Palais-Smale sequences for a functional arising in the study of nonlinear elliptic equations with critical Sobolev growth. Hebey and the author gave a similar description in the Riemannian context for a functional involving the biharmonic operator. We extend this result to more general functionals with nearly critical Sobolev growth.

1. Introduction and statement of the results

Let (M, g) be a compact Riemannian manifold of dimension $n \geq 5$. Let $H_{2}^{2}(M)$ be the standard Sobolev space defined as the completion of $C^{\infty}(M)$ w.r.t. the norm

$$
\|u\|_{H_{2}^{2}(M)}=\sqrt{\int_{M}\left(\Delta_{g} u\right)^{2} d v_{g}+\int_{M}|\nabla u|_{g}^{2} d v_{g}+\int_{M} u^{2} d v_{g}}
$$

where $\Delta_{g}=-\operatorname{div}(\nabla)$ is the Riemannian Laplacian and $d v_{g}$ is the Riemannian volume element on M. We denote by $2^{\sharp}=\frac{2 n}{n-4}$ the critical exponent for the Sobolev embeddings, that is $H_{2}^{2}(M) \hookrightarrow$ $L^{q}(M)$ for $q \leq 2^{\sharp}$ is continuous, and compact if and only if $q<2^{\sharp}$. A classical question is to find conditions to obtain positive smooth solutions for the problem

$$
\Delta_{g} u+a u=f u^{q} \quad \text { in } M
$$

where a, f are functions on M. This problem is well understood when $q<\frac{n+2}{n-2}$, but the critical case $q=\frac{n+2}{n-2}$ is quite intricate and has been intensively studied in the past years. We now generalize this equation to the bi-harmonic operator and investigate for solutions $u \in H_{2}^{2}(M)$ satisfying

$$
\begin{equation*}
\Delta_{g}^{2} u-\operatorname{div}_{g}(A \nabla u)+a u=f|u|^{2^{\sharp}-2} u \text { in } M \tag{1}
\end{equation*}
$$

where $A \in \Lambda_{(2,0)}^{0}(M)$ is a continuous symmetrical $(2,0)$-tensor field, $a, f \in C^{0}(M)$. Such a solution to our problem will be smooth at the cost of slightly further assumptions on A, a and f. As easily checked, the problem of finding H_{2}^{2}-solutions to (1) is precisely that of finding critical points for the functional

$$
I(u)=\frac{1}{2} \int_{M}\left(\Delta_{g} u\right)^{2} d v_{g}+\frac{1}{2} \int_{M} A(\nabla u, \nabla u) d v_{g}+\frac{1}{2} \int_{M} a u^{2} d v_{g}-\frac{1}{2^{\sharp}} \int_{M} f|u|^{2^{\sharp}} d v_{g}
$$

In their celebrated paper [AmRa], Ambrosetti and Rabinowitz introduced the mountain pass lemma and constructed some Palais-Smale sequences for the functional I. We say that $u_{n} \in H_{2}^{2}(M)$ for
all $n \in \mathbb{N}$ is a Palais-Smale sequence for I if

$$
\begin{cases}I\left(u_{n}\right) & \text { is bounded } \\ d I\left(u_{n}\right) \rightarrow 0 & \text { strongly in } H_{2}^{2}(M)^{\prime}\end{cases}
$$

It is natural to inquire whether u_{n} converges, and in which sense, to a function u solution of (1). The lack of compactness due to the critical exponent 2^{\sharp} leads to serious difficulties. Therefore the study of Palais-Smale sequences attempted to be crucial for the study of equation (1).

In 1984, Struwe studied Palais-Smale sequences for the following functional:

$$
J(u)=\int_{\Omega}|\nabla u|_{\xi}^{2} d v_{\xi}-\frac{n-2}{2 n} \int_{\Omega}|u|^{\frac{2 n}{n-2}} d v_{\xi}
$$

where Ω is an open bounded subset of \mathbb{R}^{n}, ξ is the Euclidean metric and $u \in H_{1,0}^{2}(\Omega)$, the completion of smooth functions with compact support in Ω w.r.t. the norm

$$
\|u\|=\sqrt{\int_{\Omega}|\nabla u|^{2} d v_{\xi}}
$$

In [Str], he gave a complete description of Palais-Smale sequences for the functional J.
In [HeRo], Hebey and the author rewrote this result for the functional I with f a positive constant function. Our aim here is to generalize this result to the more general functional

$$
\begin{aligned}
I_{\varepsilon}(u)= & \frac{1}{2} \int_{M}\left(\Delta_{g} u\right)^{2} d v_{g}+\frac{1}{2} \int_{M} A(\nabla u, \nabla u) d v_{g}+\frac{1}{2} \int_{M} a u^{2} d v_{g} \\
& -\frac{1}{2^{\sharp}-\varepsilon} \int_{M} f|u|^{2^{\sharp}-\varepsilon} d v_{g},
\end{aligned}
$$

where $u \in H_{2}^{2}(M)$ and $0 \leq \varepsilon<2^{\sharp}-2$. It turns out that finding sequences verifying that

$$
\begin{cases}I_{\varepsilon}\left(u_{\epsilon}\right) & \text { is bounded } \\ d I_{\varepsilon}\left(u_{\epsilon}\right) \rightarrow 0 & \text { strongly in } H_{2}^{2}(M)^{\prime}\end{cases}
$$

is easy through the mountain-pass lemma applied to the functional I_{ε}. We say that such a sequence is a Palais-Smale sequence for I_{ε}.

To describe these sequences, we need some definitions. Let $f \in C^{0}(M)$. For $p \in M$, we define

$$
\mathcal{E}_{p}(v)=\frac{1}{2} \int_{\mathbb{R}^{n}}\left(\Delta_{\xi} v\right)^{2} d v_{\xi}-\frac{1}{2^{\sharp}} f(p) \int_{\mathbb{R}^{n}}|v|^{2^{\sharp}} d v_{\xi}
$$

for all $v \in D_{2}^{2}\left(\mathbb{R}^{n}\right)$, where $D_{2}^{2}\left(\mathbb{R}^{n}\right)$ is the completion of $C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$, the set of smooth functions with compact support in \mathbb{R}^{n}, w.r.t. the norm

$$
\|u\|=\sqrt{\int_{\mathbb{R}^{n}}\left(\Delta_{\xi} u\right)^{2} d v_{\xi}}
$$

We denote by $i_{g}(M)>0$ the injectivity radius of (M, g), and take $\left.\delta \in\right] 0, \frac{i_{g}(M)}{2}$. We choose $\tilde{\eta} \in C^{\infty}\left(\mathbb{R}^{n}\right)$ such that $\tilde{\eta}(x)=1$ if $|x| \leq \delta$ and $\tilde{\eta}(x)=0$ if $|x| \geq 2 \delta$. We then define, for $p \in M$, $\eta_{p}(x)=\tilde{\eta}\left(\exp _{p}^{-1}(x)\right)$ for $d_{g}(x, p)<i_{g}(M)$ and 0 elsewhere.

Our result concerning Palais-Smale sequences is the following:

Theorem 1. Let $\left(u_{\epsilon}\right)_{\varepsilon>0} \in H_{2}^{2}(M)$ be a Palais-Smale sequence for I_{ε}, where $a, f \in C^{0}(M)$ and $A \in \Lambda_{(2,0)}^{0}(M)$ is a continuous symmetrical $(2,0)$-tensor field. We assume that $\left(u_{\epsilon}\right)$ is bounded in $H_{2}^{2}(M)$ (this occurs if $f>0$ or if $\Delta_{g}^{2}-\operatorname{div}_{g}(A \nabla)+a$ is coercive). Then
(i) $\exists u_{0} \in H_{2}^{2}(M)$ a weak solution of (1)
(ii) there exists $p \in \mathbb{N}$, there exist $x_{\varepsilon, 1} \rightarrow x_{1} \in M, \ldots, x_{\varepsilon, p} \rightarrow x_{p} \in M$ such that $f\left(x_{i}\right)>0$ for all $i=1, \ldots, p$,
(iii) there exist $k_{\varepsilon, i}>0$ such that $k_{\varepsilon, i} \rightarrow 0$ and $\left.\left.k_{\varepsilon, i}^{\varepsilon} \rightarrow c_{i} \in\right] 0,1\right], i=1, \ldots, p$,
(iv) there exist $v_{i} \in D_{2}^{2}\left(\mathbb{R}^{n}\right), i=1, \ldots, p$, weak nonzero solutions of

$$
\Delta_{\xi}^{2} v_{i}=f\left(x_{i}\right)\left|v_{i}\right|^{2^{\sharp}-2} v_{i},
$$

verifying that, up to a subsequence,

$$
\left\|u_{\epsilon}-u_{0}-\sum_{i=1}^{p} \eta_{x_{\varepsilon, i}} u_{\varepsilon, i}\right\|_{H_{2}^{2}(M)} \rightarrow 0
$$

where

$$
u_{\varepsilon, i}(x)=\mu_{\varepsilon, i}^{-\frac{n-4}{2}} v_{i}\left(\frac{\exp _{x_{\varepsilon, i}}^{-1}(x)}{k_{\varepsilon, i}}\right)
$$

for $d_{g}\left(x, x_{\varepsilon, i}\right)<i_{g}(M)$, and

$$
k_{\varepsilon, i}=\mu_{\varepsilon, i}^{1-\varepsilon \frac{n-4}{8}}
$$

Moreover, we have the following:

$$
I_{\varepsilon}\left(u_{\epsilon}\right)=I_{0}\left(u_{0}\right)+\sum_{i=1}^{p} c_{i}^{-\frac{(n-4)^{2}}{8}} \mathcal{E}_{x_{i}}\left(v_{i}\right)+o(1)
$$

where the c_{i} 's, given by point (iii) above, are positive constants in $\left.] 0,1\right]$.
Let us make a few remarks:
Remark 1: If $f_{\varepsilon} \in C^{0}(M)$ converges to $f \in C^{0}(M)$ in C^{0}-norm, let

$$
\begin{aligned}
I_{\varepsilon}(u)= & \frac{1}{2} \int_{M}\left(\Delta_{g} u\right)^{2} d v_{g}+\frac{1}{2} \int_{M} A(\nabla u, \nabla u) d v_{g}+\frac{1}{2} \int_{M} a u^{2} d v_{g} \\
& -\frac{1}{2^{\sharp}-\varepsilon} \int_{M} f_{\varepsilon}|u|^{2^{\sharp}-\varepsilon} d v_{g}
\end{aligned}
$$

and

$$
\begin{aligned}
\tilde{I}_{\varepsilon}(u)= & \frac{1}{2} \int_{M}\left(\Delta_{g} u\right)^{2} d v_{g}+\frac{1}{2} \int_{M} A(\nabla u, \nabla u) d v_{g}+\frac{1}{2} \int_{M} a u^{2} d v_{g} \\
& -\frac{1}{2^{\sharp}-\varepsilon} \int_{M} f|u|^{2^{\sharp}-\varepsilon} d v_{g}
\end{aligned}
$$

for $u \in H_{2}^{2}(M)$. Then an $H_{2}^{2}(M)$-bounded Palais-Smale sequence for I_{ε} is an $H_{2}^{2}(M)$-bounded Palais-Smale sequence for \tilde{I}_{ε} and we can apply the theorem.

Remark 2: It is natural to inquire whether $c_{i}=1$ for all $i=1, \ldots, p$, that is $k_{\varepsilon, i}^{\varepsilon} \rightarrow 1$. Actually, c_{i} can assume any value in $\left.] 0,1\right]$, as shown in the following example. Let $\left.\delta \in\right] 0, \frac{i_{g}(M)}{2}[, c \in] 0,1[$,
$x_{0} \in M$ and $v \in C^{\infty}\left(\mathbb{R}^{n}\right)$ a positive solution of $\Delta_{\xi}^{2} v=v^{2^{\sharp}-1}$ (see [Lin] for the explicit form of these solutions). We set

$$
u_{\epsilon}(x)=\mu_{\varepsilon}^{-\frac{n-4}{2}} v\left(\frac{\left.\left.e_{x p_{x_{0}}^{-1}(x)}^{k_{\varepsilon}}\right) \eta\left(\exp _{x_{0}}^{-1}(x)\right), ~\right) ~}{\text { a }}\right.
$$

with

$$
\mu_{\varepsilon}=c^{\frac{1}{\varepsilon}} \text { and } k_{\varepsilon}=\mu_{\varepsilon}^{1-\varepsilon \frac{n-4}{8}}
$$

As easily checked, $\left(u_{\epsilon}\right)$ is a Palais-Smale sequence for the functional

$$
u \rightarrow \frac{1}{2} \int_{M}\left(\Delta_{g} u\right)^{2} d v_{g}-\frac{1}{2^{\sharp}-\varepsilon} \int_{M}|u|^{2^{\sharp}-\varepsilon} d v_{g} .
$$

However $\left.k_{\varepsilon}^{\varepsilon}=c \in\right] 0,1\left[\right.$. For the case $c=1$, we can take $k_{\varepsilon}=\varepsilon$.

The proof of Theorem 1 follows closely the proof of Theorem 2.1 in [HeRo]. Here, the difficulty is that the function f is allowed to change sign and that the exponent $2^{\sharp}-\varepsilon$ is subcritical.

2. Weak convergence of u_{ϵ}

Let $\left(u_{\epsilon}\right) \in H_{2}^{2}(M)$ be an H_{2}^{2}-bounded Palais-Smale sequence for the functional I_{ε}. There exists $u^{0} \in H_{2}^{2}(M)$ verifying that, up to a subsequence

$$
\begin{gathered}
u_{\epsilon} \rightharpoonup u^{0} \text { weakly in } H_{2}^{2}(M) \\
u_{\epsilon} \rightarrow u^{0} \text { strongly in } H_{1}^{2}(M) \\
u_{\epsilon}(x) \rightarrow u^{0}(x) \text { for almost every } x \in M
\end{gathered}
$$

Let $\varphi \in C^{\infty}(M)$. We observe that

$$
\left\langle d I_{\varepsilon}\left(u_{\epsilon}\right), \varphi\right\rangle=\int_{M} \Delta_{g} u_{\epsilon} \Delta_{g} \varphi+\int_{M} A\left(\nabla u_{\epsilon}, \nabla \varphi\right) d v_{g}+\int_{M} a u_{\epsilon} \varphi d v_{g}-\int_{M} f\left|u_{\epsilon}\right|^{2^{\sharp}-2-\varepsilon} u_{\epsilon} \varphi d v_{g} .
$$

Through classical arguments, u^{0} is a weak solution of

$$
\Delta_{g}^{2} u^{0}-\operatorname{di} v_{g}\left(A \nabla u^{0}\right)+a u^{0}=f\left|u^{0}\right|^{2^{\sharp}-2} u^{0}
$$

Moreover, if we set $v_{\varepsilon}=u_{\epsilon}-u^{0}$, then $\left(v_{\varepsilon}\right)$ is an H_{2}^{2}-bounded Palais-Smale sequence for the functional

$$
J_{\varepsilon}(v)=\frac{1}{2} \int_{M}\left(\Delta_{g} v\right)^{2} d v_{g}-\frac{1}{2^{\sharp}-\varepsilon} \int_{M} f|v|^{2^{\sharp}-\varepsilon} d v_{g}
$$

and

$$
J_{\varepsilon}\left(v_{\varepsilon}\right)=I_{\varepsilon}\left(u_{\epsilon}\right)-I_{0}\left(u^{0}\right)+o(1)
$$

3. Critical energy

Assume that $\operatorname{Sup}_{M} f>0$. We define

$$
\beta^{\#}=\frac{2}{n} K_{0}^{-\frac{n}{4}}\left(\operatorname{Sup}_{M} f\right)^{-\frac{n-4}{4}}
$$

where

$$
\begin{equation*}
\frac{1}{K_{0}}=\operatorname{Inf}_{u \in D_{2}^{2}\left(\mathbb{R}^{n}\right)-\{0\}} \frac{\int_{\mathbb{R}^{n}}\left(\Delta_{\xi} u\right)^{2} d v_{\xi}}{\left(\int_{\mathbb{R}^{n}}|u|^{2^{\sharp}} d v_{\xi}\right)^{\frac{2}{2 \sharp}}}>0 . \tag{2}
\end{equation*}
$$

Its value has been explicitly computed in [EFJ], [Lie],[Lio]. We assume that $J_{\varepsilon}\left(v_{\varepsilon}\right)=\beta+o(1)$ with $\beta<\beta^{\#}$. The fact that v_{ε} is a Palais-Smale sequence for J_{ε} implies that

$$
\int_{M}\left(\Delta_{g} v_{\varepsilon}\right)^{2} d v_{g}=\int_{M} f\left|v_{\varepsilon}\right|^{2^{\sharp}-\varepsilon} d v_{g}+o(1)=\frac{n}{2} \beta+o(1) .
$$

We then have that $\beta \geq 0$ and

$$
\int_{M} f\left|v_{\varepsilon}\right|^{2^{\sharp}-\varepsilon} d v_{g} \leq\left(\operatorname{Sup}_{M} f\right) \operatorname{Vol}_{g}(M)^{\frac{\varepsilon}{2^{\sharp}}}\left(\int_{M}\left|v_{\varepsilon}\right|^{2^{\sharp}-\varepsilon} d v_{g}\right)^{\frac{2^{\sharp}-\varepsilon}{2 \sharp}}
$$

Now, with [DHL], we know that for all $\nu>0$, there exists $B_{\nu}>0$ such that the following Sobolev inequality holds:

$$
\left(\int_{M}|v|^{2^{\sharp}} d v_{g}\right)^{\frac{2}{2 \sharp}} \leq\left(K_{0}+\nu\right) \int_{M}\left(\Delta_{g} v\right)^{2} d v_{g}+B_{\nu} \int_{M} v^{2} d v_{g}
$$

for all $v \in H_{2}^{2}(M)$. We then obtain that

$$
\frac{n}{2} \beta+o(1) \leq\left(\operatorname{Sup}_{M} f\right)(1+o(1))\left(\left(K_{0}+\nu\right)\left(\frac{n}{2} \beta+o(1)\right)+o(1)\right)^{\frac{2^{\sharp}-\varepsilon}{2}}
$$

Letting ε go to zero, and then ν to zero, the preceding inequality becomes

$$
\frac{n}{2} \beta \leq\left(\operatorname{Sup}_{M} f\right)\left(K_{0} \frac{n}{2} \beta\right)^{\frac{2^{\sharp}}{2}}
$$

if $\beta>0$, then

$$
\beta \geq \frac{2}{n} K_{0}^{-\frac{n}{4}}\left(\operatorname{Sup}_{M} f\right)^{-\frac{n-4}{4}}=\beta^{\#}
$$

A contradiction. Thus $\beta=0$ and v_{ε} goes to zero strongly in $H_{2}^{2}(M)$.
If $f \leq 0$, similar arguments show that $\left(v_{\varepsilon}\right)$ goes to 0 strongly in $H_{2}^{2}(M)$. We then have proved the proposition
Proposition 1. If $f \leq 0$, or if $\operatorname{Sup}_{M} f>0$ and $\beta<\beta^{\#}$, then v_{ε} goes to zero strongly in $H_{2}^{2}(M)$.

4. Fundamental lemma

The next lemma is the main step in proving Theorem 1.
Lemma 1. Let $\left(v_{\varepsilon}\right)$ a Palais-Smale sequence for J_{ε} such that $v_{\varepsilon} \rightharpoonup 0$ weakly in $H_{2}^{2}(M)$, but not strongly. Then there exist $x_{\varepsilon} \rightarrow x_{0} \in M$ such that $f\left(x_{0}\right)>0, \mu_{\varepsilon}>0$ such that $\mu_{\varepsilon} \rightarrow 0$ and $\left.\left.\mu_{\varepsilon}^{\varepsilon} \rightarrow c \in\right] 0,1\right]$, and $v^{0} \in D_{2}^{2}\left(\mathbb{R}^{n}\right)$ a weak nonzero solution of

$$
\Delta_{\xi}^{2} v^{0}=f\left(x_{0}\right)\left|v^{0}\right|^{2^{\sharp}-2} v^{0},
$$

such that the following holds: if we define

$$
\tilde{v}_{\varepsilon}(x)=\mu_{\varepsilon}^{-\frac{n-4}{2}} v^{0}\left(\frac{e x p_{x_{\varepsilon}}^{-1}(x)}{k_{\varepsilon}}\right)
$$

for all $x \in M$ such that $d_{g}\left(x, x_{\varepsilon}\right)<i_{g}(M)$, and 0 elsewhere, where $k_{\varepsilon}=\mu_{\varepsilon}^{1-\varepsilon \frac{n-4}{8}}$, then, for all $\delta \in] 0, \frac{i_{g}(M)}{2}[$,

$$
w_{\varepsilon}=v_{\varepsilon}-\eta_{x_{\varepsilon}} \tilde{v}_{\varepsilon}
$$

is a Palais-Smale sequence for J_{ε} and

$$
J_{\varepsilon}\left(w_{\varepsilon}\right)=J_{\varepsilon}\left(v_{\varepsilon}\right)-c^{-\frac{(n-4)^{2}}{8}} \mathcal{E}_{x_{0}}\left(v^{0}\right)+o(1)
$$

where $o(1) \rightarrow 0$ as $\varepsilon \rightarrow 0$.
Remark: Observe that, since $v^{0} \not \equiv 0$, the optimal Euclidean Sobolev inequality (2) leads us to

$$
c^{-\frac{(n-4)^{2}}{8}} \mathcal{E}_{x_{0}}\left(v^{0}\right) \geq \beta^{\#}
$$

Proof of the lemma:

Since $\left(v_{\varepsilon}\right)$ does not go to zero strongly, with section 3 , we get that $\operatorname{Sup}_{M} f>0$ and $J_{\varepsilon}\left(v_{\varepsilon}\right) \geq$ $\beta^{\#}+o(1)$. Therefore

$$
\int_{M} f\left|v_{\varepsilon}\right|^{\left.\right|^{\sharp}-\varepsilon} d v_{g} \geq \frac{n}{2} \beta^{\#}+o(1) .
$$

We will need the following lemma. It is proved in detail in [HeRo].
Lemma 2. Let (M, g) a smooth compact Riemannian $n-m a n i f o l d$. Then, there exist $r \in] 0, i_{g}(M)[$, $\left(\Omega_{i}\right)_{i \in J}$ an open covering of M, and $C(M, r)>1$ such that the following holds: $\forall R \geq 1, \forall y \in M$, if we note $\tilde{g}_{y, R}(x)=\exp _{y}^{\star} g\left(\frac{x}{R}\right)$, then

$$
\frac{1}{C(M, r)} \int_{\mathbb{R}^{n}}\left(\Delta_{\xi} u\right)^{2} d v_{\xi} \leq \int_{\mathbb{R}^{n}}\left(\Delta_{\tilde{g}_{y, R}} u\right)^{2} d v_{\tilde{g}_{y, R}} \leq C(M, r) \int_{\mathbb{R}^{n}}\left(\Delta_{\xi} u\right)^{2} d v_{\xi}
$$

for all $u \in D_{2}^{2}\left(\mathbb{R}^{n}\right)$ having the property that Supp $u \in B_{\xi}(0, r R)$, and

$$
\frac{1}{C(M, r)} \int_{\mathbb{R}^{n}}|u| d v_{\xi} \leq \int_{\mathbb{R}^{n}}|u| d v_{\tilde{g}_{y, R}} \leq C(M, r) \int_{\mathbb{R}^{n}}|u| d v_{\xi}
$$

for all $u \in L^{1}\left(\mathbb{R}^{n}\right)$ having the property that Supp $u \in B_{\xi}(0, r R)$.
4.1. Blow-up of v_{ε}. For $0<k_{\varepsilon}, \lambda_{\varepsilon} \leq 1, x_{\varepsilon} \in M$ and $|x|<\frac{i_{g}(M)}{k_{\varepsilon}}$, we set

$$
\begin{gathered}
\tilde{v}_{\varepsilon}(x)=\lambda_{\varepsilon}^{\frac{n-4}{2}} v_{\varepsilon}\left(\exp _{x_{\varepsilon}}\left(k_{\varepsilon} x\right)\right), \\
\tilde{g}_{\varepsilon}(x)=\left(\exp _{x_{\varepsilon}}^{\star} g\right)\left(k_{\varepsilon} x\right) .
\end{gathered}
$$

Let $0<C_{0}<2,0<\varepsilon_{0}<i_{g}(M),\left(\Omega_{i}\right)_{i \in J}$ an open covering of M such that for all $i \in J$

$$
d_{g}\left(e x p_{x} u, \exp _{x} v\right) \leq C_{0}|u-v|
$$

for all $x \in \Omega_{j}$, and $u, v \in T_{x} M$ such that $|u|,|v|<\varepsilon_{0}$. Now, let $z \in \mathbb{R}^{n}$ and $\delta>0$ such that $|z|+\delta<\frac{i_{g}(M)}{k_{\varepsilon}}$,

$$
\int_{B_{\xi}(z, \delta)}\left(\Delta_{\tilde{g}_{\varepsilon}} \tilde{v}_{\varepsilon}\right)^{2} d v_{\tilde{g}_{\varepsilon}}=\left(\frac{\lambda_{\varepsilon}}{k_{\varepsilon}}\right)^{n-4} \int_{\exp _{x_{\varepsilon}}\left(k_{\varepsilon} B_{\xi}(z, \delta)\right)}\left(\Delta_{g} v_{\varepsilon}\right)^{2} d v_{g}
$$

and

$$
\left.\int_{B_{\xi}(z, \delta)} f\left(\exp _{x_{\varepsilon}}\right)\left(k_{\varepsilon} x\right)\right)\left|\tilde{v}_{\varepsilon}\right|^{2^{\sharp}-\varepsilon} d v_{\tilde{g}_{\varepsilon}}=\left(\frac{\lambda_{\varepsilon}}{k_{\varepsilon}}\right)^{n} \lambda_{\varepsilon}^{-\varepsilon \frac{n-4}{2}} \int_{\exp _{x_{\varepsilon}}\left(k_{\varepsilon} B_{\xi}(z, \delta)\right)} f\left|v_{\varepsilon}\right|^{2^{\sharp}-\varepsilon} d v_{g}
$$

For $|z|+\delta<\frac{\varepsilon_{0}}{k_{\varepsilon}}$, we observe that

$$
\exp _{x_{\varepsilon}}\left(k_{\varepsilon} B_{\xi}(z, \delta)\right) \subset B_{g}\left(\exp _{x_{\varepsilon}}\left(k_{\varepsilon} z\right), C_{0} \delta k_{\varepsilon}\right)
$$

and that

$$
\exp _{x_{\varepsilon}}\left(k_{\varepsilon} B_{\xi}\left(0, C_{0} \delta\right)\right)=B_{g}\left(x_{\varepsilon}, C_{0} \delta k_{\varepsilon}\right)
$$

with $\delta<\frac{i_{g}(M)}{2}$. For $0<\mu \leq 1$, we now set

$$
M_{\varepsilon}(\mu)=\operatorname{Sup}_{x \in M} \int_{B_{g}\left(x, C_{0} \delta \mu\right)} f\left|v_{\varepsilon}\right|^{2^{\sharp}-\varepsilon} d v_{g}
$$

and $\mathcal{V}=\limsup _{\varepsilon \rightarrow 0} \int_{M}\left|v_{\varepsilon}\right|^{2^{\sharp}-\varepsilon} d v_{g}$. We claim that there exist $x_{1} \in M, \bar{\lambda}>0$ such that

$$
\limsup _{\varepsilon \rightarrow 0} \int_{B_{g}\left(x_{1}, C_{0} \delta \mu\right)} f\left|v_{\varepsilon}\right|^{2^{\sharp}-\varepsilon} d v_{g}=\bar{\lambda} .
$$

Otherwise, for all $x \in M$,

$$
\limsup _{\varepsilon \rightarrow 0} \int_{B_{g}\left(x, C_{0} \delta \mu\right)} f\left|v_{\varepsilon}\right|^{2^{\sharp}-\varepsilon} d v_{g} \leq 0 .
$$

Let $M_{+}=\{x \in M / f(x) \geq 0\} \subset \bigcup_{i=1}^{q} B_{g}\left(z_{i}, C_{0} \delta \mu\right)$ with $f\left(z_{i}\right) \geq 0$ (compactness of M_{+}). Then,

$$
\begin{aligned}
& \int_{M} f\left|v_{\varepsilon}\right|^{2^{\sharp}-\varepsilon} d v_{g} \leq \int_{M_{+}} f\left|v_{\varepsilon}\right|^{2^{\sharp}-\varepsilon} d v_{g} \leq \int_{\bigcup_{i=1}}^{q} B_{g}\left(z_{i}, C_{0} \delta \mu\right) \cap M_{+} \\
& \leq \sum_{\substack{i=1 \ldots q \\
B_{g}\left(z_{i}, C_{0} \delta \mu\right)}} \int_{B_{g}\left(z_{i}, C_{0} \delta \mu\right)} f\left|v_{\varepsilon}\right|^{2^{\sharp}-\varepsilon} d v_{g} \\
&+\int \bigcup^{2^{\sharp}-\varepsilon} d v_{g} \\
& \underbrace{i=1 \ldots q}_{B_{g}\left(z_{i}, C_{0} \delta \mu\right) \cap M_{-}^{*} \neq \emptyset}
\end{aligned}
$$

where $M_{-}^{*}=M-M_{+}$. Let $0<\alpha<\frac{n \beta^{\#}}{4 \mathcal{V}}$ and $\beta>0$ such that

$$
d_{g}(x, y) \leq \beta \Rightarrow|f(x)-f(y)| \leq \alpha
$$

As one easily checks, with $\delta<\frac{\beta}{2}$, we obtain that for all $x \in B_{g}\left(z_{i}, C_{0} \delta \mu\right)$ such that $B_{g}\left(z_{i}, C_{0} \delta \mu\right) \cap$ $M_{-}^{*} \neq \emptyset,|f(x)| \leq 2 \alpha$. Then,

$$
\begin{aligned}
\int_{M} f\left|v_{\varepsilon}\right|^{2^{\sharp}-\varepsilon} d v_{g} \leq \sum_{\substack{i=1 \ldots q \\
B_{g}\left(z_{i}, C_{0} \delta \mu\right)}} \int_{B_{g}\left(z_{i}, C_{0} \delta \mu\right)} f\left|v_{\varepsilon}\right|^{2^{\sharp}-\varepsilon} d v_{g} \\
+2 \alpha \int \bigcup_{\substack{i=1 \ldots q \\
i=1}} B_{g}\left(z_{i}, C_{0} \delta \mu\right) \cap M_{+} f\left|v_{\varepsilon}\right|^{2^{\sharp}-\varepsilon} d v_{g} \\
B_{g}\left(z_{i}, C_{0} \delta \mu\right) \cap M_{-}^{*} \neq \emptyset
\end{aligned}
$$

Now, letting $\varepsilon \rightarrow 0$, one obtains that $\frac{n}{2} \beta^{\#} \leq 2 \alpha \mathcal{V}$. A contradiction. The claim is proved.

Then, for all $0<\mu \leq 1$, there exists $x_{1} \in M$ and $\bar{\lambda}>0$ such that

$$
\limsup _{\varepsilon \rightarrow 0} \int_{B_{g}\left(x_{1}, C_{0} \delta \mu\right)} f\left|v_{\varepsilon}\right|^{2^{\sharp}-\varepsilon} d v_{g}=\bar{\lambda} .
$$

Up to a subsequence, $M_{\varepsilon}(\mu) \geq \frac{\bar{\lambda}}{2}$ for all $\varepsilon>0$ and $M_{\varepsilon}(0)=0$. Now let $0<\lambda<\frac{\bar{\lambda}}{2}$, λ will be fixed later. The continuity of M_{ε} yields the existence of $0<k_{\varepsilon} \leq 1$ such that $M_{\varepsilon}\left(k_{\varepsilon}\right)=\lambda$. The compactness of M allows us to choose $x_{\varepsilon} \in M$ satisfying

$$
\begin{equation*}
\lambda=\int_{B_{g}\left(x_{\varepsilon}, C_{0} \delta k_{\varepsilon}\right)} f\left|v_{\varepsilon}\right|^{2^{\sharp}-\varepsilon} d v_{g}=\operatorname{Sup}_{x \in M} \int_{B_{g}\left(x, C_{0} \delta k_{\varepsilon}\right)} f\left|v_{\varepsilon}\right|^{2^{\sharp}-\varepsilon} d v_{g} . \tag{3}
\end{equation*}
$$

4.2. H_{2}^{2}-bound for \tilde{v}_{ε}. Let $r>0$ as in Lemma 2. Let $\Omega_{\varepsilon}=B_{\xi}\left(0, \frac{r}{k_{\varepsilon}}\right)$. We now choose $\eta_{r} \in$ $C^{\infty}\left(\mathbb{R}^{n}\right)$ such that $\eta_{r} \equiv 1$ on $B_{\xi}(0, r / 4)$ and $\eta_{r} \equiv 0$ on $\mathbb{R}^{n}-B_{\xi}(0, r / 2)$. We set $\tilde{\eta}_{\varepsilon}(x)=\eta_{r}\left(k_{\varepsilon} x\right)$. As easily checked,

$$
\begin{aligned}
\int_{\Omega_{\varepsilon}}\left(\Delta_{\tilde{g}_{\varepsilon}} \tilde{v}_{\varepsilon}\right)^{2} d v_{\tilde{g}_{\varepsilon}} & =\left(\frac{\lambda_{\varepsilon}}{k_{\varepsilon}}\right)^{n-4} \int_{B_{g}\left(x_{\varepsilon}, r\right)}\left(\Delta_{g} v_{\varepsilon}\right)^{2} d v_{g} \\
& \leq C\left(\frac{\lambda_{\varepsilon}}{k_{\varepsilon}}\right)^{n-4} \\
\int_{\Omega_{\varepsilon}}\left|\nabla \tilde{v}_{\varepsilon}\right|_{\tilde{g}_{\varepsilon}}^{2} d v_{\tilde{g}_{\varepsilon}} & =\frac{1}{k_{\varepsilon}^{2}}\left(\frac{\lambda_{\varepsilon}}{k_{\varepsilon}}\right)^{n-4} \int_{B_{g}\left(x_{\varepsilon}, r\right)}\left|\nabla v_{\varepsilon}\right|_{g}^{2} d v_{g} \\
& \leq C \frac{1}{k_{\varepsilon}^{2}}\left(\frac{\lambda_{\varepsilon}}{k_{\varepsilon}}\right)^{n-4} \\
\int_{\Omega_{\varepsilon}} \tilde{v}_{\varepsilon}^{2} d v_{\tilde{g}_{\varepsilon}} & =\frac{1}{k_{\varepsilon}^{4}}\left(\frac{\lambda_{\varepsilon}}{k_{\varepsilon}}\right)^{n-4} \int_{B_{g}\left(x_{\varepsilon}, r\right)} v_{\varepsilon}^{2} d v_{g}
\end{aligned}
$$

Thus $\tilde{\eta}_{\varepsilon} \tilde{v}_{\varepsilon} \in D_{2}^{2}\left(\mathbb{R}^{n}\right)$ and

$$
\int_{\mathbb{R}^{n}}\left(\Delta_{\tilde{g}_{\varepsilon}} \tilde{\eta}_{\varepsilon} \tilde{v}_{\varepsilon}\right)^{2} d v_{\tilde{g}_{\varepsilon}} \leq C\left(\frac{\lambda_{\varepsilon}}{k_{\varepsilon}}\right)^{n-4}
$$

If we choose $\lambda_{\varepsilon}=O\left(k_{\varepsilon}\right)$, then, with Lemma 2, the preceding inequality becomes

$$
\left\|\tilde{\eta}_{\varepsilon} \tilde{v}_{\varepsilon}\right\|_{D_{2}^{2}\left(\mathbb{R}^{n}\right)}=O(1)
$$

so, up to a subsequence, there exists $v^{0} \in D_{2}^{2}\left(\mathbb{R}^{n}\right)$ having the property that

$$
\tilde{\eta}_{\varepsilon} \tilde{v}_{\varepsilon} \rightharpoonup v^{0}
$$

weakly in $D_{2}^{2}\left(\mathbb{R}^{n}\right)$.
4.3. An estimate on $k_{\varepsilon}^{\varepsilon}$. In this subsection, we rule out the case when $k_{\varepsilon}^{\varepsilon}$ goes to zero. We first observe that

$$
\int_{B_{\xi}\left(0, C_{0} \delta\right)} f\left(\exp _{x_{\varepsilon}}\left(k_{\varepsilon} x\right)\right)\left|\tilde{\eta}_{\varepsilon} \tilde{v}_{\varepsilon}\right|^{2^{\sharp}-\varepsilon} d v_{\tilde{g}_{\varepsilon}}=\left(\frac{\lambda_{\varepsilon}}{k_{\varepsilon}}\right)^{n}\left(\lambda_{\varepsilon}^{-\varepsilon}\right)^{\frac{n-4}{2}} \lambda .
$$

Moreover, thanks to Lemma 2,

$$
\int_{B_{\xi}\left(0, C_{0} \delta\right)}\left|\tilde{\eta}_{\varepsilon} \tilde{v}_{\varepsilon}\right|^{2^{\sharp}-\varepsilon} d v_{\tilde{g}_{\varepsilon}} \leq C\left(1+\int_{B_{\xi}\left(0, C_{0} \delta\right)}\left|\tilde{\eta}_{\varepsilon} \tilde{v}_{\varepsilon}\right|^{2^{\sharp}} d v_{\xi}\right)
$$

We take $\lambda_{\varepsilon}=k_{\varepsilon}$. In view of (2) and subsection 4.2,

$$
\int_{B_{\xi}\left(0, C_{0} \delta\right)}\left|\tilde{\eta}_{\varepsilon} \tilde{v}_{\varepsilon}\right|^{2^{\sharp}-\varepsilon} d v_{\tilde{g}_{\varepsilon}}=O(1) .
$$

Consequently, $\lambda\left(\lambda_{\varepsilon}^{-\varepsilon}\right)^{\frac{n-4}{2}}=O(1)$, then $k_{\varepsilon}^{\varepsilon} \nrightarrow 0$. We now let $\left.\left.c \in\right] 0,1\right]$ such that $k_{\varepsilon}^{\varepsilon} \rightarrow c$ (up to a subsequence, of course).
4.4. Strong convergence for $\tilde{\eta}_{\varepsilon} \tilde{v}_{\varepsilon}$. We now define $\mu_{\varepsilon}>0$ chosen such that $k_{\varepsilon}=\mu_{\varepsilon}^{1-\frac{n-4}{8} \varepsilon}$. As easily checked, $\frac{k_{\varepsilon}}{\mu_{\varepsilon}} \rightarrow c^{-\frac{n-4}{8}} \neq 0$. We can apply the preceding results with $\lambda_{\varepsilon}=\mu_{\varepsilon}$. Without loss of generality, we can assume that $v_{\varepsilon} \in C^{\infty}(M)$. Let $y_{0} \in \mathbb{R}^{n}$. Since the embedding $H_{2}^{2}\left(B_{\xi}\left(y_{0}, \rho\right)\right) \hookrightarrow$ $H_{3 / 2}^{2}\left(\partial B_{\xi}\left(y_{0}, \rho\right)\right)$ is compact, there exists $\rho \in[\delta, 2 \delta]$ such that

$$
\tilde{\eta}_{\varepsilon} \tilde{v}_{\varepsilon \mid \partial B_{\xi}\left(y_{0}, \rho\right)} \rightarrow v_{\mid \partial B_{\xi}\left(y_{0}, \rho\right)}^{0} \text { strongly in } H_{3 / 2}^{2}\left(\partial B_{\xi}\left(y_{0}, \rho\right)\right)
$$

Let $z_{\varepsilon} \in H_{2}^{2}\left(B_{\xi}\left(y_{0}, 3 \delta\right)-B_{\xi}\left(y_{0}, \rho\right)\right)$ such that

$$
\left\{\begin{aligned}
\Delta_{\xi}^{2} z_{\varepsilon} & =0 \text { in } B_{\xi}\left(y_{0}, 3 \delta\right)-B_{\xi}\left(y_{0}, \rho\right) \\
z_{\varepsilon} & =0 \text { on } \partial B_{\xi}\left(y_{0}, 3 \delta\right) \\
z_{\varepsilon} & =\tilde{\eta}_{\varepsilon} \tilde{v}_{\varepsilon}-v^{0} \text { on } \partial B_{\xi}\left(y_{0}, \rho\right),
\end{aligned}\right.
$$

and

$$
\psi_{\varepsilon}(x)= \begin{cases}\tilde{\eta}_{\varepsilon} \tilde{v}_{\varepsilon}-v^{0} & \text { in } B_{\xi}\left(y_{0}, \rho\right) \\ z_{\varepsilon} & \text { in } B_{\xi}\left(y_{0}, 3 \delta\right) \\ 0 & \text { elsewhere }\end{cases}
$$

Clearly $\left\|z_{\varepsilon}\right\|_{H_{2}^{2}\left(\mathbb{R}^{n}-B_{\xi}\left(y_{0}, \rho\right)\right)}=o(1)$ and $\psi_{\varepsilon} \in D_{2}^{2}\left(\mathbb{R}^{n}\right)$. We define

$$
\begin{aligned}
\tilde{\psi}_{\varepsilon}(x) & =\mu_{\varepsilon}^{-\frac{n-4}{2}} \psi_{\varepsilon}\left(\frac{e^{-x p_{x_{\varepsilon}}^{-1}(x)}}{k_{\varepsilon}}\right) \text { if } d_{g}\left(x, x_{\varepsilon}\right)<6 \delta \\
& =0 \text { elsewhere }
\end{aligned}
$$

Under the assumption that $\left|y_{0}\right|<\frac{\delta}{k_{\varepsilon}}$, we have $\tilde{\psi}_{\varepsilon} \in H_{2}^{2}(M)$. Moreover, if $\delta<\frac{r}{24}$, then $\eta_{r}\left(\exp _{x_{\varepsilon}}^{-1}(x)\right)=$ 1 as soon as $d_{g}\left(x, x_{\varepsilon}\right)<6 \delta$. Some computations yield
$\left\langle d J_{\varepsilon}\left(v_{\varepsilon}\right), \tilde{\psi}_{\varepsilon}\right\rangle=\left(\mu_{\varepsilon}^{\varepsilon}\right)^{-\frac{(n-4)^{2}}{8}}\left(\int_{\mathbb{R}^{n}} \Delta_{\tilde{g}_{\varepsilon}} \tilde{\eta}_{\varepsilon} \tilde{v}_{\varepsilon} \Delta_{\tilde{g}_{\varepsilon}} \psi_{\varepsilon} d v_{\tilde{g}_{\varepsilon}}-\int_{\mathbb{R}^{n}} f\left(\exp _{x_{\varepsilon}}\left(k_{\varepsilon} x\right)\right)\left|\tilde{\eta}_{\varepsilon} \tilde{v}_{\varepsilon}\right|^{2^{\sharp}-2-\varepsilon} \tilde{\eta}_{\varepsilon} \tilde{v}_{\varepsilon} \tilde{\psi}_{\varepsilon} d v_{\tilde{g}_{\varepsilon}}\right)$.
In view of the fact that $\left\|\tilde{\psi}_{\varepsilon}\right\|_{H_{2}^{2}(M)}=O\left(\left\|\psi_{\varepsilon}\right\|_{D_{2}^{2}\left(\mathbb{R}^{n}\right)}\right)$, that $\left(v_{\varepsilon}\right)$ is a Palais-Smale sequence for J_{ε}, and that $\mu_{\varepsilon}^{\varepsilon} \rightarrow c \neq 0$, the equation becomes

$$
\int_{\mathbb{R}^{n}} \Delta_{\tilde{g}_{\varepsilon}} \tilde{\eta}_{\varepsilon} \tilde{v}_{\varepsilon} \Delta_{\tilde{g}_{\varepsilon}} \psi_{\varepsilon} d v_{\tilde{g}_{\varepsilon}}=\int_{\mathbb{R}^{n}} f\left(\exp _{x_{\varepsilon}}\left(k_{\varepsilon} x\right)\right)\left|\tilde{\eta}_{\varepsilon} \tilde{v}_{\varepsilon}\right|^{2^{\sharp}-2-\varepsilon} \tilde{\eta}_{\varepsilon} \tilde{v}_{\varepsilon} \tilde{\psi}_{\varepsilon} d v_{\tilde{g}_{\varepsilon}}+o(1)
$$

With the definition of ψ_{ε},

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}\left(\Delta_{\tilde{g}_{\varepsilon}} \psi_{\varepsilon}\right)^{2} d v_{\tilde{g}_{\varepsilon}}=\int_{\mathbb{R}^{n}} f\left(\exp _{x_{\varepsilon}}\left(k_{\varepsilon} x\right)\right)\left|\psi_{\varepsilon}\right|^{2^{\sharp}-\varepsilon} d v_{\tilde{g}_{\varepsilon}}+o(1) . \tag{4}
\end{equation*}
$$

Basically,

$$
\int_{\mathbb{R}^{n}} f\left(\exp _{x_{\varepsilon}}\left(k_{\varepsilon} x\right)\right)\left|\psi_{\varepsilon}\right|^{2^{\sharp}-\varepsilon} d v_{\tilde{g}_{\varepsilon}} \leq(1+o(1))\left(\operatorname{Sup}_{M} f\right)\left(\int_{\mathbb{R}^{n}}\left|\psi_{\varepsilon}\right|^{2^{\sharp}} d v_{\tilde{g}_{\varepsilon}}\right)^{1-\frac{\varepsilon}{2^{\sharp}}}
$$

Since $\left|y_{0}\right|+3 \delta<\frac{r}{k_{\varepsilon}}$, we have $\operatorname{Supp} \psi_{\varepsilon} \subset B_{\xi}\left(0, \frac{r}{k_{\varepsilon}}\right)$. Therefore, Lemma 2 and (2) yield
(5) $\int_{\mathbb{R}^{n}} f\left(\exp _{x_{\varepsilon}}\left(k_{\varepsilon} x\right)\right)\left|\psi_{\varepsilon}\right|^{2^{\sharp}-\varepsilon} d v_{\tilde{g}_{\varepsilon}} \leq\left(\operatorname{Sup}_{M} f\right) C(M, r)^{1+\frac{2^{\sharp}}{2}} K_{0}^{\frac{2^{\sharp}}{2}}\left(\int_{\mathbb{R}^{n}}\left(\Delta_{\tilde{g}_{\varepsilon}} \psi_{\varepsilon}\right)^{2} d v_{\tilde{g}_{\varepsilon}}\right)^{1-\frac{\varepsilon}{2 \sharp}}$.

Independently, (4) and (5) together give

$$
\begin{gathered}
\left(\int_{\mathbb{R}^{n}} f\left(\exp _{x_{\varepsilon}}\left(k_{\varepsilon} x\right)\right)\left|\psi_{\varepsilon}\right|^{2^{\sharp}-\varepsilon} d v_{\tilde{g}_{\varepsilon}}\right) \\
(6) \times\left(1-\left(\operatorname{Sup}_{M} f\right) C(M, r)^{1+\frac{2^{\sharp}}{2}} K_{0}^{\frac{2^{\sharp}}{2}}\left(\int_{\mathbb{R}^{n}} f\left(\exp _{x_{\varepsilon}}\left(k_{\varepsilon} x\right)\right)\left|\psi_{\varepsilon}\right|^{2^{\sharp}-\varepsilon} d v_{\tilde{g}_{\varepsilon}}\right)^{\frac{2^{\sharp}}{2}\left(1-\frac{\varepsilon}{2^{\sharp}}\right)-1}\right) \leq o(1) .
\end{gathered}
$$

Recall that we have $\int_{\mathbb{R}^{n}} f\left(\exp _{x_{\varepsilon}}\left(k_{\varepsilon} x\right)\right)\left|\psi_{\varepsilon}\right|^{2^{\sharp}-\varepsilon} d v_{\tilde{g}_{\varepsilon}}=\int_{B_{\xi}\left(y_{0}, \rho\right)} f\left(\exp _{x_{\varepsilon}}\left(k_{\varepsilon} x\right)\right)\left|\psi_{\varepsilon}\right|^{2^{\sharp}-\varepsilon} d v_{\tilde{g}_{\varepsilon}}+o(1)$.
Three different cases arise considering the sign of f :

- First case: $f\left(\exp _{x_{\varepsilon}}\left(k_{\varepsilon} x\right)\right) \leq 0$ for all $x \in B_{\xi}\left(y_{0}, 3 \delta\right)$. Since $\rho<3 \delta$, one easily gets that $\int_{\mathbb{R}^{n}}\left(\Delta_{\tilde{g}_{\varepsilon}} \psi_{\varepsilon}\right)^{2} d v_{\tilde{g}_{\varepsilon}}=o(1)$, and then, with Lemma 2,

$$
\psi_{\varepsilon} \rightarrow 0 \text { in } D_{2}^{2}\left(\mathbb{R}^{n}\right)
$$

- Second case: $f\left(\exp _{x_{\varepsilon}}\left(k_{\varepsilon} x\right)\right)$ changes sign in $B_{\xi}\left(y_{0}, 3 \delta\right)$.

Let $\alpha>0$ that will be chosen later and $\beta>0$ such that $d_{g}(x, y)<\beta \Rightarrow|f(x)-f(y)|<\alpha$. As in the beginning of subsection 4.1 , with $\delta<\frac{\varepsilon_{0}}{4}$ and $\delta<\frac{\beta}{6}$, we clearly obtain that

$$
\left|f\left(\exp _{x_{\varepsilon}}\left(k_{\varepsilon} x\right)\right)\right| \leq 2 \alpha \forall x \in B_{\xi}\left(y_{0}, 3 \delta\right)
$$

Then, with Lemma 2

$$
\left.\left.\left|\int_{\mathbb{R}^{n}} f\left(\exp _{x_{\varepsilon}}\left(k_{\varepsilon} x\right)\right)\right| \psi_{\varepsilon}\right|^{2^{\sharp}-\varepsilon} d v_{\tilde{g}_{\varepsilon}}\left|\leq 2 \alpha C(M, r) \int_{B_{\xi}\left(y_{0}, \rho\right)}\right| \psi_{\varepsilon}\right|^{2^{\sharp}-\varepsilon} d v_{\xi}+o(1) .
$$

But

$$
\begin{aligned}
\left\|\psi_{\varepsilon}\right\|_{L^{2^{\sharp}}\left(B_{\xi}\left(y_{0}, \rho\right)\right)} & =\left\|\tilde{\eta}_{\varepsilon} \tilde{v}_{\varepsilon}-v^{0}\right\|_{L^{2 \sharp}\left(B_{\xi}\left(y_{0}, \rho\right)\right)} \\
& \leq\left\|\tilde{\eta}_{\varepsilon} \tilde{v}_{\varepsilon}\right\|_{L^{2 \sharp}\left(B_{\xi}\left(y_{0}, \rho\right)\right)}+\left\|v^{0}\right\|_{L^{2 \sharp}}\left(B_{\xi}\left(y_{0}, \rho\right)\right)
\end{aligned}
$$

then

$$
\liminf _{\varepsilon \rightarrow 0}\left\|\psi_{\varepsilon}\right\|_{L^{2^{\sharp}}\left(B_{\xi}\left(y_{0}, \rho\right)\right)} \leq 2 \liminf _{\varepsilon \rightarrow 0}\left\|\tilde{r}_{\varepsilon} \tilde{v}_{\varepsilon}\right\|_{L^{2 \sharp}\left(B_{\xi}\left(y_{0}, \rho\right)\right)} .
$$

Note that we have that

$$
\int_{B_{\xi}\left(y_{0}, \delta\right)}\left|\tilde{\eta}_{\varepsilon} \tilde{v}_{\varepsilon}\right|^{2^{\sharp}} d v_{\xi} \leq C(M, r)\left(\frac{\mu_{\varepsilon}}{k_{\varepsilon}}\right)^{n} \int_{M}\left|v_{\varepsilon}\right|^{2^{\sharp}} d v_{g} .
$$

In view of the fact that $\mu_{\varepsilon} \leq k_{\varepsilon}$, the inequality becomes

$$
\liminf _{\varepsilon \rightarrow 0} \int_{B_{\xi}\left(y_{0}, \rho\right)}\left|\psi_{\varepsilon}\right|^{2^{\sharp}-\varepsilon} d v_{\xi} \leq C(M, r)^{2} 2^{2^{\sharp}}\left(\liminf _{\varepsilon \rightarrow 0}\left\|v_{\varepsilon}\right\|_{L^{2^{\sharp}}(M)}\right)^{2^{\sharp}} .
$$

Then,

$$
\begin{aligned}
& 1-\left(\operatorname{Sup}_{M} f\right) C(M, r)^{1+\frac{2^{\sharp}}{2}} K_{0}^{\frac{2^{\sharp}}{2}}\left(\int_{\mathbb{R}^{n}} f\left(\exp _{x_{\varepsilon}}\left(k_{\varepsilon} x\right)\right)\left|\psi_{\varepsilon}\right|^{2^{\sharp}-\varepsilon} d v_{\tilde{g}_{\varepsilon}}\right)^{\frac{2^{\sharp}}{2}\left(1-\frac{\varepsilon}{2 \sharp}\right)-1} \\
& \geq 1-\left(\operatorname{Sup}_{M} f\right) 2^{\frac{\left(2^{\sharp}+1\right)\left(2^{\sharp}-2\right)}{2}} C(M, r)^{2 \times 2^{\sharp}-2} K_{0}^{\frac{2^{\sharp}}{2}} \liminf _{\varepsilon \rightarrow 0}\left\|v_{\varepsilon}\right\|_{L^{2^{\sharp}(M)}}^{2^{\sharp \sharp}-2} \\
& 2
\end{aligned}
$$

with α small enough. Then (6) yields

$$
\int_{\mathbb{R}^{n}} f\left(\exp _{x_{\varepsilon}}\left(k_{\varepsilon} x\right)\right)\left|\psi_{\varepsilon}\right|^{2^{\sharp}-\varepsilon} d v_{\tilde{g}_{\varepsilon}} \leq o(1)
$$

and

$$
\int_{\mathbb{R}^{n}}\left(\Delta_{\tilde{g}_{\varepsilon}} \psi_{\varepsilon}\right)^{2} d v_{\tilde{g}_{\varepsilon}}=o(1),
$$

with Lemma 2, we get that

$$
\psi_{\varepsilon} \rightarrow 0 \text { in } D_{2}^{2}\left(\mathbb{R}^{n}\right)
$$

- Third case: We now assume that $f\left(\exp _{x_{\varepsilon}}\left(k_{\varepsilon} x\right)\right) \geq 0$ for all $x \in B_{\xi}\left(y_{0}, 3 \delta\right)$. Let $L \in \mathbb{N}^{\star}$ such that there exists $\tilde{y}_{1}, \ldots, \tilde{y}_{L} \in B_{\xi}(0,2)$ having the property that

$$
B_{\xi}(0,2) \subset \bigcup_{i=1}^{L} B_{\xi}\left(\tilde{y}_{i}, 1\right)
$$

Then, there exist $y_{1}, \ldots, y_{L} \in B_{\xi}\left(y_{0}, 2 \delta\right)$ such that

$$
B_{\xi}\left(y_{0}, 2 \delta\right) \subset \bigcup_{i=1}^{L} B_{\xi}\left(y_{i}, \delta\right)
$$

Standard integration theory yields

$$
\begin{gathered}
\int_{\mathbb{R}^{n}} f\left(\exp _{x_{\varepsilon}}\left(k_{\varepsilon} x\right)\right)\left|\psi_{\varepsilon}\right|^{2^{\sharp}-\varepsilon} d v_{\tilde{g}_{\varepsilon}}=\int_{B_{\xi}\left(y_{0}, \rho\right)} f\left(\exp _{x_{\varepsilon}}\left(k_{\varepsilon} x\right)\right)\left|\psi_{\varepsilon}\right|^{2^{\sharp}-\varepsilon} d v_{\tilde{g}_{\varepsilon}}+o(1) \\
=\int_{B_{\xi}\left(y_{0}, \rho\right)} f\left(\exp _{x_{\varepsilon}}\left(k_{\varepsilon} x\right)\right)\left|\tilde{\eta}_{\varepsilon} \tilde{v}_{\varepsilon}\right|^{2^{\sharp}-\varepsilon} d v_{\tilde{g}_{\varepsilon}}-\int_{B_{\xi}\left(y_{0}, \rho\right)} f\left(\exp _{x_{\varepsilon}}\left(k_{\varepsilon} x\right)\right)\left|v^{0}\right|^{2^{\sharp}-\varepsilon} d v_{\tilde{g}_{\varepsilon}}+o(1) \\
\leq \int_{B_{\xi}\left(y_{0}, 2 \delta\right)} f\left(\exp _{x_{\varepsilon}}\left(k_{\varepsilon} x\right)\right)\left|\tilde{\eta}_{\varepsilon} \tilde{v}_{\varepsilon}\right|^{2^{\sharp}-\varepsilon} d v_{\tilde{g}_{\varepsilon}}+o(1) \\
\leq \sum_{i=1}^{L} \int_{B_{\xi}\left(y_{i}, 2 \delta\right)} f\left(\exp _{x_{\varepsilon}}\left(k_{\varepsilon} x\right)\right)\left|\tilde{\eta}_{\varepsilon} \tilde{v}_{\varepsilon}\right|^{2^{\sharp}-\varepsilon} d v_{\tilde{g}_{\varepsilon}}+o(1) \\
\leq \sum_{i=1}^{L}\left(\frac{\mu_{\varepsilon}}{k_{\varepsilon}}\right)^{n}\left(\mu_{\varepsilon}^{-\varepsilon}\right)^{\frac{n-4}{2}} \int_{B_{g}\left(\exp _{x_{\varepsilon}}\left(k_{\varepsilon} y_{i}\right), C_{0} \delta k_{\varepsilon}\right)} f\left|v_{\varepsilon}\right|^{2^{\sharp}-\varepsilon} d v_{g}+o(1)
\end{gathered}
$$

(these computations are valid provided $\delta<\varepsilon_{0} / 4$ and $\delta<r / 16$). But $\left(\frac{\mu_{\varepsilon}}{k_{\varepsilon}}\right)^{n}\left(\mu_{\varepsilon}^{-\varepsilon}\right)^{\left(\frac{n-4}{2}\right)}=$ $\left(\mu_{\varepsilon}^{\varepsilon}\right)^{\frac{(n-4)^{2}}{8}} \leq 1$. The definition of λ in (3) yields

$$
\int_{\mathbb{R}^{n}} f\left(\exp _{x_{\varepsilon}}\left(k_{\varepsilon} x\right)\right)\left|\psi_{\varepsilon}\right|^{2^{\sharp}-\varepsilon} d v_{\tilde{g}_{\varepsilon}} \leq \lambda L+o(1) .
$$

As a consequence,

$$
\begin{gathered}
1-\left(\operatorname{Sup}_{M} f\right) C(M, r)^{1+\frac{2^{\sharp}}{2}} K_{0}^{\frac{2^{\sharp}}{2}}\left(\int_{\mathbb{R}^{n}} f\left(\exp _{x_{\varepsilon}}\left(k_{\varepsilon} x\right)\right)\left|\psi_{\varepsilon}\right|^{2^{\sharp}-\varepsilon} d v_{\tilde{g}_{\varepsilon}}\right)^{\frac{2^{\sharp}}{2}\left(1-\frac{\varepsilon}{2^{\sharp}}\right)-1} \\
\geq 1-\left(\operatorname{Sup}_{M} f\right) C(M, r)^{1+\frac{2^{\sharp}}{2}} K_{0}^{\frac{2^{\sharp}}{2}}(\lambda L)^{\frac{2^{\sharp}-2}{2}}+o(1) .
\end{gathered}
$$

Choosing λ such that

$$
0<\lambda<\frac{1}{\left(2\left(\operatorname{Sup}_{M} f\right) C(M, r)^{1+\frac{2 \sharp}{2}} K_{0}^{\frac{2 \sharp}{2}}\right)^{\frac{2}{2 \sharp-2}}},
$$

we obtain, as in the second case, that $\int_{\mathbb{R}^{n}} f\left(\exp _{x_{\varepsilon}}\left(k_{\varepsilon} x\right)\right)\left|\psi_{\varepsilon}\right|^{2^{\sharp}-\varepsilon} d v_{\tilde{g}_{\varepsilon}} \leq o(1)$ and that

$$
\psi_{\varepsilon} \rightarrow 0 \text { in } D_{2}^{2}\left(\mathbb{R}^{n}\right)
$$

We have proved that

$$
\tilde{\eta}_{\varepsilon} \tilde{v}_{\varepsilon} \rightarrow v^{0}
$$

strongly in $H_{2}^{2}\left(B_{\xi}\left(y_{0}, \delta\right)\right)$ for all $y_{0} \in \mathbb{R}^{n}$ such that $\left|y_{0}\right|<\frac{\delta}{k_{\varepsilon}}$ for $\varepsilon \rightarrow 0$. But $k_{\varepsilon} \leq 1, C_{0}<2$ and $B_{\xi}\left(0, C_{0} \delta\right)$ is covered by some balls of radius δ and having their center in $B_{\xi}(0, \delta)$. Then

$$
\tilde{\eta}_{\varepsilon} \tilde{v}_{\varepsilon} \rightarrow v^{0} \text { strongly in } H_{2}^{2}\left(B_{\xi}\left(0, C_{0} \delta\right)\right)
$$

Observe that

$$
\lambda=\int_{B_{g}\left(x_{\varepsilon}, C_{0} \delta k_{\varepsilon}\right)} f\left|v_{\varepsilon}\right|^{2^{\sharp}-\varepsilon} d v_{g}=\left(\frac{k_{\varepsilon}}{\mu_{\varepsilon}}\right)^{n} \mu_{\varepsilon}^{\varepsilon \frac{n-4}{2}} \int_{B_{\xi}\left(0, C_{0} \delta\right)} f\left(\exp _{x_{\varepsilon}}\left(k_{\varepsilon} x\right)\right)\left|\tilde{\eta}_{\varepsilon} \tilde{v}_{\varepsilon}\right|^{2^{\sharp}-\varepsilon} d v_{\tilde{g}_{\varepsilon}} .
$$

Noting that $\tilde{f}(x)=\lim _{\varepsilon \rightarrow 0} f\left(\exp _{x_{\varepsilon}}\left(k_{\varepsilon} x\right)\right)$ and $\tilde{g}(x)=\lim _{\varepsilon \rightarrow 0} \tilde{g}_{\varepsilon}(x)$, we get

$$
\lambda=c^{-\frac{(n-4)^{2}}{8}} \int_{B_{\xi}\left(0, C_{0} \delta\right)} \tilde{f}\left|v^{0}\right|^{2^{\sharp}} d v_{\tilde{g}}
$$

so $v^{0} \not \equiv 0$. As a consequence, $k_{\varepsilon} \rightarrow 0$. If not, since v_{ε} goes to 0 weakly, then \tilde{v}_{ε} would also go to 0 weakly. But $v^{0} \not \equiv 0$, a contradiction. Thus $\tilde{\eta}_{\varepsilon} \tilde{v}_{\varepsilon}$ goes to v^{0} strongly in $H_{2}^{2}\left(B_{\xi}\left(y_{0}, \delta\right)\right)$ for all $y_{0} \in \mathbb{R}^{n}$. This evidently shows that

$$
\tilde{v}_{\varepsilon} \rightarrow v^{0} \text { strongly in } H_{2, l o c}^{2}\left(\mathbb{R}^{n}\right)
$$

Now let $\varphi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ and $R>0$ such that $\operatorname{Supp} \varphi \subset B_{\xi}(0, R)$. We define φ_{ε} as follows:

$$
\varphi_{\varepsilon}(x)=\mu_{\varepsilon}^{-\frac{n-4}{2}} \varphi\left(\frac{\exp _{x_{\varepsilon}}^{-1}(x)}{k_{\varepsilon}}\right) \text { if } d_{g}\left(x, x_{\varepsilon}\right)<k_{\varepsilon} R
$$

and 0 otherwise. Then $\varphi_{\varepsilon} \in C^{\infty}(M)$ and $\left\|\varphi_{\varepsilon}\right\|_{H_{2}^{2}(M)}=O(1)$. Since v_{ε} is a Palais-Smale sequence for J_{ε},

$$
\begin{aligned}
o(1) & =\left\langle d J_{\varepsilon}\left(v_{\varepsilon}\right), \varphi_{\varepsilon}\right\rangle \\
& =\left(\frac{k_{\varepsilon}}{\mu_{\varepsilon}}\right)^{n-4}\left(\int_{B(0, R)} \Delta_{\tilde{g}_{\varepsilon}} \tilde{v}_{\varepsilon} \Delta_{\tilde{g}_{\varepsilon}} \varphi d v_{\tilde{g}_{\varepsilon}}\right. \\
& \left.-\left(\frac{k_{\varepsilon}}{\mu_{\varepsilon}}\right)^{4}\left(\mu_{\varepsilon}^{\varepsilon}\right)^{\frac{n-4}{2}} \int_{B(0, R)} f\left(\exp _{x_{\varepsilon}}\left(k_{\varepsilon} x\right)\right)\left|\tilde{v}_{\varepsilon}\right|^{2^{\sharp}-2-\varepsilon} \tilde{v}_{\varepsilon} \varphi d v_{\tilde{g}_{\varepsilon}}\right) .
\end{aligned}
$$

Letting $\varepsilon \rightarrow 0$ and noting that $k_{\varepsilon}=\mu_{\varepsilon}^{1-\varepsilon \frac{n-4}{8}}$, the preceding equation becomes

$$
\int_{\mathbb{R}^{n}} \Delta_{\xi} v^{0} \Delta_{\xi} \varphi d v_{\xi}=\int_{\mathbb{R}^{n}} f\left(x_{0}\right)\left|v^{0}\right|^{2^{\sharp}-2} v^{0} \varphi d v_{\xi}
$$

where $\lim _{\varepsilon \rightarrow 0} x_{\varepsilon}=x_{0}$. Then $v^{0} \in D_{2}^{2}\left(\mathbb{R}^{n}\right)$ attempts to be a weak solution of

$$
\begin{equation*}
\Delta_{\xi}^{2} v^{0}=f\left(x_{0}\right)\left|v^{0}\right|^{2^{\sharp}-2} v^{0} . \tag{7}
\end{equation*}
$$

Multiplying by v^{0} and integrating, we remark that $f\left(x_{0}\right)>0$.

Now, let $\eta_{\varepsilon}(x)=\eta_{r}\left(\exp _{x_{\varepsilon}}^{-1}(x)\right)$ for $|x|<i_{g}(M)$ and 0 elsewhere. We define

$$
V_{\epsilon}(x)=\mu_{\varepsilon}^{-\frac{n-4}{2}} v^{0}\left(\frac{\exp _{x_{\varepsilon}}^{-1}(x)}{k_{\varepsilon}}\right) \eta_{\varepsilon}(x)
$$

and

$$
w_{\varepsilon}=v_{\varepsilon}-V_{\epsilon} .
$$

The function V_{ϵ} is usually called a bubble.
4.5. Weak limit of V_{ϵ}. We briefly prove the weak convergence of V_{ϵ}. Let $\varphi \in C^{\infty}(M)$. For all $R>0$,

$$
\begin{aligned}
\left|\int_{M-B_{g}\left(x_{\varepsilon}, R k_{\varepsilon}\right)} V_{\epsilon} \varphi d v_{g}\right| & \leq C\|\varphi\|_{\infty}\left(\frac{k_{\varepsilon}}{\mu_{\varepsilon}}\right)^{\frac{n-4}{2}}\left(\int_{B_{\xi}\left(0, \frac{r}{k_{\varepsilon}}\right)-B_{\xi}(0, R)}\left|v^{0}\right|^{2^{\sharp}} d v_{\xi}\right)^{\frac{1}{2 \sharp}} \\
\left|\int_{B_{g}\left(x_{\varepsilon}, R k_{\varepsilon}\right)} V_{\epsilon} \varphi d v_{g}\right| & \leq C\|\varphi\|_{\infty}\left(\frac{k_{\varepsilon}}{\mu_{\varepsilon}}\right)^{\frac{n-4}{2}} k_{\varepsilon}^{\frac{n+4}{2}} \int_{B_{\xi}(0, R)}\left|v^{0}\right| d v_{\xi}
\end{aligned}
$$

With similar estimates for $\int_{M}\left(\nabla V_{\epsilon}, \nabla \varphi\right)_{g} d v_{g}$ and $\int_{M} \Delta_{g} V_{\epsilon} \Delta_{g} \varphi d v_{g}$, we prove that V_{ϵ} goes to zero weakly, and then

$$
w_{\varepsilon} \rightharpoonup 0 \text { weakly in } H_{2}^{2}(M)
$$

4.6. Strong convergence of $d J_{\varepsilon}\left(w_{\varepsilon}\right)$. We now estimate $\left\langle d J_{\varepsilon}\left(w_{\varepsilon}\right), \varphi\right\rangle$.

$$
\begin{aligned}
\left\langle d J_{\varepsilon}\left(w_{\varepsilon}\right), \varphi\right\rangle= & \int_{M} \Delta_{g} w_{\varepsilon} \Delta_{g} \varphi d v_{g}-\int_{M} f\left|w_{\varepsilon}\right|^{2^{\sharp}-2-\varepsilon} w_{\varepsilon} \varphi d v_{g} \\
= & \int_{M} \Delta_{g} v_{\varepsilon} \Delta_{g} \varphi d v_{g}-\int_{M} \Delta_{g} V_{\epsilon} \Delta_{g} \varphi d v_{g}-\int_{M} f\left|v_{\varepsilon}-V_{\epsilon}\right|^{2^{\sharp}-2-\varepsilon}\left(v_{\varepsilon}-V_{\epsilon}\right) \varphi d v_{g} \\
\int_{M} \Delta_{g} V_{\epsilon} \Delta_{g} \varphi d v_{g}= & \int_{B_{g}\left(x_{\varepsilon}, r\right)} \Delta_{g} V_{\epsilon} \Delta_{g} \varphi d v_{g} \\
= & \int_{B_{\xi}(0, \alpha)} \Delta_{e x p_{x_{\varepsilon}}^{\star} g} V_{\epsilon} \circ e x p_{x_{\varepsilon}} \Delta_{e x p_{x_{\varepsilon}}^{\star} g} \varphi \circ e x p_{x_{\varepsilon}} d v_{e x p_{x_{\varepsilon}}^{\star} g} \\
& \int_{B_{g}\left(x_{\varepsilon}, r\right)-B_{g}\left(x_{\varepsilon}, \alpha\right)} \Delta_{g} V_{\epsilon} \Delta_{g} \varphi d v_{g}
\end{aligned}
$$

for all $0<\alpha<r$. We have that

$$
\begin{aligned}
\left|\int_{B_{g}\left(x_{\varepsilon}, r\right)-B_{g}\left(x_{\varepsilon}, \alpha\right)} \Delta_{g} V_{\epsilon} \Delta_{g} \varphi d v_{g}\right| & \leq C\|\varphi\|_{H_{2}^{2}(M)}\left(\int_{B_{g}\left(x_{\varepsilon}, r\right)-B_{g}\left(x_{\varepsilon}, \alpha\right)}\left(\Delta_{g} V_{\epsilon} \Delta_{g} \varphi\right) d v_{g}\right)^{\frac{1}{2}} \\
& \leq C\|\varphi\|_{H_{2}^{2}(M)}\left(\frac{k_{\varepsilon}}{\mu_{\varepsilon}}\right)^{n-4}\left(\int_{\mathbb{R}^{n}-B_{\xi}\left(0, \frac{\alpha}{k_{\varepsilon}}\right)}\left|\nabla_{\xi}^{2} v^{0}\right|^{2} d v_{\xi}\right)^{\frac{1}{2}} \\
& \leq o\left(\|\varphi\|_{H_{2}^{2}(M)}\right.
\end{aligned}
$$

The fact that the exponential map is a normal chart at 0 yields

$$
\int_{M} \Delta_{g} V_{\epsilon} \Delta_{g} \varphi d v_{g}=\int_{B_{\xi}(0, \alpha)} \Delta_{\xi} V_{\epsilon} \circ \exp _{x_{\varepsilon}} \Delta_{\xi} \varphi \circ \exp _{x_{\varepsilon}} d v_{\xi}+O\left(\alpha\|\varphi\|_{H_{2}^{2}(M)}\right)+o\left(\|\varphi\|_{H_{2}^{2}(M)}\right)
$$

Now, let $\nu_{\alpha} \in C^{\infty}\left(\mathbb{R}^{n}\right)$ such that $\nu_{\alpha} \equiv 1$ in $B_{\xi}(0, \alpha / 2)$ and $\nu_{\alpha} \equiv 0$ in $\mathbb{R}^{n}-B_{\xi}(0,3 \alpha / 4)$. We define $\bar{\varphi}_{\varepsilon} \in C^{\infty}\left(\mathbb{R}^{n}\right)$ such that

$$
\bar{\varphi}_{\varepsilon}(x)=\mu_{\varepsilon}^{\frac{n-4}{2}} \nu_{\alpha}\left(k_{\varepsilon} x\right) \varphi \circ \exp _{x_{\varepsilon}}\left(k_{\varepsilon} x\right)
$$

if $d_{g}\left(x, x_{\varepsilon}\right) \leq \frac{i_{g}(M)}{k_{\varepsilon}}$ and 0 elsewhere. We obtain that

$$
\begin{aligned}
\int_{M} \Delta_{g} V_{\epsilon} \Delta_{g} \varphi d v_{g} & =\int_{B_{\xi}(0, \alpha)} \Delta_{\xi} V_{\epsilon} \circ \exp _{x_{\varepsilon}} \Delta_{\xi} \nu_{\alpha} \varphi \circ \exp _{x_{\varepsilon}} d v_{\xi}+O\left(\alpha\|\varphi\|_{H_{2}^{2}(M)}\right)+o\left(\|\varphi\|_{H_{2}^{2}(M)}\right) \\
& =\left(\frac{k_{\varepsilon}}{\mu_{\varepsilon}}\right)^{n-4} \int_{\mathbb{R}^{n}} \Delta_{\xi} v^{0} \Delta_{\xi} \bar{\varphi}_{\varepsilon} d v_{\xi}+O\left(\alpha\|\varphi\|_{H_{2}^{2}(M)}\right)+o\left(\|\varphi\|_{H_{2}^{2}(M)}\right)
\end{aligned}
$$

Classical integration arguments assert that

$$
\begin{aligned}
\int_{M} f\left|v_{\varepsilon}-V_{\epsilon}\right|^{2^{\sharp}-2-\varepsilon}\left(v_{\varepsilon}-V_{\epsilon}\right) \varphi d v_{g}= & \left(\frac{k_{\varepsilon}}{\mu_{\varepsilon}}\right)^{n-4}\left(\frac{k_{\varepsilon}}{\mu_{\varepsilon}}\right)^{4}\left(\mu_{\varepsilon}^{\varepsilon}\right)^{\frac{n-4}{2}} f\left(x_{0}\right) \int_{\mathbb{R}^{n}}\left|v^{0}\right|^{2^{\sharp}-2} v^{0} \bar{\varphi}_{\varepsilon} d v_{\xi} \\
& +O\left(\alpha\|\varphi\|_{H_{2}^{2}(M)}\right)+O\left(\varepsilon(R)\|\varphi\|_{H_{2}^{2}(M)}\right)+o\left(\|\varphi\|_{H_{2}^{2}(M)}\right)
\end{aligned}
$$

where $\varepsilon(R)$ goes to zero when R goes to $+\infty$. Then

$$
\begin{aligned}
\left\langle d J_{\varepsilon}\left(w_{\varepsilon}\right), \varphi\right\rangle= & \int_{M} \Delta_{g} v_{\varepsilon} \Delta_{g} \varphi d v_{g}-\int_{M} f\left|v_{\varepsilon}\right|^{2^{\sharp}-2-\varepsilon} v_{\varepsilon} \varphi d v_{g} \\
& -\left(\frac{k_{\varepsilon}}{\mu_{\varepsilon}}\right)^{n-4}\left(\int_{\mathbb{R}^{n}} \Delta_{\xi} v^{0} \Delta_{\xi} \bar{\varphi}_{\varepsilon} d v_{\xi}-\left(\mu_{\varepsilon}^{\varepsilon}\right)^{\frac{n-4}{2}} f\left(x_{0}\right) \int_{\mathbb{R}^{n}}\left|v^{0}\right|^{2^{\sharp}-2} v^{0} \bar{\varphi}_{\varepsilon} d v_{\xi}\right) \\
& +O\left(\alpha\|\varphi\|_{H_{2}^{2}(M)}\right)+O\left(\varepsilon(R)\|\varphi\|_{H_{2}^{2}(M)}\right)+o\left(\|\varphi\|_{H_{2}^{2}(M)}\right)
\end{aligned}
$$

In view of $k_{\varepsilon}=\mu_{\varepsilon}^{1-\varepsilon \frac{n-4}{8}}$ and (7), we obtain that

$$
\left\langle d J_{\varepsilon}\left(w_{\varepsilon}\right), \varphi\right\rangle=O\left(\alpha\|\varphi\|_{H_{2}^{2}(M)}\right)+O\left(\varepsilon(R)\|\varphi\|_{H_{2}^{2}(M)}\right)+o\left(\|\varphi\|_{H_{2}^{2}(M)}\right) .
$$

Taking $\alpha>0$ small and R large enough, the preceding formula can be written as

$$
d J_{\varepsilon}\left(w_{\varepsilon}\right) \rightarrow 0 \text { strongly in } H_{2}^{2}(M)^{\prime}
$$

4.7. Convergence of $J_{\varepsilon}\left(w_{\varepsilon}\right)$. Concerning the energy $J_{\varepsilon}\left(w_{\varepsilon}\right)$, we similarly get that

$$
\begin{gathered}
\int_{M}\left(\Delta_{g} w_{\varepsilon}\right)^{2} d v_{g}=\int_{M}\left(\Delta_{g} v_{\varepsilon}\right)^{2} d v_{g}-\left(\frac{k_{\varepsilon}}{\mu_{\varepsilon}}\right)^{n-4} \int_{\mathbb{R}^{n}}\left(\Delta_{\xi} v^{0}\right)^{2} d v_{\xi}+o(1), \\
\int_{M-B_{g}\left(x_{\varepsilon}, r / 4\right)} f\left|w_{\varepsilon}\right|^{2^{\sharp}-\varepsilon} d v_{g}=\int_{M-B_{g}\left(x_{\varepsilon}, r / 4\right)} f\left|v_{\varepsilon}\right|^{2^{\sharp}-\varepsilon} d v_{g}+o(1)
\end{gathered}
$$

and that

$$
\int_{B_{g}\left(x_{\varepsilon}, r / 4\right)} f\left|w_{\varepsilon}\right|^{2^{\sharp}-\varepsilon} d v_{g}=\left(\frac{k_{\varepsilon}}{\mu_{\varepsilon}}\right)^{n-4}\left(\int_{B_{\xi}\left(0, \frac{r}{4 k_{\varepsilon}}\right)-B_{\xi}(0, R)} f\left(\exp _{x_{\varepsilon}}\left(k_{\varepsilon} x\right)\right)\left|\tilde{v}_{\varepsilon}-v^{0}\right|^{2^{\sharp}-\varepsilon} d v_{\tilde{g}_{\varepsilon}}\right)+o(1) .
$$

Let estimate the following:

$$
\begin{array}{cc}
\int_{B_{\xi}\left(0, \frac{r}{4 k_{\varepsilon}}\right)-B_{\xi}(0, R)}\left|v^{0}\right|^{2^{\sharp}-\varepsilon} d v_{\tilde{g}_{\varepsilon}} \\
\leq & C(M, r)\left(\int_{B_{\xi}\left(0, \frac{r}{4 k_{\varepsilon}}\right)-B_{\xi}(0, R)} d v_{\xi}\right)^{\frac{\varepsilon}{2 \sharp}} \times\left(\int_{B_{\xi}\left(0, \frac{r}{4 k_{\varepsilon}}\right)-B_{\xi}(0, R)}\left|v^{0}\right|^{2^{\sharp}} d v_{\xi}\right)^{1-\frac{\varepsilon}{2^{\sharp}}} \\
\leq \quad C \frac{1}{\left(k_{\varepsilon}^{\varepsilon}\right)^{1 / 2^{\sharp}}}\left(\int_{\mathbb{R}^{n}-B_{\xi}(0, R)}\left|v^{0}\right|^{2^{\sharp}} d v_{\xi}\right)^{1-\frac{\varepsilon}{2 \sharp}}
\end{array}
$$

The fact that $k_{\varepsilon}^{\varepsilon} \rightarrow c \neq 0$ and $v^{0} \in L^{2^{\sharp}}\left(\mathbb{R}^{n}\right)$ imply that

$$
\int_{B_{\xi}\left(0, \frac{r}{4 k_{\varepsilon}}\right)-B_{\xi}(0, R)}\left|v^{0}\right|^{2^{\sharp}-\varepsilon} d v_{\tilde{g}_{\varepsilon}} \leq \varepsilon(R)
$$

where $\lim _{R \rightarrow+\infty} \varepsilon(R)=0$. There exists $C>0$ such that

$$
\left|\left|\tilde{v}_{\varepsilon}\right|^{2^{\sharp}-\varepsilon}-\left|\tilde{v}_{\varepsilon}-v^{0}\right|^{2^{\sharp}-\varepsilon}\right| \leq C\left(\left|\tilde{v}_{\varepsilon}\right|^{2^{\sharp}-1-\varepsilon}\left|v^{0}\right|+\left|v^{0}\right|^{2^{\sharp}-1-\varepsilon}\left|\tilde{v}_{\varepsilon}\right|+\left|v^{0}\right|^{2^{\sharp}-\varepsilon}\right) .
$$

The same kind of computations as before yield

$$
\begin{aligned}
\int_{B_{g}\left(x_{\varepsilon}, r / 4\right)} f\left|w_{\varepsilon}\right|^{2^{\sharp}-\varepsilon} d v_{g}= & \left(\frac{k_{\varepsilon}}{\mu_{\varepsilon}}\right)^{n-4}\left(\int_{B_{\xi}\left(0, \frac{r}{4 k_{\varepsilon}}\right)-B_{\xi}(0, R)} f\left(\exp _{x_{\varepsilon}}\left(k_{\varepsilon} x\right)\right)\left|\tilde{v}_{\varepsilon}\right|^{2^{\sharp}-\varepsilon} d v_{\tilde{g}_{\varepsilon}}\right) \\
& +o(1)+O(\varepsilon(R)) \\
= & \int_{B_{g}\left(x_{\varepsilon}, r / 4\right)} f\left|v_{\varepsilon}\right|^{2^{\sharp}-\varepsilon} d v_{g} \\
& -\left(\frac{k_{\varepsilon}}{\mu_{\varepsilon}}\right)^{n-4} \int_{B_{\xi}(0, R)} f\left(\exp _{x_{\varepsilon}}\left(k_{\varepsilon} x\right)\right)\left|\tilde{v}_{\varepsilon}\right|^{2^{\sharp}-\varepsilon} d v_{\tilde{g}_{\varepsilon}}+o(1)+O(\varepsilon(R))
\end{aligned}
$$

Thus, considering the limit of $k_{\varepsilon} / \mu_{\varepsilon}$, we obtain that

$$
J_{\varepsilon}\left(w_{\varepsilon}\right)=J_{\varepsilon}\left(w_{\varepsilon}\right)-c^{-\frac{(n-4)^{2}}{8}} \mathcal{E}_{x_{0}}\left(v^{0}\right)+o(1)
$$

which ends the proof of the lemma.
We apply the result of Lemma 1 to prove Theorem 1. Since $c^{-\frac{(n-4)^{2}}{8}} \mathcal{E}_{x_{0}}\left(v^{0}\right) \geq \beta^{\#}$, we inductively remove some bubbles from u_{ϵ}. In a finite number of times, we obtain a Palais-Smale sequence of energy strictly less than $\beta^{\#}$. With section 3 , this last sequence goes to zero strongly, and the theorem is proved.

References

[AmRa] A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications, Journal of Functional Analysis, 14, 1973, 349-381.
[DHL] Z. Djadli, E. Hebey, M. Ledoux, Paneitz type operators and applications, Duke Mathematical Journal, 104, 1, 2000, 129-169.
[EFJ] Edmunds, D.E., Fortunato, F., Janelli, E., Critical exponents, critical dimensions, and the biharmonic operator, Arch. Rational Mech. Anal., 112, 1990, 269-289.
[HeRo] Hebey, E.; Robert, F. Coercivity and Struwe's compactness for Paneitz type operators with constant coefficients, Calc. Var. Partial Differ. Equ., to appear.
[Lie] Lieb, E.H., Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Annals of Mathematics, 118, 1983, 349-374.
[Lin] C.S. Lin, A classification of solutions of a conformally invariant fourth order equation in \mathbb{R}^{n}, Commentarii Mathematici Helvetici, 73, 1998, 206-231.
[Lio] Lions, P.L., The concentration-compactness principle in the calculus of variations, the limit case, parts 1 and 2, Rev. Mat. Iberoam., 1 and 2, 1985, 145-201 and 45-121.
[Pan] S. Paneitz, A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds, Preprint, 1983.
[Str] M. Struwe, A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Mathematische Zeitschrift, 187, 1984, 511-517.

Université de Cergy-Pontoise, Département de Mathématiques - Site Saint-Martin, 2, Avenue Adolphe Chauvin, 95302 Cergy-Pontoise Cedex, France

E-mail address: Frederic.Robert@math.u-cergy.fr

