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Abstract. In 1984, Struwe gave a complete description of Palais-Smale sequences for a functional
arising in the study of nonlinear elliptic equations with critical Sobolev growth. Hebey and the

author gave a similar description in the Riemannian context for a functional involving the bi-

harmonic operator. We extend this result to more general functionals with nearly critical Sobolev
growth.

1. Introduction and statement of the results

Let (M, g) be a compact Riemannian manifold of dimension n ≥ 5. Let H2
2 (M) be the standard

Sobolev space defined as the completion of C∞(M) w.r.t. the norm

||u||H2
2 (M) =

√∫
M

(∆gu)2 dvg +

∫
M

|∇u|2g dvg +

∫
M

u2 dvg,

where ∆g = −divg(∇) is the Riemannian Laplacian and dvg is the Riemannian volume element on
M . We denote by 2] = 2n

n−4 the critical exponent for the Sobolev embeddings, that is H2
2 (M) ↪→

Lq(M) for q ≤ 2] is continuous, and compact if and only if q < 2]. A classical question is to find
conditions to obtain positive smooth solutions for the problem

∆gu+ au = fuq in M

where a, f are functions on M . This problem is well understood when q < n+2
n−2 , but the critical case

q = n+2
n−2 is quite intricate and has been intensively studied in the past years. We now generalize

this equation to the bi-harmonic operator and investigate for solutions u ∈ H2
2 (M) satisfying

∆2
gu− divg(A∇u) + au = f |u|2

]−2u in M(1)

where A ∈ Λ0
(2,0)(M) is a continuous symmetrical (2, 0)−tensor field, a, f ∈ C0(M). Such a solution

to our problem will be smooth at the cost of slightly further assumptions on A, a and f . As easily
checked, the problem of finding H2

2−solutions to (1) is precisely that of finding critical points for
the functional

I(u) =
1

2

∫
M

(∆gu)2 dvg +
1

2

∫
M

A(∇u,∇u) dvg +
1

2

∫
M

au2 dvg −
1

2]

∫
M

f |u|2
]

dvg

In their celebrated paper [AmRa], Ambrosetti and Rabinowitz introduced the mountain pass lemma
and constructed some Palais-Smale sequences for the functional I. We say that un ∈ H2

2 (M) for

Date: February 2001.

1
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all n ∈ N is a Palais-Smale sequence for I if{
I(un) is bounded

dI(un)→ 0 strongly in H2
2 (M)

′

It is natural to inquire whether un converges, and in which sense, to a function u solution of (1).
The lack of compactness due to the critical exponent 2] leads to serious difficulties. Therefore the
study of Palais-Smale sequences attempted to be crucial for the study of equation (1).

In 1984, Struwe studied Palais-Smale sequences for the following functional:

J(u) =

∫
Ω

|∇u|2ξ dvξ −
n− 2

2n

∫
Ω

|u|
2n
n−2 dvξ,

where Ω is an open bounded subset of Rn, ξ is the Euclidean metric and u ∈ H2
1,0(Ω), the completion

of smooth functions with compact support in Ω w.r.t. the norm

||u|| =

√∫
Ω

|∇u|2 dvξ.

In [Str], he gave a complete description of Palais-Smale sequences for the functional J .

In [HeRo], Hebey and the author rewrote this result for the functional I with f a positive constant
function. Our aim here is to generalize this result to the more general functional

Iε(u) =
1

2

∫
M

(∆gu)2 dvg +
1

2

∫
M

A(∇u,∇u) dvg +
1

2

∫
M

au2 dvg

− 1

2] − ε

∫
M

f |u|2
]−ε dvg,

where u ∈ H2
2 (M) and 0 ≤ ε < 2] − 2. It turns out that finding sequences verifying that{

Iε(uε) is bounded

dIε(uε)→ 0 strongly in H2
2 (M)

′

is easy through the mountain-pass lemma applied to the functional Iε. We say that such a sequence
is a Palais-Smale sequence for Iε.

To describe these sequences, we need some definitions. Let f ∈ C0(M). For p ∈M , we define

Ep(v) =
1

2

∫
Rn

(∆ξv)2 dvξ −
1

2]
f(p)

∫
Rn
|v|2

]

dvξ

for all v ∈ D2
2(Rn), where D2

2(Rn) is the completion of C∞c (Rn), the set of smooth functions with
compact support in Rn, w.r.t. the norm

||u|| =

√∫
Rn

(∆ξu)2 dvξ.

We denote by ig(M) > 0 the injectivity radius of (M, g), and take δ ∈]0,
ig(M)

2 [. We choose
η̃ ∈ C∞(Rn) such that η̃(x) = 1 if |x| ≤ δ and η̃(x) = 0 if |x| ≥ 2δ. We then define, for p ∈ M ,
ηp(x) = η̃(exp−1

p (x)) for dg(x, p) < ig(M) and 0 elsewhere.
Our result concerning Palais-Smale sequences is the following:
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Theorem 1. Let (uε)ε>0 ∈ H2
2 (M) be a Palais-Smale sequence for Iε, where a, f ∈ C0(M) and

A ∈ Λ0
(2,0)(M) is a continuous symmetrical (2, 0)−tensor field. We assume that (uε) is bounded in

H2
2 (M) (this occurs if f > 0 or if ∆2

g − divg(A∇) + a is coercive). Then

(i) ∃u0 ∈ H2
2 (M) a weak solution of (1)

(ii) there exists p ∈ N, there exist xε,1 → x1 ∈ M , ..., xε,p → xp ∈ M such that f(xi) > 0 for
all i = 1, ..., p,

(iii) there exist kε,i > 0 such that kε,i → 0 and kεε,i → ci ∈]0, 1], i = 1, ..., p,

(iv) there exist vi ∈ D2
2(Rn), i = 1, ..., p, weak nonzero solutions of

∆2
ξvi = f(xi)|vi|2

]−2vi,

verifying that, up to a subsequence,

||uε − u0 −
p∑
i=1

ηxε,iuε,i||H2
2 (M) → 0,

where

uε,i(x) = µ
−n−4

2
ε,i vi

(
exp−1

xε,i(x)

kε,i

)
for dg(x, xε,i) < ig(M), and

kε,i = µ
1−εn−4

8
ε,i .

Moreover, we have the following:

Iε(uε) = I0(u0) +

p∑
i=1

c
− (n−4)2

8
i Exi(vi) + o(1),

where the ci’s, given by point (iii) above, are positive constants in ]0, 1].

Let us make a few remarks:

Remark 1: If fε ∈ C0(M) converges to f ∈ C0(M) in C0-norm, let

Iε(u) =
1

2

∫
M

(∆gu)2 dvg +
1

2

∫
M

A(∇u,∇u) dvg +
1

2

∫
M

au2 dvg

− 1

2] − ε

∫
M

fε|u|2
]−ε dvg,

and

Ĩε(u) =
1

2

∫
M

(∆gu)2 dvg +
1

2

∫
M

A(∇u,∇u) dvg +
1

2

∫
M

au2 dvg

− 1

2] − ε

∫
M

f |u|2
]−ε dvg,

for u ∈ H2
2 (M). Then an H2

2 (M)−bounded Palais-Smale sequence for Iε is an H2
2 (M)−bounded

Palais-Smale sequence for Ĩε and we can apply the theorem.

Remark 2: It is natural to inquire whether ci = 1 for all i = 1, ..., p, that is kεε,i → 1. Actually,

ci can assume any value in ]0, 1], as shown in the following example. Let δ ∈]0,
ig(M)

2 [, c ∈]0, 1[,



4 FRÉDÉRIC ROBERT

x0 ∈M and v ∈ C∞(Rn) a positive solution of ∆2
ξv = v2]−1 (see [Lin] for the explicit form of these

solutions). We set

uε(x) = µ
−n−4

2
ε v

(
exp−1

x0
(x)

kε

)
η(exp−1

x0
(x))

with

µε = c
1
ε and kε = µ

1−εn−4
8

ε .

As easily checked, (uε) is a Palais-Smale sequence for the functional

u→ 1

2

∫
M

(∆gu)2 dvg −
1

2] − ε

∫
M

|u|2
]−ε dvg.

However kεε = c ∈]0, 1[. For the case c = 1, we can take kε = ε.

The proof of Theorem 1 follows closely the proof of Theorem 2.1 in [HeRo]. Here, the difficulty
is that the function f is allowed to change sign and that the exponent 2] − ε is subcritical.

2. Weak convergence of uε

Let (uε) ∈ H2
2 (M) be an H2

2−bounded Palais-Smale sequence for the functional Iε. There exists
u0 ∈ H2

2 (M) verifying that, up to a subsequence

uε ⇀ u0 weakly in H2
2 (M)

uε → u0 strongly in H2
1 (M)

uε(x)→ u0(x) for almost every x ∈M

Let ϕ ∈ C∞(M). We observe that

〈dIε(uε), ϕ〉 =

∫
M

∆guε∆gϕ+

∫
M

A(∇uε,∇ϕ) dvg +

∫
M

auεϕdvg −
∫
M

f |uε|2
]−2−εuεϕdvg.

Through classical arguments, u0 is a weak solution of

∆2
gu

0 − divg(A∇u0) + au0 = f |u0|2
]−2u0.

Moreover, if we set vε = uε − u0, then (vε) is an H2
2−bounded Palais-Smale sequence for the

functional

Jε(v) =
1

2

∫
M

(∆gv)2 dvg −
1

2] − ε

∫
M

f |v|2
]−ε dvg

and

Jε(vε) = Iε(uε)− I0(u0) + o(1).
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3. Critical energy

Assume that SupMf > 0. We define

β# =
2

n
K
−n4
0 (SupMf)−

n−4
4

where

1

K0
= Infu∈D2

2(Rn)−{0}

∫
Rn(∆ξu)2 dvξ(∫
Rn |u|2

] dvξ
) 2

2]

> 0.(2)

Its value has been explicitly computed in [EFJ], [Lie],[Lio]. We assume that Jε(vε) = β+ o(1) with
β < β#. The fact that vε is a Palais-Smale sequence for Jε implies that∫

M

(∆gvε)
2 dvg =

∫
M

f |vε|2
]−ε dvg + o(1) =

n

2
β + o(1).

We then have that β ≥ 0 and∫
M

f |vε|2
]−ε dvg ≤ (SupMf) V olg(M)

ε

2]

(∫
M

|vε|2
]−ε dvg

) 2]−ε
2]

Now, with [DHL], we know that for all ν > 0, there exists Bν > 0 such that the following Sobolev
inequality holds: (∫

M

|v|2
]

dvg

) 2

2]

≤ (K0 + ν)

∫
M

(∆gv)2 dvg +Bν

∫
M

v2 dvg

for all v ∈ H2
2 (M). We then obtain that

n

2
β + o(1) ≤ (SupMf) (1 + o(1))

(
(K0 + ν)(

n

2
β + o(1)) + o(1)

) 2]−ε
2

.

Letting ε go to zero, and then ν to zero, the preceding inequality becomes

n

2
β ≤ (SupMf)

(
K0

n

2
β
) 2]

2

,

if β > 0, then

β ≥ 2

n
K
−n4
0 (SupMf)−

n−4
4 = β#.

A contradiction. Thus β = 0 and vε goes to zero strongly in H2
2 (M).

If f ≤ 0, similar arguments show that (vε) goes to 0 strongly in H2
2 (M). We then have proved

the proposition

Proposition 1. If f ≤ 0, or if SupMf > 0 and β < β#, then vε goes to zero strongly in H2
2 (M).

4. Fundamental lemma

The next lemma is the main step in proving Theorem 1.

Lemma 1. Let (vε) a Palais-Smale sequence for Jε such that vε ⇀ 0 weakly in H2
2 (M), but not

strongly. Then there exist xε → x0 ∈ M such that f(x0) > 0, µε > 0 such that µε → 0 and
µεε → c ∈]0, 1], and v0 ∈ D2

2(Rn) a weak nonzero solution of

∆2
ξv

0 = f(x0)|v0|2
]−2v0,



6 FRÉDÉRIC ROBERT

such that the following holds: if we define

ṽε(x) = µ
−n−4

2
ε v0

(
exp−1

xε (x)

kε

)
for all x ∈ M such that dg(x, xε) < ig(M), and 0 elsewhere, where kε = µ

1−εn−4
8

ε , then, for all

δ ∈]0,
ig(M)

2 [,
wε = vε − ηxε ṽε

is a Palais-Smale sequence for Jε and

Jε(wε) = Jε(vε)− c−
(n−4)2

8 Ex0(v0) + o(1),

where o(1)→ 0 as ε→ 0.

Remark: Observe that, since v0 6≡ 0, the optimal Euclidean Sobolev inequality (2) leads us to

c−
(n−4)2

8 Ex0(v0) ≥ β#.

Proof of the lemma:
Since (vε) does not go to zero strongly, with section 3, we get that SupMf > 0 and Jε(vε) ≥

β# + o(1). Therefore ∫
M

f |vε|2
]−ε dvg ≥

n

2
β# + o(1).

We will need the following lemma. It is proved in detail in [HeRo].

Lemma 2. Let (M, g) a smooth compact Riemannian n−manifold. Then, there exist r ∈]0, ig(M)[,
(Ωi)i∈J an open covering of M , and C(M, r) > 1 such that the following holds: ∀R ≥ 1, ∀y ∈ M ,
if we note g̃y,R(x) = exp?yg

(
x
R

)
, then

1

C(M, r)

∫
Rn

(∆ξu)2 dvξ ≤
∫
Rn

(∆g̃y,Ru)2 dvg̃y,R ≤ C(M, r)

∫
Rn

(∆ξu)2 dvξ

for all u ∈ D2
2(Rn) having the property that Supp u ∈ Bξ(0, rR), and

1

C(M, r)

∫
Rn
|u| dvξ ≤

∫
Rn
|u| dvg̃y,R ≤ C(M, r)

∫
Rn
|u| dvξ

for all u ∈ L1(Rn) having the property that Supp u ∈ Bξ(0, rR).

4.1. Blow-up of vε. For 0 < kε, λε ≤ 1, xε ∈M and |x| < ig(M)
kε

, we set

ṽε(x) = λ
n−4
2

ε vε(expxε(kεx)),

g̃ε(x) = (exp?xεg)(kεx).

Let 0 < C0 < 2, 0 < ε0 < ig(M), (Ωi)i∈J an open covering of M such that for all i ∈ J
dg(expxu, expxv) ≤ C0|u− v|,

for all x ∈ Ωj , and u, v ∈ TxM such that |u|, |v| < ε0. Now, let z ∈ Rn and δ > 0 such that

|z|+ δ <
ig(M)
kε

, ∫
Bξ(z,δ)

(∆g̃ε ṽε)
2 dvg̃ε =

(
λε
kε

)n−4 ∫
expxε (kεBξ(z,δ))

(∆gvε)
2 dvg
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and ∫
Bξ(z,δ)

f(expxε)(kεx))|ṽε|2
]−ε dvg̃ε =

(
λε
kε

)n
λ
−εn−4

2
ε

∫
expxε (kεBξ(z,δ))

f |vε|2
]−ε dvg.

For |z|+ δ < ε0
kε

, we observe that

expxε(kεBξ(z, δ)) ⊂ Bg(expxε(kεz), C0δkε),

and that
expxε(kεBξ(0, C0δ)) = Bg(xε, C0δkε)

with δ <
ig(M)

2 . For 0 < µ ≤ 1, we now set

Mε(µ) = Supx∈M

∫
Bg(x,C0δµ)

f |vε|2
]−ε dvg,

and V = lim supε→0

∫
M
|vε|2

]−ε dvg. We claim that there exist x1 ∈M , λ̄ > 0 such that

lim sup
ε→0

∫
Bg(x1,C0δµ)

f |vε|2
]−ε dvg = λ̄.

Otherwise, for all x ∈M ,

lim sup
ε→0

∫
Bg(x,C0δµ)

f |vε|2
]−ε dvg ≤ 0.

Let M+ = {x ∈M/f(x) ≥ 0} ⊂
⋃q
i=1Bg(zi, C0δµ) with f(zi) ≥ 0 (compactness of M+). Then,∫

M

f |vε|2
]−ε dvg ≤

∫
M+

f |vε|2
]−ε dvg ≤

∫
q⋃
i=1

Bg(zi, C0δµ) ∩M+

f |vε|2
]−ε dvg

≤
∑
i=1...q

Bg(zi,C0δµ)

∫
Bg(zi,C0δµ)

f |vε|2
]−ε dvg

+

∫ ⋃
i=1...q

Bg(zi,C0δµ)∩M∗
− 6=∅

Bg(zi, C0δµ) ∩M+

f |vε|2
]−ε dvg

where M∗− = M −M+. Let 0 < α < nβ#

4V and β > 0 such that

dg(x, y) ≤ β ⇒ |f(x)− f(y)| ≤ α.

As one easily checks, with δ < β
2 , we obtain that for all x ∈ Bg(zi, C0δµ) such that Bg(zi, C0δµ) ∩

M∗− 6= ∅, |f(x)| ≤ 2α. Then,∫
M

f |vε|2
]−ε dvg ≤

∑
i=1...q

Bg(zi,C0δµ)

∫
Bg(zi,C0δµ)

f |vε|2
]−ε dvg

+2α

∫ ⋃
i=1...q

Bg(zi,C0δµ)∩M∗
− 6=∅

Bg(zi, C0δµ) ∩M+

f |vε|2
]−ε dvg.

Now, letting ε→ 0, one obtains that n
2β

# ≤ 2αV. A contradiction. The claim is proved.
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Then, for all 0 < µ ≤ 1, there exists x1 ∈M and λ̄ > 0 such that

lim sup
ε→0

∫
Bg(x1,C0δµ)

f |vε|2
]−ε dvg = λ̄.

Up to a subsequence, Mε(µ) ≥ λ̄
2 for all ε > 0 and Mε(0) = 0. Now let 0 < λ < λ̄

2 , λ will be
fixed later. The continuity of Mε yields the existence of 0 < kε ≤ 1 such that Mε(kε) = λ. The
compactness of M allows us to choose xε ∈M satisfying

λ =

∫
Bg(xε,C0δkε)

f |vε|2
]−ε dvg = Supx∈M

∫
Bg(x,C0δkε)

f |vε|2
]−ε dvg.(3)

4.2. H2
2−bound for ṽε. Let r > 0 as in Lemma 2. Let Ωε = Bξ(0,

r
kε

). We now choose ηr ∈
C∞(Rn) such that ηr ≡ 1 on Bξ(0, r/4) and ηr ≡ 0 on Rn − Bξ(0, r/2). We set η̃ε(x) = ηr(kεx).
As easily checked,

∫
Ωε

(∆g̃ε ṽε)
2 dvg̃ε =

(
λε
kε

)n−4 ∫
Bg(xε,r)

(∆gvε)
2 dvg

≤ C

(
λε
kε

)n−4

∫
Ωε

|∇ṽε|2g̃ε dvg̃ε =
1

k2
ε

(
λε
kε

)n−4 ∫
Bg(xε,r)

|∇vε|2g dvg

≤ C
1

k2
ε

(
λε
kε

)n−4

∫
Ωε

ṽ2
ε dvg̃ε =

1

k4
ε

(
λε
kε

)n−4 ∫
Bg(xε,r)

v2
ε dvg.

Thus η̃εṽε ∈ D2
2(Rn) and ∫

Rn
(∆g̃ε η̃εṽε)

2 dvg̃ε ≤ C
(
λε
kε

)n−4

.

If we choose λε = O(kε), then, with Lemma 2, the preceding inequality becomes

||η̃εṽε||D2
2(Rn) = O(1),

so, up to a subsequence, there exists v0 ∈ D2
2(Rn) having the property that

η̃εṽε ⇀ v0

weakly in D2
2(Rn).

4.3. An estimate on kεε. In this subsection, we rule out the case when kεε goes to zero. We first
observe that ∫

Bξ(0,C0δ)

f(expxε(kεx))|η̃εṽε|2
]−ε dvg̃ε =

(
λε
kε

)n (
λ−εε

)n−4
2 λ.

Moreover, thanks to Lemma 2,∫
Bξ(0,C0δ)

|η̃εṽε|2
]−ε dvg̃ε ≤ C

(
1 +

∫
Bξ(0,C0δ)

|η̃εṽε|2
]

dvξ

)
.
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We take λε = kε. In view of (2) and subsection 4.2,∫
Bξ(0,C0δ)

|η̃εṽε|2
]−ε dvg̃ε = O(1).

Consequently, λ (λ−εε )
n−4
2 = O(1), then kεε 6→ 0. We now let c ∈]0, 1] such that kεε → c (up to a

subsequence, of course).

4.4. Strong convergence for η̃εṽε. We now define µε > 0 chosen such that kε = µ
1−n−4

8 ε
ε . As

easily checked, kε
µε
→ c−

n−4
8 6= 0. We can apply the preceding results with λε = µε. Without loss of

generality, we can assume that vε ∈ C∞(M). Let y0 ∈ Rn. Since the embedding H2
2 (Bξ(y0, ρ)) ↪→

H2
3/2(∂Bξ(y0, ρ)) is compact, there exists ρ ∈ [δ, 2δ] such that

η̃εṽε|∂Bξ(y0,ρ) → v0
|∂Bξ(y0,ρ) strongly in H2

3/2(∂Bξ(y0, ρ)).

Let zε ∈ H2
2 (Bξ(y0, 3δ)−Bξ(y0, ρ)) such that

∆2
ξzε = 0 in Bξ(y0, 3δ)−Bξ(y0, ρ)

zε = 0 on ∂Bξ(y0, 3δ)
zε = η̃εṽε − v0 on ∂Bξ(y0, ρ),

and

ψε(x) =

 η̃εṽε − v0 in Bξ(y0, ρ)
zε in Bξ(y0, 3δ)
0 elsewhere.

Clearly ||zε||H2
2 (Rn−Bξ(y0,ρ)) = o(1) and ψε ∈ D2

2(Rn). We define

ψ̃ε(x) = µ
−n−4

2
ε ψε

(
exp−1

xε
(x)

kε

)
if dg(x, xε) < 6δ,

= 0 elsewhere.

Under the assumption that |y0| < δ
kε

, we have ψ̃ε ∈ H2
2 (M). Moreover, if δ < r

24 , then ηr(exp
−1
xε (x)) =

1 as soon as dg(x, xε) < 6δ. Some computations yield

〈dJε(vε), ψ̃ε〉 = (µεε)
− (n−4)2

8

(∫
Rn

∆g̃ε η̃εṽε∆g̃εψε dvg̃ε −
∫
Rn
f(expxε(kεx))|η̃εṽε|2

]−2−εη̃εṽεψ̃εdvg̃ε

)
.

In view of the fact that ||ψ̃ε||H2
2 (M) = O(||ψε||D2

2(Rn)), that (vε) is a Palais-Smale sequence for Jε,
and that µεε → c 6= 0, the equation becomes∫

Rn
∆g̃ε η̃εṽε∆g̃εψε dvg̃ε =

∫
Rn
f(expxε(kεx))|η̃εṽε|2

]−2−εη̃εṽεψ̃εdvg̃ε + o(1).

With the definition of ψε,∫
Rn

(∆g̃εψε)
2 dvg̃ε =

∫
Rn
f(expxε(kεx))|ψε|2

]−ε dvg̃ε + o(1).(4)

Basically, ∫
Rn
f(expxε(kεx))|ψε|2

]−ε dvg̃ε ≤ (1 + o(1)) (SupMf)

(∫
Rn
|ψε|2

]

dvg̃ε

)1− ε

2]

.
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Since |y0|+ 3δ < r
kε

, we have Suppψε ⊂ Bξ(0, rkε ). Therefore, Lemma 2 and (2) yield∫
Rn
f(expxε(kεx))|ψε|2

]−ε dvg̃ε ≤ (SupMf)C(M, r)1+ 2]

2 K
2]

2
0

(∫
Rn

(∆g̃εψε)
2 dvg̃ε

)1− ε

2]

.(5)

Independently, (4) and (5) together give(∫
Rn
f(expxε(kεx))|ψε|2

]−ε dvg̃ε

)

×

1− (SupMf)C(M, r)1+ 2]

2 K
2]

2
0

(∫
Rn
f(expxε(kεx))|ψε|2

]−ε dvg̃ε

) 2]

2 (1− ε

2]
)−1
 ≤ o(1).(6)

Recall that we have
∫
Rn f(expxε(kεx))|ψε|2

]−ε dvg̃ε =
∫
Bξ(y0,ρ)

f(expxε(kεx))|ψε|2
]−ε dvg̃ε + o(1).

Three different cases arise considering the sign of f :

• First case: f(expxε(kεx)) ≤ 0 for all x ∈ Bξ(y0, 3δ). Since ρ < 3δ, one easily gets that∫
Rn(∆g̃εψε)

2 dvg̃ε = o(1), and then, with Lemma 2,

ψε → 0 in D2
2(Rn).

• Second case: f(expxε(kεx)) changes sign in Bξ(y0, 3δ).
Let α > 0 that will be chosen later and β > 0 such that dg(x, y) < β ⇒ |f(x)−f(y)| < α.

As in the beginning of subsection 4.1, with δ < ε0
4 and δ < β

6 , we clearly obtain that

|f(expxε(kεx))| ≤ 2α ∀x ∈ Bξ(y0, 3δ).

Then, with Lemma 2∣∣∣∣∫
Rn
f(expxε(kεx))|ψε|2

]−ε dvg̃ε

∣∣∣∣ ≤ 2αC(M, r)

∫
Bξ(y0,ρ)

|ψε|2
]−ε dvξ + o(1).

But
||ψε||L2] (Bξ(y0,ρ))

= ||η̃εṽε − v0||
L2] (Bξ(y0,ρ))

≤ ||η̃εṽε||L2] (Bξ(y0,ρ))
+ ||v0||

L2] (Bξ(y0,ρ))

then
lim inf
ε→0

||ψε||L2] (Bξ(y0,ρ))
≤ 2 lim inf

ε→0
||η̃εṽε||L2] (Bξ(y0,ρ))

.

Note that we have that∫
Bξ(y0,δ)

|η̃εṽε|2
]

dvξ ≤ C(M, r)

(
µε
kε

)n ∫
M

|vε|2
]

dvg.

In view of the fact that µε ≤ kε, the inequality becomes

lim inf
ε→0

∫
Bξ(y0,ρ)

|ψε|2
]−ε dvξ ≤ C(M, r)222](lim inf

ε→0
||vε||L2] (M)

)2] .

Then,

1− (SupMf)C(M, r)1+ 2]

2 K
2]

2
0

(∫
Rn
f(expxε(kεx))|ψε|2

]−ε dvg̃ε

) 2]

2 (1− ε

2]
)−1

≥ 1− (SupMf) 2
(2]+1)(2]−2)

2 C(M, r)2×2]−2K
2]

2
0 lim inf

ε→0
||vε||

2] 2]−2
2

L2] (M)
α+ o(1) ≥ 1

2
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with α small enough. Then (6) yields∫
Rn
f(expxε(kεx))|ψε|2

]−ε dvg̃ε ≤ o(1)

and ∫
Rn

(∆g̃εψε)
2 dvg̃ε = o(1),

with Lemma 2, we get that

ψε → 0 in D2
2(Rn).

• Third case: We now assume that f(expxε(kεx)) ≥ 0 for all x ∈ Bξ(y0, 3δ). Let L ∈ N? such
that there exists ỹ1, ..., ỹL ∈ Bξ(0, 2) having the property that

Bξ(0, 2) ⊂
L⋃
i=1

Bξ(ỹi, 1).

Then, there exist y1, ..., yL ∈ Bξ(y0, 2δ) such that

Bξ(y0, 2δ) ⊂
L⋃
i=1

Bξ(yi, δ).

Standard integration theory yields∫
Rn
f(expxε(kεx))|ψε|2

]−ε dvg̃ε =

∫
Bξ(y0,ρ)

f(expxε(kεx))|ψε|2
]−ε dvg̃ε + o(1)

=

∫
Bξ(y0,ρ)

f(expxε(kεx))|η̃εṽε|2
]−ε dvg̃ε −

∫
Bξ(y0,ρ)

f(expxε(kεx))|v0|2
]−ε dvg̃ε + o(1)

≤
∫
Bξ(y0,2δ)

f(expxε(kεx))|η̃εṽε|2
]−ε dvg̃ε + o(1)

≤
L∑
i=1

∫
Bξ(yi,2δ)

f(expxε(kεx))|η̃εṽε|2
]−ε dvg̃ε + o(1)

≤
L∑
i=1

(
µε
kε

)n
(µ−εε )

n−4
2

∫
Bg(expxε (kεyi),C0δkε)

f |vε|2
]−ε dvg + o(1)

(these computations are valid provided δ < ε0/4 and δ < r/16). But
(
µε
kε

)n
(µ−εε )( n−4

2 ) =

(µεε)
(n−4)2

8 ≤ 1. The definition of λ in (3) yields∫
Rn
f(expxε(kεx))|ψε|2

]−ε dvg̃ε ≤ λL+ o(1).

As a consequence,

1− (SupMf)C(M, r)1+ 2]

2 K
2]

2
0

(∫
Rn
f(expxε(kεx))|ψε|2

]−ε dvg̃ε

) 2]

2 (1− ε

2]
)−1

≥ 1− (SupMf)C(M, r)1+ 2]

2 K
2]

2
0 (λL)

2]−2
2 + o(1).
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Choosing λ such that

0 < λ <
1(

2 (SupMf)C(M, r)1+ 2]

2 K
2]

2
0

) 2

2]−2

,

we obtain, as in the second case, that
∫
Rn f(expxε(kεx))|ψε|2

]−ε dvg̃ε ≤ o(1) and that

ψε → 0 in D2
2(Rn).

We have proved that

η̃εṽε → v0

strongly in H2
2 (Bξ(y0, δ)) for all y0 ∈ Rn such that |y0| < δ

kε
for ε → 0. But kε ≤ 1, C0 < 2 and

Bξ(0, C0δ) is covered by some balls of radius δ and having their center in Bξ(0, δ). Then

η̃εṽε → v0 strongly in H2
2 (Bξ(0, C0δ)).

Observe that

λ =

∫
Bg(xε,C0δkε)

f |vε|2
]−ε dvg =

(
kε
µε

)n
µ
εn−4

2
ε

∫
Bξ(0,C0δ)

f(expxε(kεx))|η̃εṽε|2
]−ε dvg̃ε .

Noting that f̃(x) = limε→0 f(expxε(kεx)) and g̃(x) = limε→0 g̃ε(x), we get

λ = c−
(n−4)2

8

∫
Bξ(0,C0δ)

f̃ |v0|2
]

dvg̃

so v0 6≡ 0. As a consequence, kε → 0. If not, since vε goes to 0 weakly, then ṽε would also go to 0
weakly. But v0 6≡ 0, a contradiction. Thus η̃εṽε goes to v0 strongly in H2

2 (Bξ(y0, δ)) for all y0 ∈ Rn.
This evidently shows that

ṽε → v0 strongly in H2
2,loc(Rn).

Now let ϕ ∈ C∞c (Rn) and R > 0 such that Suppϕ ⊂ Bξ(0, R). We define ϕε as follows:

ϕε(x) = µ
−n−4

2
ε ϕ

(
exp−1

xε (x)

kε

)
if dg(x, xε) < kεR

and 0 otherwise. Then ϕε ∈ C∞(M) and ||ϕε||H2
2 (M) = O(1). Since vε is a Palais-Smale sequence

for Jε,

o(1) = 〈dJε(vε), ϕε〉

=
(
kε
µε

)n−4 (∫
B(0,R)

∆g̃ε ṽε∆g̃εϕdvg̃ε

−
(
kε
µε

)4

(µεε)
n−4
2

∫
B(0,R)

f(expxε(kεx))|ṽε|2
]−2−εṽεϕdvg̃ε

)
.

Letting ε→ 0 and noting that kε = µ
1−εn−4

8
ε , the preceding equation becomes∫

Rn
∆ξv

0∆ξϕdvξ =

∫
Rn
f(x0)|v0|2

]−2v0ϕdvξ

where limε→0 xε = x0. Then v0 ∈ D2
2(Rn) attempts to be a weak solution of

∆2
ξv

0 = f(x0)|v0|2
]−2v0.(7)

Multiplying by v0 and integrating, we remark that f(x0) > 0.
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Now, let ηε(x) = ηr(exp−1
xε (x)) for |x| < ig(M) and 0 elsewhere. We define

Vε(x) = µ
−n−4

2
ε v0

(
exp−1

xε (x)

kε

)
ηε(x)

and

wε = vε − Vε.
The function Vε is usually called a bubble.

4.5. Weak limit of Vε. We briefly prove the weak convergence of Vε. Let ϕ ∈ C∞(M). For all
R > 0, ∣∣∣∣∣

∫
M−Bg(xε,Rkε)

Vεϕdvg

∣∣∣∣∣ ≤ C||ϕ||∞
(
kε
µε

)n−4
2

(∫
Bξ(0,

r
kε

)−Bξ(0,R)

|v0|2
]

dvξ

) 1

2]

∣∣∣∣∣
∫
Bg(xε,Rkε)

Vεϕdvg

∣∣∣∣∣ ≤ C||ϕ||∞
(
kε
µε

)n−4
2

k
n+4
2

ε

∫
Bξ(0,R)

|v0| dvξ

With similar estimates for
∫
M

(∇Vε,∇ϕ)g dvg and
∫
M

∆gVε∆gϕdvg, we prove that Vε goes to zero
weakly, and then

wε ⇀ 0 weakly in H2
2 (M).

4.6. Strong convergence of dJε(wε). We now estimate 〈dJε(wε), ϕ〉.

〈dJε(wε), ϕ〉 =

∫
M

∆gwε∆gϕdvg −
∫
M

f |wε|2
]−2−εwεϕdvg

=

∫
M

∆gvε∆gϕdvg −
∫
M

∆gVε∆gϕdvg −
∫
M

f |vε − Vε|2
]−2−ε(vε − Vε)ϕdvg

∫
M

∆gVε∆gϕdvg =

∫
Bg(xε,r)

∆gVε∆gϕdvg

=

∫
Bξ(0,α)

∆exp?xεg
Vε ◦ expxε∆exp?xεg

ϕ ◦ expxε dvexp?xεg∫
Bg(xε,r)−Bg(xε,α)

∆gVε∆gϕdvg

for all 0 < α < r. We have that∣∣∣∣∣
∫
Bg(xε,r)−Bg(xε,α)

∆gVε∆gϕdvg

∣∣∣∣∣ ≤ C||ϕ||H2
2 (M)

(∫
Bg(xε,r)−Bg(xε,α)

(∆gVε∆gϕ) dvg

) 1
2

≤ C||ϕ||H2
2 (M)

(
kε
µε

)n−4
(∫

Rn−Bξ(0, αkε )

|∇2
ξv

0|2 dvξ

) 1
2

≤ o(||ϕ||H2
2 (M)).
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The fact that the exponential map is a normal chart at 0 yields∫
M

∆gVε∆gϕdvg =

∫
Bξ(0,α)

∆ξVε ◦ expxε∆ξϕ ◦ expxε dvξ +O(α||ϕ||H2
2 (M)) + o(||ϕ||H2

2 (M)).

Now, let να ∈ C∞(Rn) such that να ≡ 1 in Bξ(0, α/2) and να ≡ 0 in Rn − Bξ(0, 3α/4). We
define ϕε ∈ C∞(Rn) such that

ϕε(x) = µ
n−4
2

ε να(kεx)ϕ ◦ expxε(kεx)

if dg(x, xε) ≤ ig(M)
kε

and 0 elsewhere. We obtain that∫
M

∆gVε∆gϕdvg =

∫
Bξ(0,α)

∆ξVε ◦ expxε∆ξναϕ ◦ expxε dvξ +O(α||ϕ||H2
2 (M)) + o(||ϕ||H2

2 (M)).

=

(
kε
µε

)n−4 ∫
Rn

∆ξv
0∆ξϕε dvξ +O(α||ϕ||H2

2 (M)) + o(||ϕ||H2
2 (M)).

Classical integration arguments assert that∫
M

f |vε − Vε|2
]−2−ε(vε − Vε)ϕdvg =

(
kε
µε

)n−4(
kε
µε

)4

(µεε)
n−4
2 f(x0)

∫
Rn
|v0|2

]−2v0ϕε dvξ

+O(α||ϕ||H2
2 (M)) +O(ε(R)||ϕ||H2

2 (M)) + o(||ϕ||H2
2 (M)),

where ε(R) goes to zero when R goes to +∞. Then

〈dJε(wε), ϕ〉 =

∫
M

∆gvε∆gϕdvg −
∫
M

f |vε|2
]−2−εvεϕdvg

−
(
kε
µε

)n−4(∫
Rn

∆ξv
0∆ξϕε dvξ − (µεε)

n−4
2 f(x0)

∫
Rn
|v0|2

]−2v0ϕε dvξ

)
+O(α||ϕ||H2

2 (M)) +O(ε(R)||ϕ||H2
2 (M)) + o(||ϕ||H2

2 (M)).

In view of kε = µ
1−εn−4

8
ε and (7), we obtain that

〈dJε(wε), ϕ〉 = O(α||ϕ||H2
2 (M)) +O(ε(R)||ϕ||H2

2 (M)) + o(||ϕ||H2
2 (M)).

Taking α > 0 small and R large enough, the preceding formula can be written as

dJε(wε)→ 0 strongly in H2
2 (M)′.

4.7. Convergence of Jε(wε). Concerning the energy Jε(wε), we similarly get that∫
M

(∆gwε)
2 dvg =

∫
M

(∆gvε)
2 dvg −

(
kε
µε

)n−4 ∫
Rn

(∆ξv
0)2 dvξ + o(1),

∫
M−Bg(xε,r/4)

f |wε|2
]−ε dvg =

∫
M−Bg(xε,r/4)

f |vε|2
]−ε dvg + o(1)

and that∫
Bg(xε,r/4)

f |wε|2
]−ε dvg =

(
kε
µε

)n−4
(∫

Bξ(0,
r

4kε
)−Bξ(0,R)

f(expxε(kεx))|ṽε − v0|2
]−ε dvg̃ε

)
+ o(1).
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Let estimate the following: ∫
Bξ(0,

r
4kε

)−Bξ(0,R)

|v0|2
]−ε dvg̃ε

≤ C(M, r)
(∫

Bξ(0,
r

4kε
)−Bξ(0,R)

dvξ

) ε

2] ×
(∫

Bξ(0,
r

4kε
)−Bξ(0,R)

|v0|2] dvξ
)1− ε

2]

≤ C 1

(kεε)1/2
]

(∫
Rn−Bξ(0,R)

|v0|2] dvξ
)1− ε

2]

The fact that kεε → c 6= 0 and v0 ∈ L2](Rn) imply that∫
Bξ(0,

r
4kε

)−Bξ(0,R)

|v0|2
]−ε dvg̃ε ≤ ε(R),

where limR→+∞ ε(R) = 0. There exists C > 0 such that∣∣∣|ṽε|2]−ε − |ṽε − v0|2
]−ε
∣∣∣ ≤ C (|ṽε|2]−1−ε|v0|+ |v0|2

]−1−ε|ṽε|+ |v0|2
]−ε
)
.

The same kind of computations as before yield∫
Bg(xε,r/4)

f |wε|2
]−ε dvg =

(
kε
µε

)n−4
(∫

Bξ(0,
r

4kε
)−Bξ(0,R)

f(expxε(kεx))|ṽε|2
]−ε dvg̃ε

)
+o(1) +O(ε(R))

=

∫
Bg(xε,r/4)

f |vε|2
]−ε dvg

−
(
kε
µε

)n−4 ∫
Bξ(0,R)

f(expxε(kεx))|ṽε|2
]−ε dvg̃ε + o(1) +O(ε(R))

Thus, considering the limit of kε/µε, we obtain that

Jε(wε) = Jε(wε)− c−
(n−4)2

8 Ex0
(v0) + o(1),

which ends the proof of the lemma.

We apply the result of Lemma 1 to prove Theorem 1. Since c−
(n−4)2

8 Ex0
(v0) ≥ β#, we inductively

remove some bubbles from uε. In a finite number of times, we obtain a Palais-Smale sequence of
energy strictly less than β#. With section 3, this last sequence goes to zero strongly, and the
theorem is proved.
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