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1. Introduction and statement of the results

Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3. We denote
by H2

1 (M) the standard Sobolev space of functions in L2(M) with one derivative in
L2(M). As is well known, it follows from Sobolev’s embedding theorem that there
exist A,B ∈ R such that(∫

M

|u|2
?

dvg

) 2
2?

≤ A
∫
M

|∇u|2g dvg +B

∫
M

u2 dvg (1)

for all u ∈ H2
1 (M), where 2? = 2n

n−2 is critical. The sharp constant A in (1) is

Aopt(M) = K(n, 2)−2, where

1

K(n, 2)2
=

4

n(n− 2)ω
4/n
n

and ωn is the volume of the unit n-sphere. In 1995, using intricate developments
from blow-up analysis, Hebey and Vaugon [HeVa2, HeVa3] proved that the sharp
constant Aopt(M) is attained in (1). It follows that there exists B0(g) > 0 such
that (∫

M

|u|2
?

dvg

) 2
2?

≤ K(n, 2)2

(∫
M

|∇u|2g dvg +B0(g)

∫
M

u2 dvg

)
(Iopt,g)

for all u ∈ H2
1 (M). Following Hebey [Heb2], we choose B0(g) such that it cannot

be lowered. Natural questions with respect to (Iopt,g), see Druet and Hebey [DrHe]
for a presentation in book form, are to compute B0(g), and to know wether or
not (Iopt,g) possesses extremal functions. Important notions with respect to these
questions are the notions of weakly critical and critical functions introduced by
Hebey and Vaugon [HeVa4]. These notions have independant applications and were
used by Druet [Dru] to prove the Brézis-Nirenberg conjecture on low dimensions.
For f a smooth function on M , we let

µg,f = inf

∫
M

(
|∇u|2g + fu2

)
dvg(∫

M
|u|2? dvg

) 2
2?

,

where the infimum is taken over the nonzero functions of H2
1 (M), and dvg is the

Riemannian volume element. It is by now standard that µg,f ≤ 1
K(n,2)2 . By

definition, following Hebey and Vaugon [HeVa4], we say that f is a weakly critical
function for g if µg,f = 1

K(n,2)2 , and we say that f is a critical function if it is
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weakly critical and such that µg,f̃ <
1

K(n,2)2 for all smooth functions f̃ satisfying

that f̃ ≤ f and f̃ 6≡ f . Let

B0(g)ext =
n− 2

4(n− 1)
max
M

Sg,

where Sg denotes the scalar curvature of g. It is easily checked that when n ≥ 4,
we always have that B0(g) ≥ B0(g)ext. Moreover, as proved by Djadli and Druet
[DjDr], one of the two following conditions hold:

(i) either B0(g) = B0(g)ext,
(ii) or (Iopt,g) possesses extremal functions.

We know since Hebey [Heb1] that there are examples of manifolds for which (i) is
true and (ii) is false. The examples in [Heb1] are in the conformal class of the unit
n-sphere, and we are left with the question (question (Q1) in [HeVa4]) of describing
the class of manifolds for which (i) is true and (ii) is false. Such a question is closely
related to the following conjecture of Hebey and Vaugon [HeVa4]: if n ≥ 6, the Weyl
curvature tensor Weylg of g vanishes up to the order 1 at some point x0, and f is a
smooth nonegative function vanishing at x0, then there exists gf ∈ [g] a conformal
metric to g such that the scalar curvature Sgf is maximal at x0 and such that
α = B0(gf )ext− f is a weakly critical function for gf . We prove in this article that
this conjecture is true. We also treat the case of the dimension n = 5. Concerning
terminology, we say that the Weyl tensor Weylg of g vanishes up to order p ≥ 1
at x0 if Weylg(x0) = 0 and ∇jWeylg(x0) = 0 for all 1 ≤ j ≤ p. Our main result
states as follows:

Theorem 1.1. Let (M, g) be a smooth compact Riemannian n-manifold, n ≥ 5, x0

a point in M , and f a smooth nonnegative nonzero function on M with the property
that f(x0) = 0. We assume that Weylg is null up to the order 2 at x0 if n = 5,
and up to the order 1 at x0 if n ≥ 6. Then there exists gf ∈ [g] a conformal metric
to g such that Sgf is maximal at x0 and such that α = n−2

4(n−1) maxM Sgf − f is a

weakly critical function for gf . In particular, for any smooth compact Riemannian
manifold (M, g) of dimension n ≥ 5, whose Weyl curvature tensor satisfies the
above conditions, there exists a conformal metric g̃ to g such that B0(g̃) = B0(g̃)ext
and (Iopt,g̃) does not possess extremal functions.

Hebey and Vaugon [HeVa4] also conjectured that the following surprising com-
plementary result to Theorem 1.1 should hold: if (M, g) is a smooth compact
Riemannian manifold of dimension n ≥ 6 such that its Weyl tensor is null up to the
order 2 at some point, then there exists g̃ ∈ [g] a conformal metric to g such that

B0(g̃) = B0(g̃)ext = V ol
−2/n
g̃ and such that (Iopt,g̃) possesses constant extremal

functions. In this statement, V olg̃ denotes the volume of M wrt the metric g̃. As
a remark, it easily follows from the approach we use to prove Theorem 1.1 that
this conjecture is also true. With respect to the mathematics developed in Hebey
and Vaugon [HeVa4], both conjectures reduce to the proof that for a blowing-up
sequence (uε) of solutions of the equations attached to the above problems, if x0

is the geometric concentration point of the sequence (uε), then dg(x0, xε) = O(µε)
where the xε’s are the centers and the µε’s are the weights of the bubbles developed
by the uε’s.

Acknowledgements: The author expresses his deep thanks to Emmanuel Hebey
for stimulating discussions and valuable comments on this work.
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2. Proof of theorem 1.1

When possible, we follow the approach developed in [HeVa4]. Let (M, g) be a
compact Riemannian manifold of dimension n ≥ 3. We first assume that n ≥ 6
and that there exists x0 ∈ M such that Weylg(x0) = 0 and ∇Weylg(x0) = 0. Up
to a conformal change of metric (see for instance Lee-Parker [LePa] and [HeVa1]),
we can assume that

Rmg(x0) = 0 and ∇Rmg(x0) = 0. (2)

Here Rmg and ∇Rmg denote the Riemann tensor and its covariant derivative. Note
that in this case, ∇iSg(x0) = 0 for i = 0...2. We denote by [g] the conformal class
of the metric g and

[g]s =
{
g̃ ∈ [g] s.t. Sg̃(x0) = max

M
Sg̃

}
.

We let f ∈ C∞(M)− {0} such that for any x ∈M ,

f(x) ≥ f(x0) = 0. (3)

In this section, we prove that there exists g̃ ∈ [g]s such that αg̃ = cn maxM Sg̃ − f
is a weakly critical function. Here and in the sequel, we let cn = n−2

4(n−1) . We argue

by contradiction, and assume that for any g̃ ∈ [g]s,

inf
u∈H2

1 (M)\{0}

∫
M

(
|∇u|2g̃ + αg̃u

2
)
dvg̃(∫

M
|u|2? dvg̃

) 2
2?

<
1

K(n, 2)2
.

Letting ϕ ∈ C∞(M) positive such that g̃ = ϕ
4

n−2 g, the preceding inequality is
equivalent to

inf
u∈H2

1 (M)\{0}

∫
M

(
|∇u|2g + hϕu

2
)
dvg(∫

M
|u|2? dvg

) 2
2?

<
1

K(n, 2)2
, (4)

where

hϕ = cnSg + ϕ2?−2
(
cn(max

M
Sg̃ − Sg̃)− f

)
(5)

for all positive functions ϕ. Let δ ∈ (0, ig(M)/2), where ig(M) is the injectivity ra-
dius of (M, g), and η ∈ C∞(M) such that η ≡ 1 in Bx0

(δ) and η ≡ 0 in M\Bx0
(2δ).

We also let c > 0 and consider the function

ϕε(x) =
η(x)

(ε2 + dg(x, x0)2)
n−2
8

+ (1− η(x))c.

Clearly, ϕε is smooth and positive.

Step 1: It follows from [HeVa4] that the metric gε = ϕ
4

n−2
ε g belongs to [g]s for

small ε. Moreover, noting hε = hϕε , we get that

hε(x) ≥ a(ε)dg(x, x0)2 (6)

for all x ∈M and all ε > 0, with

lim
ε→0

a(ε) = +∞. (7)

It is by now classical that it follows from (4) that there exists uε ∈ C∞(M) positive
such that

∆guε + hεuε = λεu
2?−1
ε and

∫
M

u2?

ε dvg = 1 (Eε)
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where

λε = µg,hε <
1

K(n, 2)2
(8)

It then follows that uε ⇀ 0 weakly in H2
1 (M) when ε→ 0. We refer to [HeVa4] for

the details. We let xε ∈M and µε > 0 such that

max
M

uε = uε(xε) = µ
−n−2

2
ε .

Since uε ⇀ 0 weakly in H2
1 (M), it follows from (Eε) that limε→0 µε = 0. We let

yε ∈M such that

dg(xε, yε)

µε
= O(1)

when ε → 0. With (6), it follows from [DrRo], see also [DrHe], that there exists
C > 0 such that

dg(yε, x)
n−2
2 uε(x) ≤ C and uε(x) ≤ C

(
µε

µ2
ε + dg(x, yε)2

)n−2
2

(9)

for all x ∈ M and ε > 0. Moreover, it follows from [HeVa4] that yε → x0 when
ε→ 0.

Step 2: We denote by expyε the exponential map at yε with respect to the metric
g. We let ũε(x) = uε(expyε(x)) for all x ∈ B0(3δ) and gε = exp?yεg the pullback

metric of g via the exponential chart at yε. In the sequel, we denote by gijε the
coordinates of g−1, the inverse of the metric tensor, via the chart expyε . We let
δ ∈ (0, ig(M)/3). We let η ∈ C∞(Rn) such that η ≡ 1 in B0(δ) and η ≡ 0 in
Rn\B0(2δ). Th optimal Euclidean Sobolev inequality asserts that(∫

Rn
|u|2

?

dx

) 2
2?

≤ K(n, 2)2

∫
Rn
|∇u|2ξ dx,

for all smooth compactly supported function u on Rn. It follows from this inequality
that (∫

Rn
(ηũε)

2? dx

) 2
2?

≤ K(n, 2)2

∫
Rn
|∇(ηũε)|2ξ dx. (10)

We denote the volume element by dvgε =
√
|gε| dx. We then get that∫

Rn
(ηũε)

2? dx (11)

= 1 +

∫
B0(δ)

ũ2?

ε (1−
√
|gε|) dx+

∫
B0(2δ)\B0(δ)

(ηũε)
2? dx−

∫
M\Byε (δ)

u2?

ε dvg.

It follows from Cartan’s expansion of the metric that

gijε (x) = δij +O
(
|Rmg(yε)|g|x|2 + |∇Rmg(yε)|g|x|3 + |x|4

)
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uniformly for x ∈ B0(3δ) when ε→ 0. Plugging this expansion in (11), using (Eε)
and (9), we get that∣∣∣∣∣

(∫
Rn

(ηũε)
2? dvξ

) 2
2?

− 1

∣∣∣∣∣ ≤ C|Rmg(yε)|g
∫
B0(δ)

ũ2
ε dx (12)

+C|∇Rmg(yε)|g
∫
B0(δ)

|x|ũ2
ε dx+ C

∫
B0(δ)

|x|2ũ2
ε dx+ C

∫
M\Byε (δ)

ũ2
ε dx.

We now deal with the LHS of (10). Clearly,∫
Rn
|∇(ηũε)|2ξ dvξ =

∫
Rn
gijε ∂i(ηũε)∂j(ηũε)

√
|gε| dx

+

∫
Rn
gijε ∂i(ηũε)∂j(ηũε)

(
1−

√
|gε|
)
dx+

∫
Rn

(
δij − gijε

)
∂i(ηũε)∂j(ηũε) dx

Noting ηε = η ◦ exp−1
yε , integrating the first term of the RHS by parts and using

Cartan’s expansion of the metric, we then get that∫
Rn
|∇(ηũε)|2ξ dvξ =

∫
M

η2
εuε∆guε dvg +

∫
M

|∇ηε|2gu2
ε dvg

+O

(∫
M

(
|Rmg(yε)|gr2 + |∇Rmg(yε)|gr3 + r4

)
|∇(ηεuε)|2g dvg

)
where r = dg(x, yε). Integrating by parts the last term of the RHS, using equation
(Eε), the estimate (9) and that hε ≥ 0, we get that∫

Rn
|∇(ηũε)|2ξ dvξ ≤ λε − λε

∫
M

η2
εhεu

2
ε dvg (13)

+C|Rmg(yε)|g
∫
Byε (δ)

u2
ε dvg + C|∇Rmg(yε)|g

∫
Byε (δ)

ru2
ε dvg

+C

∫
Byε (δ)

r2u2
ε dvg + C

∫
M\Byε (δ)

u2
ε dvg,

in this expression, r = dg(x, yε). Plugging (12) and (13) into (10) and using (8),
we get that∫

Byε (δ)

hεu
2
ε dvg ≤ C|Rmg(yε)|g

∫
Byε (δ)

u2
ε dvg + C|∇Rmg(yε)|g

∫
Byε (δ)

ru2
ε dvg

+C

∫
Byε (δ)

r2u2
ε dvg + C

∫
M\Byε (δ)

u2
ε dvg

in this expression, r = dg(x, yε). It follows from [HeVa4] that∫
M\Byε (δ)

u2
ε dvg = o

(∫
Byε (δ)

hεu
2
ε dvg

)
.

It then follows from these last two estimates that∫
Byε (δ)

hεu
2
ε dvg ≤ C|Rmg(yε)|g

∫
Byε (δ)

u2
ε dvg

+C|∇Rmg(yε)|g
∫
Byε (δ)

dg(x, yε)u
2
ε dvg + C

∫
Byε (δ)

dg(x, yε)
2u2
ε dvg.
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Since dg(x, yε)
2 ≤ 2dg(x, x0)2 + 2dg(x0, yε)

2, we get with (6) and (7) that∫
Byε (δ)

hεu
2
ε dvg ≤ C ·

(
dg(x0, yε)

2 + |Rmg(yε)|g
)
·
∫
Byε (δ)

u2
ε dvg

+C|∇Rmg(yε)|g
∫
Byε (δ)

dg(x, yε)u
2
ε dvg. (14)

With (2), we then get that∫
Byε (δ)

hεu
2
ε dvg ≤ Cdg(x0, yε)

2

∫
Byε (δ)

u2
ε dvg

+Cdg(x0, yε)

∫
Byε (δ)

dg(x, yε)u
2
ε dvg (15)

as soon as
dg(xε,yε)

µε
= O(1) when ε→ 0.

Step 3: We claim that
dg(xε, x0)

µε
= O(1) (16)

when ε→ 0. We prove the claim by contradiction and assume that

lim
ε→0

dg(xε, x0)

µε
= +∞. (17)

Inequality (15) is obviously verified with yε = xε. Since Bxε(µε) ⊂ Bxε(δ) when
ε→ 0, we get with a change of variable that

µ2
ε

∫
B0(1)

hε(expxε(µεx))v2
ε dvg̃ε ≤ Cdg(x0, xε)

2µ2
ε

∫
B0(δµ−1

ε )

v2
ε dvg̃ε

+Cdg(x0, xε)µ
3
ε

∫
B0(δµ−1

ε )

|x|v2
ε dvg̃ε ,

where vε(x) = µ
n−2
2

ε uε(expyε(µεx)) for all x ∈ B0(δ/µε) and g̃ε = exp?xεg(µεx) =
gε(µεx). For any x ∈ B0(1), we get with (17) that

dg(x0, expxε(µεx)) ≥ dg(x0, xε)− µε ≥
1

2
dg(x0, xε).

With the lower bound (6) of hε, we then get that

a(ε)dg(x0, xε)
2µ2
ε

∫
B0(1)

v2
ε dvg̃ε ≤ Cdg(x0, xε)

2µ2
ε

∫
B0(δµ−1

ε )

v2
ε dvg̃ε

+Cdg(x0, xε)µ
3
ε

∫
B0(δµ−1

ε )

|x|v2
ε dvg̃ε .

It follows from Moser’s iterative scheme (see for instance [DrRo]) that∫
B0(1)

v2
ε dvg̃ε ≥ Cvε(0) = C > 0.

Using the estimates (9) and assuming that n ≥ 6, we get that

a(ε)dg(x0, xε)
2µ2
ε ≤ Cdg(x0, yε)

2µ2
ε + Cdg(x0, yε)µ

3
ε .

A contradiction with (7) and (17). Then (16) holds. This proves the claim.

It follows from (16) that (15) holds with yε = x0. A contradiction, since hε ≥
0. We have then contradicted our initial assumption (4). Then there exists g̃
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conformal to g such that cn maxM Sg̃ − f is a weakly critical function. Now we
claim that B0(g̃) has no extremal function. We prove the claim by contradiction
and assume that B0(g̃) has an extremal function. By definition, B0(g̃) is weakly
critical: since it has an extremal function, it is a critical function. Since B0(g̃) ≥
cn maxM Sg̃ ≥ cn maxM Sg̃ − f (see for instance [HeVa4]) and cn maxM Sg̃ − f is
weakly critical, we get that B0(g̃) = cn maxM Sg̃ = cn maxM Sg̃−f and then f ≡ 0.
A contradiction with the choice of f in (3). Then B0(g̃) has no extremal function.
It then follows from [DjDr] that B0(g̃) = B0(g̃)ext. This proves Theorem 1.1 when
n ≥ 6. Concerning the case of dimension n = 5, the proof is similar and uses
inequality (14). Note also that when ∇iWeylg(x0) = 0 for i = 0...2, it follows from
[HeVa1] that we can assume that ∇iRmg(x0) = 0 for i = 0...2 up to a conformal
change of metric. This ends the proof of Theorem 1.1.
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