CRITICAL FUNCTIONS AND OPTIMAL SOBOLEV INEQUALITIES

FRÉDÉRIC ROBERT

1. INTRODUCTION AND STATEMENT OF THE RESULTS

Let (M, g) be a compact Riemannian manifold of dimension $n \geq 3$. We denote by $H_1^2(M)$ the standard Sobolev space of functions in $L^2(M)$ with one derivative in $L^2(M)$. As is well known, it follows from Sobolev's embedding theorem that there exist $A, B \in \mathbb{R}$ such that

$$\left(\int_{M} |u|^{2^{\star}} dv_g\right)^{\frac{2}{2^{\star}}} \le A \int_{M} |\nabla u|_g^2 dv_g + B \int_{M} u^2 dv_g \tag{1}$$

for all $u \in H_1^2(M)$, where $2^* = \frac{2n}{n-2}$ is critical. The sharp constant A in (1) is $A_{opt}(M) = K(n,2)^{-2}$, where

$$\frac{1}{K(n,2)^2} = \frac{4}{n(n-2)\omega_n^{4/n}}$$

and ω_n is the volume of the unit *n*-sphere. In 1995, using intricate developments from blow-up analysis, Hebey and Vaugon [HeVa2, HeVa3] proved that the sharp constant $A_{opt}(M)$ is attained in (1). It follows that there exists $B_0(g) > 0$ such that

$$\left(\int_{M} |u|^{2^{\star}} dv_{g}\right)^{\frac{2}{2^{\star}}} \le K(n,2)^{2} \left(\int_{M} |\nabla u|_{g}^{2} dv_{g} + B_{0}(g) \int_{M} u^{2} dv_{g}\right) \qquad (I_{opt,g})$$

for all $u \in H_1^2(M)$. Following Hebey [Heb2], we choose $B_0(g)$ such that it cannot be lowered. Natural questions with respect to $(I_{opt,g})$, see Druet and Hebey [DrHe] for a presentation in book form, are to compute $B_0(g)$, and to know wether or not $(I_{opt,g})$ possesses extremal functions. Important notions with respect to these questions are the notions of weakly critical and critical functions introduced by Hebey and Vaugon [HeVa4]. These notions have independent applications and were used by Druet [Dru] to prove the Brézis-Nirenberg conjecture on low dimensions. For f a smooth function on M, we let

$$\mu_{g,f} = \inf \frac{\int_M \left(|\nabla u|_g^2 + f u^2 \right) \, dv_g}{\left(\int_M |u|^{2^{\star}} \, dv_g \right)^{\frac{2}{2^{\star}}}},$$

where the infimum is taken over the nonzero functions of $H_1^2(M)$, and dv_g is the Riemannian volume element. It is by now standard that $\mu_{g,f} \leq \frac{1}{K(n,2)^2}$. By definition, following Hebey and Vaugon [HeVa4], we say that f is a weakly critical function for g if $\mu_{g,f} = \frac{1}{K(n,2)^2}$, and we say that f is a critical function if it is

Date: July 2003.

weakly critical and such that $\mu_{g,\tilde{f}} < \frac{1}{K(n,2)^2}$ for all smooth functions \tilde{f} satisfying that $\tilde{f} \leq f$ and $\tilde{f} \neq f$. Let

$$B_0(g)_{ext} = \frac{n-2}{4(n-1)} \max_M S_g$$

where S_g denotes the scalar curvature of g. It is easily checked that when $n \ge 4$, we always have that $B_0(g) \ge B_0(g)_{ext}$. Moreover, as proved by Djadli and Druet [DjDr], one of the two following conditions hold:

(i) either $B_0(g) = B_0(g)_{ext}$,

(ii) or $(I_{opt,g})$ possesses extremal functions.

We know since Hebey [Heb1] that there are examples of manifolds for which (i) is true and (ii) is false. The examples in [Heb1] are in the conformal class of the unit *n*-sphere, and we are left with the question (question (Q1) in [HeVa4]) of describing the class of manifolds for which (i) is true and (ii) is false. Such a question is closely related to the following conjecture of Hebey and Vaugon [HeVa4]: if $n \ge 6$, the Weyl curvature tensor $Weyl_g$ of g vanishes up to the order 1 at some point x_0 , and f is a smooth nonegative function vanishing at x_0 , then there exists $g_f \in [g]$ a conformal metric to g such that the scalar curvature S_{g_f} is maximal at x_0 and such that $\alpha = B_0(g_f)_{ext} - f$ is a weakly critical function for g_f . We prove in this article that this conjecture is true. We also treat the case of the dimension n = 5. Concerning terminology, we say that the Weyl tensor $Weyl_g$ of g vanishes up to order $p \ge 1$ at x_0 if $Weyl_g(x_0) = 0$ and $\nabla^j Weyl_g(x_0) = 0$ for all $1 \le j \le p$. Our main result states as follows:

Theorem 1.1. Let (M, g) be a smooth compact Riemannian n-manifold, $n \geq 5$, x_0 a point in M, and f a smooth nonnegative nonzero function on M with the property that $f(x_0) = 0$. We assume that $Weyl_g$ is null up to the order 2 at x_0 if n = 5, and up to the order 1 at x_0 if $n \geq 6$. Then there exists $g_f \in [g]$ a conformal metric to g such that S_{g_f} is maximal at x_0 and such that $\alpha = \frac{n-2}{4(n-1)} \max_M S_{g_f} - f$ is a weakly critical function for g_f . In particular, for any smooth compact Riemannian manifold (M, g) of dimension $n \geq 5$, whose Weyl curvature tensor satisfies the above conditions, there exists a conformal metric \tilde{g} to g such that $B_0(\tilde{g}) = B_0(\tilde{g})_{ext}$ and $(I_{opt,\tilde{g}})$ does not possess extremal functions.

Hebey and Vaugon [HeVa4] also conjectured that the following surprising complementary result to Theorem 1.1 should hold: if (M, g) is a smooth compact Riemannian manifold of dimension $n \geq 6$ such that its Weyl tensor is null up to the order 2 at some point, then there exists $\tilde{g} \in [g]$ a conformal metric to g such that $B_0(\tilde{g}) = B_0(\tilde{g})_{ext} = Vol_{\tilde{g}}^{-2/n}$ and such that $(I_{opt,\tilde{g}})$ possesses constant extremal functions. In this statement, $Vol_{\tilde{g}}$ denotes the volume of M wrt the metric \tilde{g} . As a remark, it easily follows from the approach we use to prove Theorem 1.1 that this conjecture is also true. With respect to the mathematics developed in Hebey and Vaugon [HeVa4], both conjectures reduce to the proof that for a blowing-up sequence (u_{ϵ}) of solutions of the equations attached to the above problems, if x_0 is the geometric concentration point of the sequence (u_{ϵ}) , then $d_g(x_0, x_{\epsilon}) = O(\mu_{\epsilon})$ where the x_{ϵ} 's are the centers and the μ_{ϵ} 's are the weights of the bubbles developed by the u_{ϵ} 's.

Acknowledgements: The author expresses his deep thanks to Emmanuel Hebey for stimulating discussions and valuable comments on this work.

2. Proof of theorem 1.1

When possible, we follow the approach developed in [HeVa4]. Let (M, g) be a compact Riemannian manifold of dimension $n \geq 3$. We first assume that $n \geq 6$ and that there exists $x_0 \in M$ such that $Weyl_g(x_0) = 0$ and $\nabla Weyl_g(x_0) = 0$. Up to a conformal change of metric (see for instance Lee-Parker [LePa] and [HeVa1]), we can assume that

$$Rm_q(x_0) = 0 \text{ and } \nabla Rm_q(x_0) = 0.$$
⁽²⁾

Here Rm_g and ∇Rm_g denote the Riemann tensor and its covariant derivative. Note that in this case, $\nabla^i S_g(x_0) = 0$ for i = 0...2. We denote by [g] the conformal class of the metric g and

$$[g]_{s} = \left\{ \tilde{g} \in [g] \text{ s.t. } S_{\tilde{g}}(x_{0}) = \max_{M} S_{\tilde{g}} \right\}.$$

We let $f \in C^{\infty}(M) - \{0\}$ such that for any $x \in M$,
 $f(x) \ge f(x_{0}) = 0.$ (3)

In this section, we prove that there exists $\tilde{g} \in [g]_s$ such that $\alpha_{\tilde{g}} = c_n \max_M S_{\tilde{g}} - f$ is a weakly critical function. Here and in the sequel, we let $c_n = \frac{n-2}{4(n-1)}$. We argue by contradiction, and assume that for any $\tilde{g} \in [g]_s$,

$$\inf_{u \in H_1^2(M) \setminus \{0\}} \frac{\int_M \left(|\nabla u|_{\tilde{g}}^2 + \alpha_{\tilde{g}} u^2 \right) \, dv_{\tilde{g}}}{\left(\int_M |u|^{2^\star} \, dv_{\tilde{g}} \right)^{\frac{2}{2^\star}}} < \frac{1}{K(n,2)^2}.$$

Letting $\varphi \in C^{\infty}(M)$ positive such that $\tilde{g} = \varphi^{\frac{4}{n-2}}g$, the preceding inequality is equivalent to

$$\inf_{u \in H_1^2(M) \setminus \{0\}} \frac{\int_M \left(|\nabla u|_g^2 + h_\varphi u^2 \right) \, dv_g}{\left(\int_M |u|^{2^\star} \, dv_g \right)^{\frac{2}{2^\star}}} < \frac{1}{K(n,2)^2},\tag{4}$$

where

$$h_{\varphi} = c_n S_g + \varphi^{2^{\star} - 2} \left(c_n (\max_M S_{\tilde{g}} - S_{\tilde{g}}) - f \right)$$
(5)

for all positive functions φ . Let $\delta \in (0, i_g(M)/2)$, where $i_g(M)$ is the injectivity radius of (M, g), and $\eta \in C^{\infty}(M)$ such that $\eta \equiv 1$ in $B_{x_0}(\delta)$ and $\eta \equiv 0$ in $M \setminus B_{x_0}(2\delta)$. We also let c > 0 and consider the function

$$\varphi_{\epsilon}(x) = \frac{\eta(x)}{(\epsilon^2 + d_g(x, x_0)^2)^{\frac{n-2}{8}}} + (1 - \eta(x))c$$

Clearly, φ_{ϵ} is smooth and positive.

Step 1: It follows from [HeVa4] that the metric $g_{\epsilon} = \varphi_{\epsilon}^{\frac{4}{n-2}}g$ belongs to $[g]_s$ for small ϵ . Moreover, noting $h_{\epsilon} = h_{\varphi_{\epsilon}}$, we get that

$$h_{\epsilon}(x) \ge a(\epsilon)d_g(x, x_0)^2 \tag{6}$$

for all $x \in M$ and all $\epsilon > 0$, with

$$\lim_{\epsilon \to 0} a(\epsilon) = +\infty. \tag{7}$$

It is by now classical that it follows from (4) that there exists $u_{\epsilon} \in C^{\infty}(M)$ positive such that

$$\Delta_g u_{\epsilon} + h_{\epsilon} u_{\epsilon} = \lambda_{\epsilon} u_{\epsilon}^{2^{\star} - 1} \text{ and } \int_M u_{\epsilon}^{2^{\star}} dv_g = 1 \qquad (E_{\epsilon})$$

where

$$\lambda_{\epsilon} = \mu_{g,h_{\epsilon}} < \frac{1}{K(n,2)^2} \tag{8}$$

It then follows that $u_{\epsilon} \rightharpoonup 0$ weakly in $H_1^2(M)$ when $\epsilon \rightarrow 0$. We refer to [HeVa4] for the details. We let $x_{\epsilon} \in M$ and $\mu_{\epsilon} > 0$ such that

$$\max_{M} u_{\epsilon} = u_{\epsilon}(x_{\epsilon}) = \mu_{\epsilon}^{-\frac{n-2}{2}}$$

Since $u_{\epsilon} \rightarrow 0$ weakly in $H_1^2(M)$, it follows from (E_{ϵ}) that $\lim_{\epsilon \to 0} \mu_{\epsilon} = 0$. We let $y_{\epsilon} \in M$ such that

$$\frac{d_g(x_\epsilon, y_\epsilon)}{\mu_\epsilon} = O(1)$$

when $\epsilon \to 0$. With (6), it follows from [DrRo], see also [DrHe], that there exists C > 0 such that

$$d_g(y_{\epsilon}, x)^{\frac{n-2}{2}} u_{\epsilon}(x) \le C \text{ and } u_{\epsilon}(x) \le C \left(\frac{\mu_{\epsilon}}{\mu_{\epsilon}^2 + d_g(x, y_{\epsilon})^2}\right)^{\frac{n-2}{2}} \tag{9}$$

for all $x \in M$ and $\epsilon > 0$. Moreover, it follows from [HeVa4] that $y_{\epsilon} \to x_0$ when $\epsilon \to 0$.

Step 2: We denote by $exp_{y_{\epsilon}}$ the exponential map at y_{ϵ} with respect to the metric g. We let $\tilde{u}_{\epsilon}(x) = u_{\epsilon}(exp_{y_{\epsilon}}(x))$ for all $x \in B_0(3\delta)$ and $g_{\epsilon} = exp_{y_{\epsilon}}^*g$ the pullback metric of g via the exponential chart at y_{ϵ} . In the sequel, we denote by g_{ϵ}^{ij} the coordinates of g^{-1} , the inverse of the metric tensor, via the chart $exp_{y_{\epsilon}}$. We let $\delta \in (0, i_g(M)/3)$. We let $\eta \in C^{\infty}(\mathbb{R}^n)$ such that $\eta \equiv 1$ in $B_0(\delta)$ and $\eta \equiv 0$ in $\mathbb{R}^n \setminus B_0(2\delta)$. Th optimal Euclidean Sobolev inequality asserts that

$$\left(\int_{\mathbb{R}^n} |u|^{2^*} dx\right)^{\frac{2}{2^*}} \le K(n,2)^2 \int_{\mathbb{R}^n} |\nabla u|_{\xi}^2 dx,$$

for all smooth compactly supported function u on $\mathbb{R}^n.$ It follows from this inequality that

$$\left(\int_{\mathbb{R}^n} (\eta \tilde{u}_{\epsilon})^{2^{\star}} dx\right)^{\frac{2}{2^{\star}}} \le K(n,2)^2 \int_{\mathbb{R}^n} |\nabla(\eta \tilde{u}_{\epsilon})|_{\xi}^2 dx.$$
(10)

We denote the volume element by $dv_{g_{\epsilon}} = \sqrt{|g_{\epsilon}|} dx$. We then get that

$$\int_{\mathbb{R}^n} (\eta \tilde{u}_{\epsilon})^{2^{\star}} dx \tag{11}$$

$$= 1 + \int_{B_0(\delta)} \tilde{u}_{\epsilon}^{2^{\star}} (1 - \sqrt{|g_{\epsilon}|}) dx + \int_{B_0(2\delta) \setminus B_0(\delta)} (\eta \tilde{u}_{\epsilon})^{2^{\star}} dx - \int_{M \setminus B_{y_{\epsilon}}(\delta)} u_{\epsilon}^{2^{\star}} dv_g.$$

It follows from Cartan's expansion of the metric that

$$g_{\epsilon}^{ij}(x) = \delta^{ij} + O\left(|Rm_g(y_{\epsilon})|_g|x|^2 + |\nabla Rm_g(y_{\epsilon})|_g|x|^3 + |x|^4\right)$$

uniformly for $x \in B_0(3\delta)$ when $\epsilon \to 0$. Plugging this expansion in (11), using (E_{ϵ}) and (9), we get that

$$\left| \left(\int_{\mathbb{R}^n} (\eta \tilde{u}_{\epsilon})^{2^*} dv_{\xi} \right)^{\frac{2}{2^*}} - 1 \right| \leq C |Rm_g(y_{\epsilon})|_g \int_{B_0(\delta)} \tilde{u}_{\epsilon}^2 dx \tag{12}$$
$$+ C |\nabla Rm_g(y_{\epsilon})|_g \int_{B_0(\delta)} |x| \tilde{u}_{\epsilon}^2 dx + C \int_{B_0(\delta)} |x|^2 \tilde{u}_{\epsilon}^2 dx + C \int_{M \setminus B_{y_{\epsilon}}(\delta)} \tilde{u}_{\epsilon}^2 dx.$$

We now deal with the LHS of (10). Clearly,

$$\int_{\mathbb{R}^n} |\nabla(\eta \tilde{u}_{\epsilon})|_{\xi}^2 \, dv_{\xi} = \int_{\mathbb{R}^n} g_{\epsilon}^{ij} \partial_i(\eta \tilde{u}_{\epsilon}) \partial_j(\eta \tilde{u}_{\epsilon}) \sqrt{|g_{\epsilon}|} \, dx$$
$$+ \int_{\mathbb{R}^n} g_{\epsilon}^{ij} \partial_i(\eta \tilde{u}_{\epsilon}) \partial_j(\eta \tilde{u}_{\epsilon}) \left(1 - \sqrt{|g_{\epsilon}|}\right) \, dx + \int_{\mathbb{R}^n} \left(\delta^{ij} - g_{\epsilon}^{ij}\right) \partial_i(\eta \tilde{u}_{\epsilon}) \partial_j(\eta \tilde{u}_{\epsilon}) \, dx$$

Noting $\eta_{\epsilon} = \eta \circ exp_{y_{\epsilon}}^{-1}$, integrating the first term of the RHS by parts and using Cartan's expansion of the metric, we then get that

$$\int_{\mathbb{R}^n} |\nabla(\eta \tilde{u}_{\epsilon})|_{\xi}^2 dv_{\xi} = \int_M \eta_{\epsilon}^2 u_{\epsilon} \Delta_g u_{\epsilon} dv_g + \int_M |\nabla \eta_{\epsilon}|_g^2 u_{\epsilon}^2 dv_g$$
$$+ O\left(\int_M \left(|Rm_g(y_{\epsilon})|_g r^2 + |\nabla Rm_g(y_{\epsilon})|_g r^3 + r^4 \right) |\nabla(\eta_{\epsilon} u_{\epsilon})|_g^2 dv_g \right)$$

where $r = d_g(x, y_{\epsilon})$. Integrating by parts the last term of the RHS, using equation (E_{ϵ}) , the estimate (9) and that $h_{\epsilon} \ge 0$, we get that

$$\int_{\mathbb{R}^{n}} |\nabla(\eta \tilde{u}_{\epsilon})|_{\xi}^{2} dv_{\xi} \leq \lambda_{\epsilon} - \lambda_{\epsilon} \int_{M} \eta_{\epsilon}^{2} h_{\epsilon} u_{\epsilon}^{2} dv_{g} \qquad (13)$$

$$+ C|Rm_{g}(y_{\epsilon})|_{g} \int_{B_{y_{\epsilon}}(\delta)} u_{\epsilon}^{2} dv_{g} + C|\nabla Rm_{g}(y_{\epsilon})|_{g} \int_{B_{y_{\epsilon}}(\delta)} ru_{\epsilon}^{2} dv_{g}$$

$$+ C \int_{B_{y_{\epsilon}}(\delta)} r^{2} u_{\epsilon}^{2} dv_{g} + C \int_{M \setminus B_{y_{\epsilon}}(\delta)} u_{\epsilon}^{2} dv_{g},$$

in this expression, $r = d_g(x, y_{\epsilon})$. Plugging (12) and (13) into (10) and using (8), we get that

$$\begin{split} &\int_{B_{y_{\epsilon}}(\delta)} h_{\epsilon} u_{\epsilon}^{2} \, dv_{g} \leq C |Rm_{g}(y_{\epsilon})|_{g} \int_{B_{y_{\epsilon}}(\delta)} u_{\epsilon}^{2} \, dv_{g} + C |\nabla Rm_{g}(y_{\epsilon})|_{g} \int_{B_{y_{\epsilon}}(\delta)} r u_{\epsilon}^{2} \, dv_{g} \\ &+ C \int_{B_{y_{\epsilon}}(\delta)} r^{2} u_{\epsilon}^{2} \, dv_{g} + C \int_{M \setminus B_{y_{\epsilon}}(\delta)} u_{\epsilon}^{2} \, dv_{g} \end{split}$$

in this expression, $r=d_g(x,y_\epsilon).$ It follows from [HeVa4] that

$$\int_{M \setminus B_{y_{\epsilon}}(\delta)} u_{\epsilon}^2 \, dv_g = o\left(\int_{B_{y_{\epsilon}}(\delta)} h_{\epsilon} u_{\epsilon}^2 \, dv_g\right).$$

It then follows from these last two estimates that

$$\begin{split} &\int_{B_{y_{\epsilon}}(\delta)} h_{\epsilon} u_{\epsilon}^{2} \, dv_{g} \leq C |Rm_{g}(y_{\epsilon})|_{g} \int_{B_{y_{\epsilon}}(\delta)} u_{\epsilon}^{2} \, dv_{g} \\ &+ C |\nabla Rm_{g}(y_{\epsilon})|_{g} \int_{B_{y_{\epsilon}}(\delta)} d_{g}(x, y_{\epsilon}) u_{\epsilon}^{2} \, dv_{g} + C \int_{B_{y_{\epsilon}}(\delta)} d_{g}(x, y_{\epsilon})^{2} u_{\epsilon}^{2} \, dv_{g}. \end{split}$$

Since $d_g(x, y_{\epsilon})^2 \leq 2d_g(x, x_0)^2 + 2d_g(x_0, y_{\epsilon})^2$, we get with (6) and (7) that

$$\int_{B_{y_{\epsilon}}(\delta)} h_{\epsilon} u_{\epsilon}^{2} dv_{g} \leq C \cdot \left(d_{g}(x_{0}, y_{\epsilon})^{2} + |Rm_{g}(y_{\epsilon})|_{g} \right) \cdot \int_{B_{y_{\epsilon}}(\delta)} u_{\epsilon}^{2} dv_{g} + C |\nabla Rm_{g}(y_{\epsilon})|_{g} \int_{B_{y_{\epsilon}}(\delta)} d_{g}(x, y_{\epsilon}) u_{\epsilon}^{2} dv_{g}.$$
(14)

With (2), we then get that

$$\int_{B_{y_{\epsilon}}(\delta)} h_{\epsilon} u_{\epsilon}^{2} dv_{g} \leq C d_{g}(x_{0}, y_{\epsilon})^{2} \int_{B_{y_{\epsilon}}(\delta)} u_{\epsilon}^{2} dv_{g} + C d_{g}(x_{0}, y_{\epsilon}) \int_{B_{y_{\epsilon}}(\delta)} d_{g}(x, y_{\epsilon}) u_{\epsilon}^{2} dv_{g}$$
(15)

as soon as $\frac{d_g(x_{\epsilon}, y_{\epsilon})}{\mu_{\epsilon}} = O(1)$ when $\epsilon \to 0$.

Step 3: We claim that

$$\frac{d_g(x_\epsilon, x_0)}{\mu_\epsilon} = O(1) \tag{16}$$

when $\epsilon \to 0$. We prove the claim by contradiction and assume that

$$\lim_{\epsilon \to 0} \frac{d_g(x_{\epsilon}, x_0)}{\mu_{\epsilon}} = +\infty.$$
(17)

Inequality (15) is obviously verified with $y_{\epsilon} = x_{\epsilon}$. Since $B_{x_{\epsilon}}(\mu_{\epsilon}) \subset B_{x_{\epsilon}}(\delta)$ when $\epsilon \to 0$, we get with a change of variable that

$$\begin{aligned} &\mu_{\epsilon}^{2} \int_{B_{0}(1)} h_{\epsilon}(exp_{x_{\epsilon}}(\mu_{\epsilon}x))v_{\epsilon}^{2} dv_{\tilde{g}_{\epsilon}} \leq Cd_{g}(x_{0}, x_{\epsilon})^{2} \mu_{\epsilon}^{2} \int_{B_{0}(\delta\mu_{\epsilon}^{-1})} v_{\epsilon}^{2} dv_{\tilde{g}_{\epsilon}} \\ &+ Cd_{g}(x_{0}, x_{\epsilon})\mu_{\epsilon}^{3} \int_{B_{0}(\delta\mu_{\epsilon}^{-1})} |x|v_{\epsilon}^{2} dv_{\tilde{g}_{\epsilon}}, \end{aligned}$$

where $v_{\epsilon}(x) = \mu_{\epsilon}^{\frac{n-2}{2}} u_{\epsilon}(exp_{y_{\epsilon}}(\mu_{\epsilon}x))$ for all $x \in B_0(\delta/\mu_{\epsilon})$ and $\tilde{g}_{\epsilon} = exp_{x_{\epsilon}}^{\star}g(\mu_{\epsilon}x) = g_{\epsilon}(\mu_{\epsilon}x)$. For any $x \in B_0(1)$, we get with (17) that

$$d_g(x_0, exp_{x_{\epsilon}}(\mu_{\epsilon}x)) \ge d_g(x_0, x_{\epsilon}) - \mu_{\epsilon} \ge \frac{1}{2}d_g(x_0, x_{\epsilon}).$$

With the lower bound (6) of h_{ϵ} , we then get that

$$\begin{aligned} a(\epsilon)d_g(x_0, x_{\epsilon})^2 \mu_{\epsilon}^2 \int_{B_0(1)} v_{\epsilon}^2 dv_{\tilde{g}_{\epsilon}} &\leq C d_g(x_0, x_{\epsilon})^2 \mu_{\epsilon}^2 \int_{B_0(\delta \mu_{\epsilon}^{-1})} v_{\epsilon}^2 dv_{\tilde{g}_{\epsilon}} \\ + C d_g(x_0, x_{\epsilon}) \mu_{\epsilon}^3 \int_{B_0(\delta \mu_{\epsilon}^{-1})} |x| v_{\epsilon}^2 dv_{\tilde{g}_{\epsilon}}. \end{aligned}$$

It follows from Moser's iterative scheme (see for instance [DrRo]) that

$$\int_{B_0(1)} v_{\epsilon}^2 \, dv_{\tilde{g}_{\epsilon}} \ge C v_{\epsilon}(0) = C > 0.$$

Using the estimates (9) and assuming that $n \ge 6$, we get that

$$a(\epsilon)d_g(x_0, x_\epsilon)^2\mu_\epsilon^2 \le Cd_g(x_0, y_\epsilon)^2\mu_\epsilon^2 + Cd_g(x_0, y_\epsilon)\mu_\epsilon^3.$$

A contradiction with (7) and (17). Then (16) holds. This proves the claim.

It follows from (16) that (15) holds with $y_{\epsilon} = x_0$. A contradiction, since $h_{\epsilon} \geq$

0. We have then contradicted our initial assumption (4). Then there exists \tilde{g}

conformal to g such that $c_n \max_M S_{\tilde{g}} - f$ is a weakly critical function. Now we claim that $B_0(\tilde{g})$ has no extremal function. We prove the claim by contradiction and assume that $B_0(\tilde{g})$ has an extremal function. By definition, $B_0(\tilde{g})$ is weakly critical: since it has an extremal function, it is a critical function. Since $B_0(\tilde{g}) \geq c_n \max_M S_{\tilde{g}} \geq c_n \max_M S_{\tilde{g}} - f$ (see for instance [HeVa4]) and $c_n \max_M S_{\tilde{g}} - f$ is weakly critical, we get that $B_0(\tilde{g}) = c_n \max_M S_{\tilde{g}} = c_n \max_M S_{\tilde{g}} - f$ and then $f \equiv 0$. A contradiction with the choice of f in (3). Then $B_0(\tilde{g})$ has no extremal function. It then follows from [DjDr] that $B_0(\tilde{g}) = B_0(\tilde{g})_{ext}$. This proves Theorem 1.1 when $n \geq 6$. Concerning the case of dimension n = 5, the proof is similar and uses inequality (14). Note also that when $\nabla^i Weyl_g(x_0) = 0$ for i = 0...2, it follows from [HeVa1] that we can assume that $\nabla^i Rm_g(x_0) = 0$ for i = 0...2 up to a conformal change of metric. This ends the proof of Theorem 1.1.

References

- [DjDr] Djadli, Z.; Druet, O. Extremal functions for optimal Sobolev inequalities on compact manifolds. Calc. Var. Partial Differential Equations 12 (2001), 59-84.
- [Dru] Druet, O. Elliptic equations with critical Sobolev exponents in dimension 3. Ann. Inst. H. Poincaré. Anal. Non Linéaire, 19, (2002), 125-142.
- [DrHe] Druet, O.; and Hebey, E. The AB program in geometric analysis. Sharp Sobolev inequalities and related problems, Memoirs of the American Mathematical Society, MEMO/160/761, 2002.
- [DrRo] Druet, O; Robert, F. Asymptotic profile and blow-up estimates on compact Riemannian manifolds. *Preprint* (2000). Reproduced in [DrHe].
- [Heb1] Hebey, E. Fonctions extrémales pour une inégalité de Sobolev optimale dans la classe conforme de la sphère. J. Math. Pures Appl. 77 (1998), 721-733.
- [Heb2] Hebey, E. Nonlinear analysis on manifolds: Sobolev spaces and inequalities, CIMS Lecture Notes, Courant Institute of Mathematical Sciences, Vol. 5, 1999. Second edition published by the American Mathematical Society, 2000.
- [HeVa1] Hebey, E.; Vaugon, M. Le problème de Yamabe équivariant. Bull. Sci. Math. 117 (1993), 241-286.
- [HeVa2] _____ The best constant problem in the Sobolev embedding theorem for complete Riemannian manifolds. Duke Math. J. 79 (1995), 235-279.

[HeVa3] _____ Meilleures constantes dans le théorème d'inclusion de Sobolev, Ann. Inst. H. Poincaré. Anal. Non Linéaire 13 (1996), 57-93.

- [HeVa4] _____ From best constants to critical functions. Math. Z. 237 (2001), 737-767.
- [LePa] Lee, J. M.; Parker, T.H. The Yamabe problem. Bull. Amer. Math. Soc. 17 (1987), 37-91.

DEPARTMENT OF MATHEMATICS, ETH ZENTRUM, CH-8092 ZÜRICH, SWITZERLAND *E-mail address*: frederic.robert@math.ethz.ch