CRITICAL FUNCTIONS AND OPTIMAL SOBOLEV INEQUALITIES

FRÉDÉRIC ROBERT

1. Introduction and statement of the results

Let (M, g) be a compact Riemannian manifold of dimension $n \geq 3$. We denote by $H_{1}^{2}(M)$ the standard Sobolev space of functions in $L^{2}(M)$ with one derivative in $L^{2}(M)$. As is well known, it follows from Sobolev's embedding theorem that there exist $A, B \in \mathbb{R}$ such that

$$
\begin{equation*}
\left(\int_{M}|u|^{2^{\star}} d v_{g}\right)^{\frac{2}{2^{\star}}} \leq A \int_{M}|\nabla u|_{g}^{2} d v_{g}+B \int_{M} u^{2} d v_{g} \tag{1}
\end{equation*}
$$

for all $u \in H_{1}^{2}(M)$, where $2^{\star}=\frac{2 n}{n-2}$ is critical. The sharp constant A in (1) is $A_{\text {opt }}(M)=K(n, 2)^{-2}$, where

$$
\frac{1}{K(n, 2)^{2}}=\frac{4}{n(n-2) \omega_{n}^{4 / n}}
$$

and ω_{n} is the volume of the unit n-sphere. In 1995, using intricate developments from blow-up analysis, Hebey and Vaugon [HeVa2, HeVa3] proved that the sharp constant $A_{\text {opt }}(M)$ is attained in (1). It follows that there exists $B_{0}(g)>0$ such that

$$
\left(\int_{M}|u|^{2^{\star}} d v_{g}\right)^{\frac{2}{2^{\star}}} \leq K(n, 2)^{2}\left(\int_{M}|\nabla u|_{g}^{2} d v_{g}+B_{0}(g) \int_{M} u^{2} d v_{g}\right) \quad\left(I_{o p t, g}\right)
$$

for all $u \in H_{1}^{2}(M)$. Following Hebey [Heb2], we choose $B_{0}(g)$ such that it cannot be lowered. Natural questions with respect to $\left(I_{o p t, g}\right)$, see Druet and Hebey [DrHe] for a presentation in book form, are to compute $B_{0}(g)$, and to know wether or not ($I_{\text {opt }, g}$) possesses extremal functions. Important notions with respect to these questions are the notions of weakly critical and critical functions introduced by Hebey and Vaugon [HeVa4]. These notions have independant applications and were used by Druet [Dru] to prove the Brézis-Nirenberg conjecture on low dimensions. For f a smooth function on M, we let

$$
\mu_{g, f}=\inf \frac{\int_{M}\left(|\nabla u|_{g}^{2}+f u^{2}\right) d v_{g}}{\left(\int_{M}|u|^{2^{\star}} d v_{g}\right)^{\frac{2}{2 \star}}}
$$

where the infimum is taken over the nonzero functions of $H_{1}^{2}(M)$, and $d v_{g}$ is the Riemannian volume element. It is by now standard that $\mu_{g, f} \leq \frac{1}{K(n, 2)^{2}}$. By definition, following Hebey and Vaugon [HeVa4], we say that f is a weakly critical function for g if $\mu_{g, f}=\frac{1}{K(n, 2)^{2}}$, and we say that f is a critical function if it is
weakly critical and such that $\mu_{g, \tilde{f}}<\frac{1}{K(n, 2)^{2}}$ for all smooth functions \tilde{f} satisfying that $\tilde{f} \leq f$ and $\tilde{f} \not \equiv f$. Let

$$
B_{0}(g)_{e x t}=\frac{n-2}{4(n-1)} \max _{M} S_{g}
$$

where S_{g} denotes the scalar curvature of g. It is easily checked that when $n \geq 4$, we always have that $B_{0}(g) \geq B_{0}(g)_{\text {ext }}$. Moreover, as proved by Djadli and Druet [DjDr], one of the two following conditions hold:
(i) either $B_{0}(g)=B_{0}(g)_{e x t}$,
(ii) or ($I_{\text {opt }, g}$) possesses extremal functions.

We know since Hebey [Heb1] that there are examples of manifolds for which (i) is true and (ii) is false. The examples in [Heb1] are in the conformal class of the unit n-sphere, and we are left with the question (question (Q1) in [HeVa4]) of describing the class of manifolds for which (i) is true and (ii) is false. Such a question is closely related to the following conjecture of Hebey and Vaugon [HeVa4]: if $n \geq 6$, the Weyl curvature tensor Weyl ${ }_{g}$ of g vanishes up to the order 1 at some point x_{0}, and f is a smooth nonegative function vanishing at x_{0}, then there exists $g_{f} \in[g]$ a conformal metric to g such that the scalar curvature $S_{g_{f}}$ is maximal at x_{0} and such that $\alpha=B_{0}\left(g_{f}\right)_{\text {ext }}-f$ is a weakly critical function for g_{f}. We prove in this article that this conjecture is true. We also treat the case of the dimension $n=5$. Concerning terminology, we say that the Weyl tensor Weyl l_{g} of g vanishes up to order $p \geq 1$ at x_{0} if $W_{\text {eyl }}^{g}\left(x_{0}\right)=0$ and $\nabla^{j} W_{e y l}\left(x_{0}\right)=0$ for all $1 \leq j \leq p$. Our main result states as follows:
Theorem 1.1. Let (M, g) be a smooth compact Riemannian n-manifold, $n \geq 5, x_{0}$ a point in M, and f a smooth nonnegative nonzero function on M with the property that $f\left(x_{0}\right)=0$. We assume that Weylg is null up to the order 2 at x_{0} if $n=5$, and up to the order 1 at x_{0} if $n \geq 6$. Then there exists $g_{f} \in[g]$ a conformal metric to g such that $S_{g_{f}}$ is maximal at x_{0} and such that $\alpha=\frac{n-2}{4(n-1)} \max _{M} S_{g_{f}}-f$ is a weakly critical function for g_{f}. In particular, for any smooth compact Riemannian manifold (M, g) of dimension $n \geq 5$, whose Weyl curvature tensor satisfies the above conditions, there exists a conformal metric \tilde{g} to g such that $B_{0}(\tilde{g})=B_{0}(\tilde{g})_{\text {ext }}$ and $\left(I_{o p t, \tilde{g}}\right)$ does not possess extremal functions.

Hebey and Vaugon [HeVa4] also conjectured that the following surprising complementary result to Theorem 1.1 should hold: if (M, g) is a smooth compact Riemannian manifold of dimension $n \geq 6$ such that its Weyl tensor is null up to the order 2 at some point, then there exists $\tilde{g} \in[g]$ a conformal metric to g such that $B_{0}(\tilde{g})=B_{0}(\tilde{g})_{\text {ext }}=\operatorname{Vol}_{\tilde{g}}^{-2 / n}$ and such that $\left(I_{o p t, \tilde{g}}\right)$ possesses constant extremal functions. In this statement, $\operatorname{Vol}_{\tilde{g}}$ denotes the volume of M wrt the metric \tilde{g}. As a remark, it easily follows from the approach we use to prove Theorem 1.1 that this conjecture is also true. With respect to the mathematics developed in Hebey and Vaugon [HeVa4], both conjectures reduce to the proof that for a blowing-up sequence $\left(u_{\epsilon}\right)$ of solutions of the equations attached to the above problems, if x_{0} is the geometric concentration point of the sequence $\left(u_{\epsilon}\right)$, then $d_{g}\left(x_{0}, x_{\epsilon}\right)=O\left(\mu_{\epsilon}\right)$ where the x_{ϵ} 's are the centers and the μ_{ϵ} 's are the weights of the bubbles developed by the u_{ϵ} 's.

Acknowledgements: The author expresses his deep thanks to Emmanuel Hebey for stimulating discussions and valuable comments on this work.

2. Proof of theorem 1.1

When possible, we follow the approach developed in $[\mathrm{HeVa} 4]$. Let (M, g) be a compact Riemannian manifold of dimension $n \geq 3$. We first assume that $n \geq 6$ and that there exists $x_{0} \in M$ such that $W e y l_{g}\left(x_{0}\right)=0$ and $\nabla W e y l_{g}\left(x_{0}\right)=0$. Up to a conformal change of metric (see for instance Lee-Parker [LePa] and [HeVa1]), we can assume that

$$
\begin{equation*}
R m_{g}\left(x_{0}\right)=0 \text { and } \nabla R m_{g}\left(x_{0}\right)=0 . \tag{2}
\end{equation*}
$$

Here $R m_{g}$ and $\nabla R m_{g}$ denote the Riemann tensor and its covariant derivative. Note that in this case, $\nabla^{i} S_{g}\left(x_{0}\right)=0$ for $i=0 \ldots 2$. We denote by $[g]$ the conformal class of the metric g and

$$
[g]_{s}=\left\{\tilde{g} \in[g] \text { s.t. } S_{\tilde{g}}\left(x_{0}\right)=\max _{M} S_{\tilde{g}}\right\}
$$

We let $f \in C^{\infty}(M)-\{0\}$ such that for any $x \in M$,

$$
\begin{equation*}
f(x) \geq f\left(x_{0}\right)=0 \tag{3}
\end{equation*}
$$

In this section, we prove that there exists $\tilde{g} \in[g]_{s}$ such that $\alpha_{\tilde{g}}=c_{n} \max _{M} S_{\tilde{g}}-f$ is a weakly critical function. Here and in the sequel, we let $c_{n}=\frac{n-2}{4(n-1)}$. We argue by contradiction, and assume that for any $\tilde{g} \in[g]_{s}$,

$$
\inf _{u \in H_{1}^{2}(M) \backslash\{0\}} \frac{\int_{M}\left(|\nabla u|_{\tilde{g}}^{2}+\alpha_{\tilde{g}} u^{2}\right) d v_{\tilde{g}}}{\left(\int_{M}|u|^{2^{\star}} d v_{\tilde{g}}\right)^{\frac{2}{2^{\star}}}}<\frac{1}{K(n, 2)^{2}}
$$

Letting $\varphi \in C^{\infty}(M)$ positive such that $\tilde{g}=\varphi^{\frac{4}{n-2}} g$, the preceding inequality is equivalent to

$$
\begin{equation*}
\inf _{u \in H_{1}^{2}(M) \backslash\{0\}} \frac{\int_{M}\left(|\nabla u|_{g}^{2}+h_{\varphi} u^{2}\right) d v_{g}}{\left(\int_{M}|u|^{2^{\star}} d v_{g}\right)^{\frac{2}{2^{\star}}}}<\frac{1}{K(n, 2)^{2}}, \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
h_{\varphi}=c_{n} S_{g}+\varphi^{2^{\star}-2}\left(c_{n}\left(\max _{M} S_{\tilde{g}}-S_{\tilde{g}}\right)-f\right) \tag{5}
\end{equation*}
$$

for all positive functions φ. Let $\delta \in\left(0, i_{g}(M) / 2\right)$, where $i_{g}(M)$ is the injectivity radius of (M, g), and $\eta \in C^{\infty}(M)$ such that $\eta \equiv 1$ in $B_{x_{0}}(\delta)$ and $\eta \equiv 0$ in $M \backslash B_{x_{0}}(2 \delta)$. We also let $c>0$ and consider the function

$$
\varphi_{\epsilon}(x)=\frac{\eta(x)}{\left(\epsilon^{2}+d_{g}\left(x, x_{0}\right)^{2}\right)^{\frac{n-2}{8}}}+(1-\eta(x)) c .
$$

Clearly, φ_{ϵ} is smooth and positive.
Step 1: It follows from [HeVa4] that the metric $g_{\epsilon}=\varphi_{\epsilon}^{\frac{4}{n-2}} g$ belongs to $[g]_{s}$ for small ϵ. Moreover, noting $h_{\epsilon}=h_{\varphi_{\epsilon}}$, we get that

$$
\begin{equation*}
h_{\epsilon}(x) \geq a(\epsilon) d_{g}\left(x, x_{0}\right)^{2} \tag{6}
\end{equation*}
$$

for all $x \in M$ and all $\epsilon>0$, with

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0} a(\epsilon)=+\infty \tag{7}
\end{equation*}
$$

It is by now classical that it follows from (4) that there exists $u_{\epsilon} \in C^{\infty}(M)$ positive such that

$$
\Delta_{g} u_{\epsilon}+h_{\epsilon} u_{\epsilon}=\lambda_{\epsilon} u_{\epsilon}^{2^{\star}-1} \text { and } \int_{M} u_{\epsilon}^{2^{\star}} d v_{g}=1
$$

where

$$
\begin{equation*}
\lambda_{\epsilon}=\mu_{g, h_{\epsilon}}<\frac{1}{K(n, 2)^{2}} \tag{8}
\end{equation*}
$$

It then follows that $u_{\epsilon} \rightharpoonup 0$ weakly in $H_{1}^{2}(M)$ when $\epsilon \rightarrow 0$. We refer to [HeVa4] for the details. We let $x_{\epsilon} \in M$ and $\mu_{\epsilon}>0$ such that

$$
\max _{M} u_{\epsilon}=u_{\epsilon}\left(x_{\epsilon}\right)=\mu_{\epsilon}^{-\frac{n-2}{2}}
$$

Since $u_{\epsilon} \rightharpoonup 0$ weakly in $H_{1}^{2}(M)$, it follows from $\left(E_{\epsilon}\right)$ that $\lim _{\epsilon \rightarrow 0} \mu_{\epsilon}=0$. We let $y_{\epsilon} \in M$ such that

$$
\frac{d_{g}\left(x_{\epsilon}, y_{\epsilon}\right)}{\mu_{\epsilon}}=O(1)
$$

when $\epsilon \rightarrow 0$. With (6), it follows from [DrRo], see also [DrHe], that there exists $C>0$ such that

$$
\begin{equation*}
d_{g}\left(y_{\epsilon}, x\right)^{\frac{n-2}{2}} u_{\epsilon}(x) \leq C \text { and } u_{\epsilon}(x) \leq C\left(\frac{\mu_{\epsilon}}{\mu_{\epsilon}^{2}+d_{g}\left(x, y_{\epsilon}\right)^{2}}\right)^{\frac{n-2}{2}} \tag{9}
\end{equation*}
$$

for all $x \in M$ and $\epsilon>0$. Moreover, it follows from [HeVa4] that $y_{\epsilon} \rightarrow x_{0}$ when $\epsilon \rightarrow 0$.

Step 2: We denote by $\exp _{y_{\epsilon}}$ the exponential map at y_{ϵ} with respect to the metric g. We let $\tilde{u}_{\epsilon}(x)=u_{\epsilon}\left(\exp _{y_{\epsilon}}(x)\right)$ for all $x \in B_{0}(3 \delta)$ and $g_{\epsilon}=\exp _{y_{\epsilon}}^{\star} g$ the pullback metric of g via the exponential chart at y_{ϵ}. In the sequel, we denote by $g_{\epsilon}^{i j}$ the coordinates of g^{-1}, the inverse of the metric tensor, via the chart $\exp _{y_{\epsilon}}$. We let $\delta \in\left(0, i_{g}(M) / 3\right)$. We let $\eta \in C^{\infty}\left(\mathbb{R}^{n}\right)$ such that $\eta \equiv 1$ in $B_{0}(\delta)$ and $\eta \equiv 0$ in $\mathbb{R}^{n} \backslash B_{0}(2 \delta)$. Th optimal Euclidean Sobolev inequality asserts that

$$
\left(\int_{\mathbb{R}^{n}}|u|^{2^{\star}} d x\right)^{\frac{2}{2^{\star}}} \leq K(n, 2)^{2} \int_{\mathbb{R}^{n}}|\nabla u|_{\xi}^{2} d x
$$

for all smooth compactly supported function u on \mathbb{R}^{n}. It follows from this inequality that

$$
\begin{equation*}
\left(\int_{\mathbb{R}^{n}}\left(\eta \tilde{u}_{\epsilon}\right)^{2^{\star}} d x\right)^{\frac{2}{2^{\star}}} \leq K(n, 2)^{2} \int_{\mathbb{R}^{n}}\left|\nabla\left(\eta \tilde{u}_{\epsilon}\right)\right|_{\xi}^{2} d x \tag{10}
\end{equation*}
$$

We denote the volume element by $d v_{g_{\epsilon}}=\sqrt{\left|g_{\epsilon}\right|} d x$. We then get that

$$
\begin{align*}
& \int_{\mathbb{R}^{n}}\left(\eta \tilde{u}_{\epsilon}\right)^{2^{\star}} d x \tag{11}\\
& =1+\int_{B_{0}(\delta)} \tilde{u}_{\epsilon}^{2^{\star}}\left(1-\sqrt{\left|g_{\epsilon}\right|}\right) d x+\int_{B_{0}(2 \delta) \backslash B_{0}(\delta)}\left(\eta \tilde{u}_{\epsilon}\right)^{2^{\star}} d x-\int_{M \backslash B_{y_{\epsilon}}(\delta)} u_{\epsilon}^{2^{\star}} d v_{g}
\end{align*}
$$

It follows from Cartan's expansion of the metric that

$$
g_{\epsilon}^{i j}(x)=\delta^{i j}+O\left(\left|R m_{g}\left(y_{\epsilon}\right)\right|_{g}|x|^{2}+\left|\nabla R m_{g}\left(y_{\epsilon}\right)\right|_{g}|x|^{3}+|x|^{4}\right)
$$

uniformly for $x \in B_{0}(3 \delta)$ when $\epsilon \rightarrow 0$. Plugging this expansion in (11), using (E_{ϵ}) and (9), we get that

$$
\begin{align*}
& \left|\left(\int_{\mathbb{R}^{n}}\left(\eta \tilde{u}_{\epsilon}\right)^{2^{\star}} d v_{\xi}\right)^{\frac{2}{2^{\star}}}-1\right| \leq C\left|R m_{g}\left(y_{\epsilon}\right)\right|_{g} \int_{B_{0}(\delta)} \tilde{u}_{\epsilon}^{2} d x \tag{12}\\
& +C\left|\nabla R m_{g}\left(y_{\epsilon}\right)\right|_{g} \int_{B_{0}(\delta)}|x| \tilde{u}_{\epsilon}^{2} d x+C \int_{B_{0}(\delta)}|x|^{2} \tilde{u}_{\epsilon}^{2} d x+C \int_{M \backslash B_{y_{\epsilon}}(\delta)} \tilde{u}_{\epsilon}^{2} d x .
\end{align*}
$$

We now deal with the LHS of (10). Clearly,

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}}\left|\nabla\left(\eta \tilde{u}_{\epsilon}\right)\right|_{\xi}^{2} d v_{\xi}=\int_{\mathbb{R}^{n}} g_{\epsilon}^{i j} \partial_{i}\left(\eta \tilde{u}_{\epsilon}\right) \partial_{j}\left(\eta \tilde{u}_{\epsilon}\right) \sqrt{\left|g_{\epsilon}\right|} d x \\
& +\int_{\mathbb{R}^{n}} g_{\epsilon}^{i j} \partial_{i}\left(\eta \tilde{u}_{\epsilon}\right) \partial_{j}\left(\eta \tilde{u}_{\epsilon}\right)\left(1-\sqrt{\left|g_{\epsilon}\right|}\right) d x+\int_{\mathbb{R}^{n}}\left(\delta^{i j}-g_{\epsilon}^{i j}\right) \partial_{i}\left(\eta \tilde{u}_{\epsilon}\right) \partial_{j}\left(\eta \tilde{u}_{\epsilon}\right) d x
\end{aligned}
$$

Noting $\eta_{\epsilon}=\eta \circ \exp _{y_{\epsilon}}^{-1}$, integrating the first term of the RHS by parts and using Cartan's expansion of the metric, we then get that

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}}\left|\nabla\left(\eta \tilde{u}_{\epsilon}\right)\right|_{\xi}^{2} d v_{\xi}=\int_{M} \eta_{\epsilon}^{2} u_{\epsilon} \Delta_{g} u_{\epsilon} d v_{g}+\int_{M}\left|\nabla \eta_{\epsilon}\right|_{g}^{2} u_{\epsilon}^{2} d v_{g} \\
& +O\left(\int_{M}\left(\left|R m_{g}\left(y_{\epsilon}\right)\right|_{g} r^{2}+\left|\nabla R m_{g}\left(y_{\epsilon}\right)\right|_{g} r^{3}+r^{4}\right)\left|\nabla\left(\eta_{\epsilon} u_{\epsilon}\right)\right|_{g}^{2} d v_{g}\right)
\end{aligned}
$$

where $r=d_{g}\left(x, y_{\epsilon}\right)$. Integrating by parts the last term of the RHS, using equation $\left(E_{\epsilon}\right)$, the estimate (9) and that $h_{\epsilon} \geq 0$, we get that

$$
\begin{align*}
& \int_{\mathbb{R}^{n}}\left|\nabla\left(\eta \tilde{u}_{\epsilon}\right)\right|_{\xi}^{2} d v_{\xi} \leq \lambda_{\epsilon}-\lambda_{\epsilon} \int_{M} \eta_{\epsilon}^{2} h_{\epsilon} u_{\epsilon}^{2} d v_{g} \tag{13}\\
& +C\left|R m_{g}\left(y_{\epsilon}\right)\right|_{g} \int_{B_{y_{\epsilon}(\delta)}} u_{\epsilon}^{2} d v_{g}+C\left|\nabla R m_{g}\left(y_{\epsilon}\right)\right|_{g} \int_{B_{y_{\epsilon}(\delta)}} r u_{\epsilon}^{2} d v_{g} \\
& +C \int_{B_{y_{\epsilon}(\delta)}(\delta} r^{2} u_{\epsilon}^{2} d v_{g}+C \int_{M \backslash B_{y_{\epsilon}}(\delta)} u_{\epsilon}^{2} d v_{g},
\end{align*}
$$

in this expression, $r=d_{g}\left(x, y_{\epsilon}\right)$. Plugging (12) and (13) into (10) and using (8), we get that

$$
\begin{aligned}
& \int_{B_{y_{\epsilon}}(\delta)} h_{\epsilon} u_{\epsilon}^{2} d v_{g} \leq C\left|R m_{g}\left(y_{\epsilon}\right)\right|_{g} \int_{B_{y_{\epsilon}}(\delta)} u_{\epsilon}^{2} d v_{g}+C\left|\nabla R m_{g}\left(y_{\epsilon}\right)\right|_{g} \int_{B_{y_{\epsilon}(}(\delta)} r u_{\epsilon}^{2} d v_{g} \\
& +C \int_{B_{y_{\epsilon}}(\delta)} r^{2} u_{\epsilon}^{2} d v_{g}+C \int_{M \backslash B_{y_{\epsilon}}(\delta)} u_{\epsilon}^{2} d v_{g}
\end{aligned}
$$

in this expression, $r=d_{g}\left(x, y_{\epsilon}\right)$. It follows from [HeVa4] that

$$
\int_{M \backslash B_{y_{\epsilon}}(\delta)} u_{\epsilon}^{2} d v_{g}=o\left(\int_{B_{y_{\epsilon}}(\delta)} h_{\epsilon} u_{\epsilon}^{2} d v_{g}\right) .
$$

It then follows from these last two estimates that

$$
\begin{aligned}
& \int_{B_{y_{\epsilon}}(\delta)} h_{\epsilon} u_{\epsilon}^{2} d v_{g} \leq C\left|R m_{g}\left(y_{\epsilon}\right)\right|_{g} \int_{B_{y_{\epsilon}}(\delta)} u_{\epsilon}^{2} d v_{g} \\
& +C\left|\nabla R m_{g}\left(y_{\epsilon}\right)\right|_{g} \int_{B_{y_{\epsilon}}(\delta)} d_{g}\left(x, y_{\epsilon}\right) u_{\epsilon}^{2} d v_{g}+C \int_{B_{y_{\epsilon}}(\delta)} d_{g}\left(x, y_{\epsilon}\right)^{2} u_{\epsilon}^{2} d v_{g}
\end{aligned}
$$

Since $d_{g}\left(x, y_{\epsilon}\right)^{2} \leq 2 d_{g}\left(x, x_{0}\right)^{2}+2 d_{g}\left(x_{0}, y_{\epsilon}\right)^{2}$, we get with (6) and (7) that

$$
\begin{align*}
\int_{B_{y_{\epsilon}}(\delta)} h_{\epsilon} u_{\epsilon}^{2} d v_{g} \leq & C \cdot\left(d_{g}\left(x_{0}, y_{\epsilon}\right)^{2}+\left|R m_{g}\left(y_{\epsilon}\right)\right|_{g}\right) \cdot \int_{B_{y_{\epsilon}}(\delta)} u_{\epsilon}^{2} d v_{g} \\
& +C\left|\nabla R m_{g}\left(y_{\epsilon}\right)\right|_{g} \int_{B_{y_{\epsilon}}(\delta)} d_{g}\left(x, y_{\epsilon}\right) u_{\epsilon}^{2} d v_{g} \tag{14}
\end{align*}
$$

With (2), we then get that

$$
\begin{align*}
\int_{B_{y_{\epsilon}}(\delta)} h_{\epsilon} u_{\epsilon}^{2} d v_{g} \leq & C d_{g}\left(x_{0}, y_{\epsilon}\right)^{2} \int_{B_{y_{\epsilon}}(\delta)} u_{\epsilon}^{2} d v_{g} \\
& +C d_{g}\left(x_{0}, y_{\epsilon}\right) \int_{B_{y_{\epsilon}(}(\delta)} d_{g}\left(x, y_{\epsilon}\right) u_{\epsilon}^{2} d v_{g} \tag{15}
\end{align*}
$$

as soon as $\frac{d_{g}\left(x_{\epsilon}, y_{\epsilon}\right)}{\mu_{\epsilon}}=O(1)$ when $\epsilon \rightarrow 0$.
Step 3: We claim that

$$
\begin{equation*}
\frac{d_{g}\left(x_{\epsilon}, x_{0}\right)}{\mu_{\epsilon}}=O(1) \tag{16}
\end{equation*}
$$

when $\epsilon \rightarrow 0$. We prove the claim by contradiction and assume that

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0} \frac{d_{g}\left(x_{\epsilon}, x_{0}\right)}{\mu_{\epsilon}}=+\infty \tag{17}
\end{equation*}
$$

Inequality (15) is obviously verified with $y_{\epsilon}=x_{\epsilon}$. Since $B_{x_{\epsilon}}\left(\mu_{\epsilon}\right) \subset B_{x_{\epsilon}}(\delta)$ when $\epsilon \rightarrow 0$, we get with a change of variable that

$$
\begin{aligned}
& \mu_{\epsilon}^{2} \int_{B_{0}(1)} h_{\epsilon}\left(\exp _{x_{\epsilon}}\left(\mu_{\epsilon} x\right)\right) v_{\epsilon}^{2} d v_{\tilde{g}_{\epsilon}} \leq C d_{g}\left(x_{0}, x_{\epsilon}\right)^{2} \mu_{\epsilon}^{2} \int_{B_{0}\left(\delta \mu_{\epsilon}^{-1}\right)} v_{\epsilon}^{2} d v_{\tilde{g}_{\epsilon}} \\
& +C d_{g}\left(x_{0}, x_{\epsilon}\right) \mu_{\epsilon}^{3} \int_{B_{0}\left(\delta \mu_{\epsilon}^{-1}\right)}|x| v_{\epsilon}^{2} d v_{\tilde{g}_{\epsilon}}
\end{aligned}
$$

where $v_{\epsilon}(x)=\mu_{\epsilon}^{\frac{n-2}{2}} u_{\epsilon}\left(\exp _{y_{\epsilon}}\left(\mu_{\epsilon} x\right)\right)$ for all $x \in B_{0}\left(\delta / \mu_{\epsilon}\right)$ and $\tilde{g}_{\epsilon}=\exp _{x_{\epsilon}}^{\star} g\left(\mu_{\epsilon} x\right)=$ $g_{\epsilon}\left(\mu_{\epsilon} x\right)$. For any $x \in B_{0}(1)$, we get with (17) that

$$
d_{g}\left(x_{0}, \exp _{x_{\epsilon}}\left(\mu_{\epsilon} x\right)\right) \geq d_{g}\left(x_{0}, x_{\epsilon}\right)-\mu_{\epsilon} \geq \frac{1}{2} d_{g}\left(x_{0}, x_{\epsilon}\right)
$$

With the lower bound (6) of h_{ϵ}, we then get that

$$
\begin{aligned}
& a(\epsilon) d_{g}\left(x_{0}, x_{\epsilon}\right)^{2} \mu_{\epsilon}^{2} \int_{B_{0}(1)} v_{\epsilon}^{2} d v_{\tilde{g}_{\epsilon}} \leq C d_{g}\left(x_{0}, x_{\epsilon}\right)^{2} \mu_{\epsilon}^{2} \int_{B_{0}\left(\delta \mu_{\epsilon}^{-1}\right)} v_{\epsilon}^{2} d v_{\tilde{g}_{\epsilon}} \\
& +C d_{g}\left(x_{0}, x_{\epsilon}\right) \mu_{\epsilon}^{3} \int_{B_{0}\left(\delta \mu_{\epsilon}^{-1}\right)}|x| v_{\epsilon}^{2} d v_{\tilde{g}_{\epsilon}} .
\end{aligned}
$$

It follows from Moser's iterative scheme (see for instance [DrRo]) that

$$
\int_{B_{0}(1)} v_{\epsilon}^{2} d v_{\tilde{g}_{\epsilon}} \geq C v_{\epsilon}(0)=C>0
$$

Using the estimates (9) and assuming that $n \geq 6$, we get that

$$
a(\epsilon) d_{g}\left(x_{0}, x_{\epsilon}\right)^{2} \mu_{\epsilon}^{2} \leq C d_{g}\left(x_{0}, y_{\epsilon}\right)^{2} \mu_{\epsilon}^{2}+C d_{g}\left(x_{0}, y_{\epsilon}\right) \mu_{\epsilon}^{3}
$$

A contradiction with (7) and (17). Then (16) holds. This proves the claim.
It follows from (16) that (15) holds with $y_{\epsilon}=x_{0}$. A contradiction, since $h_{\epsilon} \geq$
0 . We have then contradicted our initial assumption (4). Then there exists \tilde{g}
conformal to g such that $c_{n} \max _{M} S_{\tilde{g}}-f$ is a weakly critical function. Now we claim that $B_{0}(\tilde{g})$ has no extremal function. We prove the claim by contradiction and assume that $B_{0}(\tilde{g})$ has an extremal function. By definition, $B_{0}(\tilde{g})$ is weakly critical: since it has an extremal function, it is a critical function. Since $B_{0}(\tilde{g}) \geq$ $c_{n} \max _{M} S_{\tilde{g}} \geq c_{n} \max _{M} S_{\tilde{g}}-f$ (see for instance [HeVa4]) and $c_{n} \max _{M} S_{\tilde{g}}-f$ is weakly critical, we get that $B_{0}(\tilde{g})=c_{n} \max _{M} S_{\tilde{g}}=c_{n} \max _{M} S_{\tilde{g}}-f$ and then $f \equiv 0$. A contradiction with the choice of f in (3). Then $B_{0}(\tilde{g})$ has no extremal function. It then follows from $[\mathrm{DjDr}]$ that $B_{0}(\tilde{g})=B_{0}(\tilde{g})_{\text {ext }}$. This proves Theorem 1.1 when $n \geq 6$. Concerning the case of dimension $n=5$, the proof is similar and uses inequality (14). Note also that when $\nabla^{i} W e y l_{g}\left(x_{0}\right)=0$ for $i=0 \ldots 2$, it follows from [HeVa1] that we can assume that $\nabla^{i} R m_{g}\left(x_{0}\right)=0$ for $i=0 \ldots 2$ up to a conformal change of metric. This ends the proof of Theorem 1.1.

References

[DjDr] Djadli, Z.; Druet, O. Extremal functions for optimal Sobolev inequalities on compact manifolds. Calc. Var. Partial Differential Equations 12 (2001), 59-84.
[Dru] Druet, O. Elliptic equations with critical Sobolev exponents in dimension 3. Ann. Inst. H. Poincaré. Anal. Non Linéaire, 19, (2002), 125-142.
[DrHe] Druet, O.; and Hebey, E. The AB program in geometric analysis. Sharp Sobolev inequalities and related problems, Memoirs of the American Mathematical Society, MEMO/160/761, 2002.
[DrRo] Druet, O; Robert, F. Asymptotic profile and blow-up estimates on compact Riemannian manifolds. Preprint (2000). Reproduced in [DrHe].
[Heb1] Hebey, E. Fonctions extrémales pour une inégalité de Sobolev optimale dans la classe conforme de la sphère. J. Math. Pures Appl. 77 (1998), 721-733.
[Heb2] Hebey, E. Nonlinear analysis on manifolds: Sobolev spaces and inequalities, CIMS Lecture Notes, Courant Institute of Mathematical Sciences, Vol. 5, 1999. Second edition published by the American Mathematical Society, 2000.
[HeVa1] Hebey, E.; Vaugon, M. Le problème de Yamabe équivariant. Bull. Sci. Math. 117 (1993), 241-286.
[HeVa2] ___ The best constant problem in the Sobolev embedding theorem for complete Riemannian manifolds. Duke Math. J. 79 (1995), 235-279.
[HeVa3]__ Meilleures constantes dans le théorème d'inclusion de Sobolev, Ann. Inst. H. Poincaré. Anal. Non Linéaire 13 (1996), 57-93.
[HeVa4] ___ From best constants to critical functions. Math. Z. 237 (2001), 737-767.
[LePa] Lee, J. M.; Parker, T.H. The Yamabe problem. Bull. Amer. Math. Soc. 17 (1987), 37-91.
Department of mathematics, ETH Zentrum, CH-8092 Zürich, Switzerland
E-mail address: frederic.robert@math.ethz.ch

