CONCENTRATION PHENOMENA FOR A FOURTH ORDER
EQUATION WITH EXPONENTIAL GROWTH:
THE RADIAL CASE

FREDERIC ROBERT

ABSTRACT. We let Q be a smooth bounded domain of R* and a sequence
of functions (Vi)gen € C°(R2) such that limy_, oo Vi = 1 in C (). We
consider a sequence of functions (ug)reny € C*(Q2) such that

A2uy, = Viettr

in  for all kK € N. We address in this paper the question of the asymptotic
behavior of the (uy)’s when k — +o0o. The corresponding problem in dimen-
sion 2 was considered by Brézis-Merle and Li-Shafrir (among others), where
a blow-up phenomenon was described and where a quantization of this blow-
up was proved. Surprisingly, as shown by Adimurthi, Struwe and the author
in [1], a similar quantization phenomenon does not hold for this fourth order
problem. Assuming that the u’s are radially symmetrical, we push further
the analysis of [1]. We prove that there are exactly three types of blow-up and
we describe each type in a very detailed way.

1. INTRODUCTION

Let Q be a bounded domain of R*. Let (Vi)ren € C°(2) be a sequence such
that

lim Vj, =1 (1)

k—+oco

. 0
in ¢},

(€2). Let (ux)ren be a sequence of functions in C*(£2) such that
AQUk = Vk64uk (E)

in Q for all £ € N. Here and in the sequel, A = — > 9;; is the Laplacian with
minus sign convention. In this paper, we address the question of the asymptotics
of the ug’s when k& — 400. A natural (and simple) behavior is when there exists
u € C3(£) such that, up to a subsequence,
li = 2
D= ?
in C} (). In this situation, we say that (uj)ren is relatively compact in C} ().
However, the structure of equation (F) is much richer due to its scaling invariance
properties. The scaling invariance is as follows. Given k € N, z;, € Q and px >0,
we let

g (z) == ug(zp + pex) + In py (3)
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for all © € ;' (Q — x1,). Letting Vi (x) = Vi(zy, + ppz) for all © € p 1 (Q — xy,), we
get that the rescaled function y satisfies

AQ’ﬁk = Vk€4ﬂk

on ' (Q—x) — an equation like (E). This scaling invariance forces some situations
more subtle than (2) to happen. A very basic example is the following: we consider
a sequence (pux)ren € Rso such that limy, 1 ux = 0. Let a function v € C*(R*)
such that e* € L'(R*) and

A%y = e, (4)

The simplest example is the function x — In %?wl?' For any k£ € N, we define
the function

fe(x) = (u;lz) —In pg

for all x € R*. Then fj, satisfies (E) with V3 = 1 for all k¥ € N, but the sequence
(fx)ken does not converge in CP _(R?): indeed, we have that

lim fx(0) = +o00 and Vie e dp — (/ etv dac) do
k—~4o00 R4
when k& — +o0o weakly for the convergence of measures. Here and in the sequel,
0o denotes the Dirac mass at 0, and we say that the energy of the sequence (f) is
™ e* dx. Scaling as in (3), we get that
lim  fi(pew) +In ppe = v(x)

k—+4o00
for all z € R%. In other words, (fy) converges to v up to rescaling. Concerning
terminology, we say that the sequence (ug)gen blows-up if it is not relatively com-
pact in C} (£2), so that, up to any subsequence, (2) does not hold. In the above
example, the (fx)’s blow up. In this paper, we are concerned with the blow-up
behavior of solutions of (E).

In dimension two, the corresponding problem involves the Laplacian (and not the
bi-Laplacian). This problem has been studied (among others) by Brézis-Merle [3]
and Li-Shafrir [10]. We also refer to Druet [5] and Adimurthi-Struwe [2] for the
description of equations with more intricate nonlinearities and to Tarantello [17] for
equations with singularities. An important phenomenon that holds in dimension
two is the quantization of the energy. Following standard terminology, we say
that there is quantization if there exists a positive constant C,, > 0 such that the
energy of any blowing-up sequence of solutions to the equation under consideration
is (roughly speaking) asymptotically a multiple of C,,. In particular, when blow-up
occurs, the sequence of solutions carries at least the energy C,,, or carries no energy.

Surprisingly, such a quantization result is false when we come back to our initial
four-dimensional problem (F). Let A € (0,4+00) arbitrary: in a joint work with
Adimurthi and Michael Struwe [1], we exhibit a sequence of solutions to (E) that
blows-up, carries the energy A and develop singularities on a 3—dimensional hy-
persurface of R%. Still in [1], we described the behavior of arbitrary solutions to
(E) and proved that any blowing-up sequence (ux)ren concentrates at the zero
set of a nonpositive nontrivial bi-harmonic function, and that outside this set,
limg_y 1 oo ur, = —oo uniformly. In view of the results of [1], giving a more precise
description requires additional hypothesis on (ug)ken.
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A natural hypothesis is to impose a Navier boundary condition, (that is uy = Auy =
0 on 99) or a Dirichlet boundary condition (that is ug = % =0 on 99Q): actually,
in these cases, we get that there is no blow-up and we recover relative compactness,
these claims are easy consequences of the result in [18]. Wei [18] also studied the
case where Auy = 0 on 9Q and uy = ¢ on 02, where (cx)ren € R is a sequence of
real numbers such that limy_, 1o ¢ = —o0: in this context, Wei described precisely
the asymptotics and recovered a quantization result as in Li-Shafrir. In [14], we
consider the case where the L'—norm of Awuj is uniformly bounded on a given
subset of €: in this context, we also recover a quantization result (that is the
energy of a blowing-up solution is a multiple of an explicit constant).

In the present paper, we consider the case when €2 = B is a ball and when the u;’s
are radially symmetrical with respect to the center of the ball for all £ € N. Without
loss of generality, we assume that B = Bj(0) is the unit ball of R* centered at 0.
In this rather natural situation, and contrary to the situation considered in [14],
there is no quantization. This phenomenon is due to the abundance of solutions
to equation (4) (see C.S.Lin [11]), contrary to the two-dimensional corresponding
equation, where up to affine transformations, there is only one solution.

Let (ug)ren be a sequence of blowing-up solutions to (E), with a sequence (Vi) ren €
C%(B) such that (1) holds. Assuming that the u,’s are radially symmetrical, the
first step in studying the blow-up behavior of the (uy)’s is to prove that Vie*“* dx
converges to the product of a real number (refered to as the energy) by a Dirac
mass at 0 for the convergence of measures when k — 4o0: it is much more tricky
to have informations about the energy in front of the Dirac mass, and this is the
object of Theorem 1.1. The intricate issue in this theorem concerns the localization
of the energy at the microscopic level. More precisely, after rescaling as in (3), we
prove (in general) that the (uy)’s converge when k — +00 to a solution v € C*(R%)
of (4) such that e € L'(R*): since the L!—norm is invariant under the rescaling
(3), we get that there exists a sequence (rg)ren of positive real numbers such that
limg 100 7% = 0 and such that the L!'—norm of e*** in B,, (0) converges to the
L'—norm of e* in R%. The difficult step is to prove that there is no energy left
outside this ball of radius r, when k& — —o00, and so, in other words, that the
L'—norm of e outside By, (0) goes to 0 when k& — +o0. Refering to standard
terminology, this corresponds to provinge that there is no energy lost in the necks.
Our main result is the following.

Theorem 1.1. Let (Vi)ren € C°(B) be a sequence of functions such that (1)
holds. Let (uk)ren be a family of functions in C*(B) which are solutions to (E).
We assume that there exists A € R such that

/ Vet dr < A
B

for all k € N and that the (ug)’s blow-up, that is (2) does not hold for any sub-
sequence. In addition, we assume that uy is radially symmetrical for all k € N.
Then, up to a subsequence, there exists a € [0,1672] such that

Vet dx — ady
when k — 400 for the convergence of measures. More precisely,

(i) either there exists C' > 0 such that, up to a subsequence, uy(0) < C for all
k € N: then a =0 and limy_, o, ux, = —o0 uniformly locally on B\ {0}
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(1) or limy_, 4 oo ug(0) = +00. In this situation, for any § € (0,1), we have that

lim lim Vie*™s dz = 0.
R— Y00 k—+o0 Bs(0\B,,_—u(0)(0)

In addition, still in case (ii), the asymptotic behavior at the scale e~ () s ruled
as follows:

(ii.a) if o = 1672, then
V96

lim (u e (O z) — (0 ) =ln——
k——+oc a )~ ul0) V96 + |z|2
for all = € R*. Moreover, this convergence holds in C3 (R*).

(ii.b) if o € (0,1672), then there exists v € C*(R*) such that e** € L*(R*) and
lim (uk(e_“’“(o)x) - uk(0)> = v(x)

k—+oco
when k — 400 for all z € R*. Moreover, this convergence holds in C} (R*) and
there exists A > 0 such that lim ;| o % = -\
(ii.c) If o = 0, then limy_, oo 2% Ay (0) = +00 and we have that
. 200 1 (0) o
ktoo e 2ux(0) Ay (0) 8

when k — 400 for all x € RY. Moreover, this convergence holds in C (R%).

Note that this theorem is optimal: for any o € [0,1672], we exhibit in section 2
examples of blowing-up solutions to (E) such that their energy converges to . Note
also that this theorem is specific to the radial case and does not hold in general for
nonradial solutions (see for instance Adimurthi-Robert-Struwe [1]).

In a joint work with Olivier Druet [6], we studied the corresponding problem on four-
dimensional Riemannian manifolds, where the bi-Laplacian is replaced by a fourth-
order elliptic operator refered to as P: when the kernel of P is such that Ker P =
{constants}, we get that blow-up occurs at finitely many isolated points, and that
each point carries exactly the energy 16m2. Note that in the context of Theorem 1.1,
the kernel of the bi-Laplacian contains more than the constant functions. Related
references in the context of Riemannian manifolds are Malchiodi [12] and Malchiodi-
Struwe [13]. As a remark, the corresponding question in dimension n > 5 was
considered in Hebey-Robert [8], we refer also to Hebey-Robert-Wen [9].

This paper is organized as follows. In section 2, we exhibit examples of blowing-
up solutions to (E) having any energy ranging in [0, 167%]. In sections 3 to 6, we
prove Theorem 1.1. More precisely, in section 3, we introduce the three types of
convergence that correspond to the cases a = 1672, 0 < o < 1672 and a = 0
of Theorem 1.1. The case o = 0 of Theorem 1.1 is proved in section 4. The case
0 < a < 1672 of Theorem 1.1 is proved in section 5. The case o = 1672 of Theorem
1.1 is proved in section 6. In the sequel, C' denotes a positive constant, with value
allowed to change from one line to the other. Note also that all the convergence
results are up to a subsequence, even when it is not precised.

Acknowledgements: the author thanks Adimurthi and Michael Struwe for hav-
ing suggested him to work on these questions and for stimulating discussions. The
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author is indebted to Olivier Druet and Emmanuel Hebey for stimulating discus-
sions.

2. EXAMPLES OF LOG- AND QUADRATIC-CONVERGENCES
We exhibit situations in which the three patterns (ii.a), .b) and .c) occur.

2.1. Log-Convergence. We let k£ € N* and define the function

. kOB
ukle) = I e e
for all x € R%. We have that
(e (O z) — uy(0) = In \/%_?_6||2

T

for all x € R*. As easily checked,

AQuk — e4uk

and

Vie*™ do — 16726
in B1(0) in the sense of measures when k — 400, and we are in the situation
described in (%i.a).

2.2. Quadratic-Convergence (I). We let o € (0,1672). It follows from [4] that
there exists v € C*(R?) such that v < v(0) = 0 and A%y = e in R* and
Jgs €'V dx = . For any k € N*, we define the function
ug(x) :=v (kz) +1Ink
for all z € R*. We have that
APy, = etr

in B for all kK € N* and we have that

up (e 7 O z) — 0y, (0) = v(x)
for all z € R* and all £ € N*. In addition, we have that

Viee*™ dx — ady

in B1(0) in the sense of measures when k — +oo and, using [11], we are in the

situation described in (%i.b).

2.3. Quadratic-Convergence (II). We let the unique radially symmetrical func-
=2
tion p € C*(R*) such that A%p = e in R%, 0(0) = Ap(0) = 0. We let
kOl -8 3
ug(z) :=Ink — 5 + k%0 (Kz)

for all k € N* and x € R*. We define
Vi = e 44 A2y,
for all k € N*. All these functions are explicit (see [1]) and we get that
lim Vi, =1in CP.(RY).

k—+oco

Moreover, we have that
Vet dz — 0
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in B1(0) in the sense of measures when k& — +o0o and we are in the situation
described in (ii.c). We refer to [1] for details about these assertions. A similar
method permits to construct families (uy) and (V3) such that (1) and (E) hold and
such that ux < ug(0) = 0 and Viye*¥* dz — 0 when k — 400, and we are in the
situation described in (7).

These three examples show that for any a € [0,1672], their exists a blowing-up
sequence of solutions to (F) with energy a.

3. PRELIMINARY ESTIMATES FOR (FE)

We let B be the open unit ball of R* and (Vi)ren € CY(B) a sequence such that

lim Vi =1in C}.(B). (5)
k——+oco
We let (ug)ren € C*(B) such that for any k € N, we have that
AQ’U,k = Vk64uk (6)

in B. We assume that is there exists A € R such that for any k& € N, we have that

/ et dy < A. (7)
B

We assume that the function uy is radially symmetrical with respect to the center
of the unit ball B, that is 0. For any radially symmetrical function h, there exists
h defined on an interval of [0,+00) such that h(z) = h(|z|) for all  such that
this expression makes sense. With a standard abuse of notation, we write h(r),
R (r), ete for h(r), B’ (r) respectively. This section is devoted to the proof of general
estimates on the (uy)’s and to the definition of the three types of convergence that
will let us distinguish the three situations of blow-up in Theorem 1.1.

Step 3.1: We first deal with the behavior of uj on subsets where it is bounded
from above:

Lemma 3.1. Let (Vi)ren € C%(B) and (ux)ren € C*(B) such that (5), (6) and
(7) hold. We assume that uy, is radially symmetrical for all k € N. We let w CC B.
Then, there exists C(w) > 0 such that

e () < C(w) (8)
for all x € w and all k € N.

Proof of Lemma 3.1: We let 01 € (0,1) such that w C Bs, (0). We let d € (61,1).
Since (5) holds, we assume without loss of generality that

Vi) > 3 9)
for all € B;,(0) and all £ € N. With equation (6), we get that A(Aug) > 0 on
B, and then Awy (considered as a function of r € [0,1)) is strictly decreasing on
[0, d2]. We distinguish three situations:

Case 8.1.1: We assume that Aug > 0 on By, (0). In this situation, we get that wuy
is decreasing on [0, d2]. We let & € Bs, (0). With (7) and (9), we get that
duy (x) 7T2|.T‘464uk(x)

5 Vol(Bjz/(0)) 2 1

A> / Vjetur dy >
By (0)

In particular, (8) holds in Case 3.1.1.
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Case 38.1.2: We assume that Aug < 0 on By, (0). In this situation, we get that wuy
is increasing on [0, d3]. We let « € By, (0). With (7) and (9), we get that

dug (x)
A > / Vee'™ dy > ©Vol(Bs, (0) \ By (0))
Bs, (0)\ B,/ (0) 2

72(03 — Jal)etn (™) x2(54 — et
- 4 - 4
In particular, (8) holds in Case 3.1.2.
Case 3.1.3: We assume that Awuy takes some positive and some negative values in
Bs,(0). Since Auy, is decreasing, there exists si, € (0,02) such that

Aug > 0in [0, s), Aug(sg) =0, and Aug < 0 in (sg, da].
In particular, there exists 7, € [sk, d2] such that uy is decreasing in [0, 75) and wuy
is increasing in [y, d2] (note that the case 7, = d9 is possible). We let = € By, (0).
If |z| < 7%, we proceed as in Case 3.1.1. If |z| > 7%, we proceed as in 3.1.2. In

particular, (8) holds in Case 3.1.3.
These three cases prove Lemma 3.1. ([l

Step 3.2: The preceding step permits us to deal with the convergence outside 0.
This is the object of the following Lemma:

Lemma 3.2. Let (Vi)ren € C°(B) and (ug)ren € C4(B) such that (5), (6) and
(7) hold. We assume that uy, is radially symmetrical for all k € N. Then we are in
one and only one of the following situations:

(a) there exists u € C*(B\ {0}) such that, up to a subsequence,

lim wugp =u in C{ (B )\ {0}).

k— 400

(b) there exists a sequence (ar)ren € Rso such that limyg_, 4o ap, = 400, there
exists ¢ € CH(B\ {0}) such that A% =0, ¢ <0, and such that
. Uk . 3
lim — = Cihe(B\ {0}).
plm o=@ i Cioe(BA{0})

In particular, ur, — —oo uniformly on every compact subset of B\ {0}.

We omit the proof of the Lemma: it is a direct consequence of the results of [1]
combined with Lemma 3.1. We refer to [1] for details.

Step 3.3: This short step is devoted to the case when uy is bounded from above.
More precisely we have:

Lemma 3.3. Let (Vi)ren € C°(B) and (ug)ken € C*(B) such that (5), (6) and

(7) hold. We assume that uy, is radially symmetrical for all k € N. We assume that

there exists 6o € (0,1) and C(8g) > 0 such that

for all x € Bs,(0). Then we are in one and only one of the following situations:
(a) there exists u € C*(B) such that, up to a subsequence,

lim w, =u in C} (B).
k—+oc0

In particular,
Vet dp — e* dx

when k — +00 in the sense of measures.
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(b) there exists a sequence (ar)ken € Rso such that limg_ o ar, = +00, there
exists ¢ € C*(B) such that A2p =0, ¢ < 0 in B\ {0}, and such that
. Uk . 3
1 — = Cy (B).
o= n loc(B)
In particular,
Viet" dx — 0

when k — 400 in the sense of measures.

Proof of Lemma 3.3: it follows from (8) and (10) that for any § € (0, 1), there exists
C(8) > 0 such that ug(xz) < C(J) for all z € B;(0). We proceed as in [1] and we
obtain that the function ¢ in Lemma 3.2 extends to the whole domain B, and is
bi-harmonic in B. Since ¢ is radially symmetrical, ¢ < 0 and ¢ # 0, we get that
¢ < 01in B\ {0}. This proves Lemma 3.3. O

Step 3.4:

Lemma 3.4. Let (Vi)ren € C°(B) and (ug)ren € C*(B) such that (5), (6) and
(7) hold. We assume that uy, is radially symmetrical for all k € N. We assume that
there exists 6o € (0,1) such that

lim sup wug = +oc. (11)
k—+oco B(SO (O)

Then for all 6 € (0,1) and for k > 0 large enough, we have that sup g, o) ux = ux(0).

Proof of Lemma 8.4: It follows from (8) and (11) that for any ¢ € (0, 1), we have that
limy 400 SUPR 5(0) Wk = +oo. It follows from the study of the monotonicity carried
out in Step 3.1 that supp, ) ur € {uk(0),ur(0)}. With (8), we get that there exists
C(0) > 0 such that ui(6) < C(9) for all k € N. Since limy—, 40 SUppg, (o) Uk = +00,
we get that the supremum is achieved at 0 for & > 0 large enough. This proves
Lemma 3.4. (]

From now on, we assume that the sequence (uy) satisfies the hypothesis of Lemma
3.4. In particular, we assume that for any § € (0,1), we have that
sup ur = ug(0) and  lim wg(0) = +o0. (12)
B;(0) k—+o00

Step 3.5: We now introduce the three fundamental types of convergence for (E).
This is a specificity of the bi-harmonic operator, compared to the Laplacian:

Proposition-Definition 3.1. Let (Vi)ren € C°(B) and (up)ren € C*(B) such
that (5), (6) and (7) hold. We assume that uy, is radially symmetrical for all k € N.
We assume that (12) holds. We let
i = e~ O and vy (x) = up(upz) — up(0) (13)
forallk e N and allx € BMI:I (0). Then one and only one of the following situations
holds:
(i: Log-convergence) For all x € R%,
lim wvg(z) =1n ﬂ
koo ¥ V96 + [2]?

Moreover, this convergence holds in C3 (R%).
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(ii: Quadratic-Convergence (I).) There exists a > 0, v € C*(R*) such that
A%v =e* inR* and lim LZCQ) =—a
|| —=+o0 |.’17|

and such that

lim v, = v in Cp (R*).
k—+oo

(iti: Quadratic-Convergence (II).) We have that limy_, o Avg(0) = 400 and,
for all z € R*,
v () |z
| -

Moreover, this convergence holds in C3 (R%).

Proof of Lemma 3.1: We let Vi(z) := Vi.(usz) for all z € BMEI(O) and all k£ € N.
In particular,
lim Vi =1in CY_(R?).

k—+oco
Equation (6) rewrites as
A2Uk = Vk€4vk (14)
in B #;1(0). Inequality (7) rewrites as
/ Viee*r do < A (15)
B _1(0)
HE

for all k € N. Moreover, it follows from (12) and the definition (13) of v, that
vg(z) <vp(0) =0 (16)

for all z € Bulzl(O). We let R > 0. We proceed as in [1] and let wy € C*(Bg(0))
such that ~

A2wk = Vk€4v" in BR(O)

wr =Awp, =0 on dBr(0) |-
It follows from (16) and standard elliptic theory that there exists C'(R) > 0 such
that

[wllcs1/2(B R0y < C(R) (17)
for all k € N. We let oy := v, — wg. It follows from (16) and (17) that there exists
C(R) > 0 such that
pi(z) < C(R)

for all z € Bg(0) and all & € N. Since A%p, = 0, proceeding as in [1], we
get that either ¢ converges in C} (Bg(0)), or it converges in C;t (Br(0)) up to
multiplication by a sequence of positive real numbers. Coming back to the function
v = Wi + i and using arbitrarily large R > 0, we get that we are in one and only
one of the following cases:

Case 3.5.1: There exists v € C3(R*) such that

lim v, = v in C} (RY).
k—+o0

Pasing to the limit in (14), we get that A?v = e*¥ in the distribution sense, and
then v € C*(R*) by elliptic theory. With (16), we get that v(z) < v(0) = 0 for all
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r € R%. Letting k — +oo in (15), we get that e*” € L'(R*). Tt follows from [11]
(Theorem 1.1 and 1.2) that
v(z)

V96
In ————— or there exists a > 0 such that lim — = —a.
V96 + |z[? |z =-+oo ||
We recover (i) and (ii) of Proposition-Definition 3.1. This ends Case 3.5.1.

Case 3.5.2: There exists ¢ € C3(R?%), there exists (ag)reny € Rso such that
limg s 400 ar = 00 and

either v(z) =

. Vk . 3 4
1 — = Ci,.(R%).
o= e in (R
Moreover, ¢ # 0 and A?p = 0 in the distribution sense, and then ¢ € C*(R*) by
elliptic theory. Passing to the limit in (16), we get that p(z) < ¢(0) = 0 for all
x € R Tt follows that there exists a > 0 such that ¢(x) = —alz|? for all z € R%.
Estimating Avk(0), we get that
- o vk() |z
1 Av(0) = d 1 =_=
k—g—ﬁr-loo Uk( ) oo an k—y—ir-loo A”Uk(O) 8
3 (RY). In this case, we
recover (iii) of Proposition-Definition 3.1. This ends Case 3.5.2, and therefore the
proof of Proposition-Definition 3.1.

for all # € R*. Moreover, this convergence holds in C}

O

Step 3.6: We state a very useful integral inequality. In the next section, this
inequality will allow us to distinguish the three types of convergence above.

Lemma 3.5. Let (Vi)ren € C°(B) and (ug)ken € C*(B) such that (5), (6) and
(7) hold. We assume that uy, is radially symmetrical for all k € N. We assume that
(12) holds. Then, for any 0 < § < 1, there exists C(6) > 0 such that

/ Ak — 12 Aug(0)| dz < C(6) R (18)
Br(0)
forallk e N and all R < 5;1,;1. In this expression, uy and vy are as in (13).

Proof of Lemma 3.5: We follow the argument of Robert-Struwe [15]. We let G5 be
the Green’s function for the Laplacian on Bs(0) with Dirichlet boundary condition.
Since Auy, is radially symmetrical, we get that

Bunle) = [ Galep)APunly) dy -+ Sun(5)
Bs(0)
for all z € Bs(0). We choose x € R* such that |z| < duy '. Using (13), we get that

Ay (x) — 3 Ay (5) = /B o PGS A ) dy (19)
s(0

Standard estimates on the Green’s function (see for instance [7]) yield that there
exists C(4) > 0 such that

Ga(ay)] < C_“y)' (20)
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for all z,y € Bs(0). Integrating (19), using (20) and (6), we get that
/ |Avy, — p2 Aug(6)] da
Br(0)

< / / 132G (e, y)Vie(y)e™ @ dy dx
+€Br(0) JyeB;(0)

2
< C(9) / Vi(y)e @) / e | dy
Bs(0) Br(0) |k — Yyl

< C(0) / Vet W) (CR?) dy < C(6)AR?,
Bs(0)

where C(6) > 0 is independant of & € N and R € (0,y; ). In this last inequality,
we have used (7). This proves Lemma 3.5. O

The key-quantity in Step 3.6 is the limit of ;7 Aug(d) when k — +o0o. We separate
the study in three cases, each of the following three sections is devoted to one of
these cases. Thanks to them, we will recover the three notions of convergence of
Proposition 3.1.

4. THE CASE limy_; 100 p2Auy(8) = 400

In this situation, we show that the second type of quadratic convergence of
Proposition 3.1 holds and that Vie?** — 0 when k — 400 in the sense of measures.

Step 4.1: We prove that quadratic-convergence (II) of Proposition 3.1 holds in
this case. More precisely,

Lemma 4.1. Let (Vi)ren € C°%(B) and (ug)ren € C*(B) such that (5), (6) and
(7) hold. We assume that uy, is radially symmetrical for all k € N. We assume that
(12) holds. We assume that there exists 8y € (0,1) such that

lim 22| Aug(5) | = +oo, (21)
k—+o00

where py, is as in (13). Then, the second type of quadratic convergence of Proposi-
tion 3.1 holds. In addition, for any d € (0,1),

. 1
in Cj,,

(B) when k — +oo.

Proof of Lemma 4.1: Let 6y € (0,1) as in the Lemma. Let R > 0. It follows from

(18) and (21) that
HA<%AZMM)_1

when k — +o00. It follows from (14), (16) and (21) that

— o(1) (22)

LY (Br(0))
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where o(1) — 0 in C°(Bg(0)). It follows from (22) and standard elliptic theory
=0 (23)

that
vk
A () 1
H 1 Au (do) Lo (B2 (0))

when k& — +oo. With (14) and (16), we get that there exists g € C*(Bp/2(0))
such that ¥r # 0 and

. Vg . 3
1 = C°(B 0)).
i 12 A s (30) YR in C°(Br/4(0))
Moreover, (16) yields ¢ r(z) < ¥g(0) = 0 for all x € Br/4(0). With (23), we get
that Awgr = 1. Since the functions are radial, we get that ¢ g(z) = —|x|?/8 for all
x € Bpry4(0). In particular, taking R arbitrarily large, we get that
Uk =

li — =" in C} _(RY). 24
k%lriloo M%Auk(éo) 8 m ZOC( ) ( )

Computing the Laplacian of vy at 0, we get that

lim 7Auk(0)

=1
k—+o0 Auk (50)

In particular, Aug(dp) > 0 for k > 0 large and limy—, 4 oo Aug(0) = +00. Combining
this limit with (24), we obtain that the second type of quadratic convergence of
Proposition 3.1 holds.

We let 1, € C?(B) such that ¢, = %. With the equation (6) and the estimate
(8), we get that
lim Ay = 0in C) (B \ {0}).

k—+o00
Since Awuy, is decreasing, we have that i (z) < 1 for all z € B. Noting that we
have that limg_ o0 ¥r(00) = 1, it follows from elliptic theory that there exists
¥ € C?(B\ {0}) such that limy_, 1o ¥ = ¢ in C_(B\ {0}) and Ay = 0. Letting
k — +oo, we get that 9(dp) = 1. Since ¢ < 1 in B and ¢ is non-increasing, we get
that ¢» = 1. In addition, since vy, is decreasing and achieves the value 1 at 0, we
get that

This ends the proof of Lemma 4.1. ([l

Step 4.2: In the case of quadratic convergence, the quadratic term happens to
dominate the other ones asymptotically. More precisely, we have the following.
Note that this Lemma does not use hypothesis (21).

Lemma 4.2. [Pointwise estimate (I)] Let (Vi)ren € C°(B) and (uy)ren € C*(B)
such that (5), (6) and (7) hold. We assume that uy is radially symmetrical for all
k € N. We assume that (12) holds. Then for any 0 < § < 1 there exists C(d) > 0
such that

|| |Vu(2) +

AUZ(5)x < C(9)

for all x € Bs(0) and all k € N.
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Proof of Lemma 4.2: We let § € (0,1). We let Hs be the Green’s function A% on
Bs(0) with Navier condition, that is for any = € Bs(0),

A’Hs(z,-) = 6, in D'(B;(0))

Hs(z,-) = AHs(x,-) =0 on 0Bs(0)
As easily checked, we have that Hs = G * G5 where * denotes the product of

convolution and Gy is the Green’s function for A on Bs(0) with Dirichlet boundary
condition. Since uy is radially symmetrical, we get that

62 — |z 2
w@)= [ Hole ) Nu(y) dy + ua0) + O Aue(o)
B;(0)
for all 2 € Bs(0). Differentiating this identity, we get that
Aug(d
Vi) = [ Vs 8%y dy - 20 (25)
Bs(0) 4

for all z € Bs(0). Standard estimates on the Green’s function (see for instance [7])
yield that there exists C(§) > 0 such that

C ()

[z =y

for all z,y € Bs(0). Plugging (26) into (25), we get that

Au) [ o) / Y
4 B5(0) |z —yl

for all € Bs(0). Using the pointwise estimate (8), we get that

64Uk (y) 64’U«k (y) 64uk‘ (y)
/ Y < / e / CHR,
Bs(0) 17— Yl Bs(0)N B4 2(0) 1T = Yl Bs(0)\B,/2(0) 1€ = ¥l

|VH;(z,y)| < (26)

V(e

2 1
< — et ) gy 4 ¢ T W
|| Bs(0) B5(0)\B|/2(0) ly[*|z -y
2h C 1
< ot ——dy
2| 12l Sy 008y 0) [yt ‘ﬁ - y‘
C'(6,7)
||
for all € Bs(0) \ {0} and all £ € N. Here C’(5,A) depends only on § and A. This
proves Lemma 4.2. ([

Step 4.3: We are in position to describe precisely the asymptotics of the uj’s when
k — 4o0. This is the object of the following Lemma:

Lemma 4.3. [Pointwise estimate (II)] Let (Vi)ren € C°(B) and (ug)ren € C*(B)
such that (5), (6) and (7) hold. We assume that uy is radially symmetrical for all
k € N. We assume that (12) holds. We assume that there exists §g € (0,1) such
that
lim  p2|Aug(do)| = +oo.
k—+oo

Welet 0 < § < 1. Then

< ——ﬁ n z|?
W<NM®>—wmw- -+ 0 In(2 + jaf?) (27)
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for all z € B Auk(o)(O) and all k € N, where O(1) denotes a function such that
there exists C(8) > 0 such that |O(1)(z, k)| < C(6) for all x € By A (0) (0) and
all k e N.

Proof of Lemma 4.3: We let x € By Auk(O)(()) such that || > 1. We let 29 = R

With the pointwise estimate of Lemma 4.2, we get that

(7))
1 8 ) x
:/0 ot l“’“ <(1_t) VAu (9) +t\/Auk(5>>‘| “

(1 —t)xg + tzx
\/m/ T — o) 8uk (M@)) dt
:&/ (2 — 20)' (1 — )0 + ta); dt

0

\/m / (a UL <(1 2:;2(;;56) 4 Azk((s) ((1 - t)gjo + tJC)Z> dt

2 2 —
_ |3?| |~’U0| Lon /|1 z—aol

—t)xo + Lz
|£C|2 |=’Co|2 /1 [ =1
=—— o1 — i
s T s 00 iRmo 1
2 2
_ Bl oy (28)
8 8
where O(1) is a function which is bounded with respect to both = and k € N. We
claim that
. x |z|?
1 — L) —u(0) ) = -5 29
Jim <Uk< Auk(5)> uk( )) S (29)

for all x € R*, and that this convergence holds in C} (R*). We prove the claim.

We write that
Al ug | e | —u(0) ) = o (\/ﬁwﬂ
"\Vaumwm ) " Au(d)

for all x € Bs(0) and all k € N. It follows from Lemma 4.1, (12) and standard
elliptic theory, that there exists ¢ € C'(R*) such that

kggloo (uk ( Aw(&) - Uk(0)> — )

for all x € R* when k — +o00. Moreover, ¢ € C%(R*), Ap =1 and ¢ < (0) = 0.

Since ¢ is radially symmetrical, we get that p(z) = —%. This proves the claim.
The asymptotic (27) follows from (28) and (29). This proves Lemma 4.3. O

Step 4.4: We prove the vanishing of the L' —norm of e*"“* when k — +oc.
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Lemma 4.4. Let (Vi)ren € C%(B) and (up)ren € C*(B) such that (5), (6) and
(7) hold. We assume that uy, is radially symmetrical for all k € N. We assume that
(12) holds. We assume that there exists §g € (0,1) such that

. 2 o
G pric| Aug(8)] = +o0.

Then, for any 6 € (0,1), we have that

/ et dr — 0
B5(0)

when k — 4o00. In particular Vie*™* dz — 0 when k — +oo in the sense of
measures.

Proof of Lemma 4.4: We let 6 € (0,1). With the definition (13) of ux and a change
of variables, we get that

[ E—— A (Tmimm ) )
Bs(0) B

1
pAuy(6)? sy/m (0
Since limg—, oo 3| Aug(dp)| = +00, Lemma 4.1 yields that limy e piAug(8) =

+00. The asymptotic (27) of Lemma 4.3 yield the conclusion of the Lemma 4.4. O

Point (ii.c) of Theorem 1.1 follows from Lemma 4.4.

5. THE CASE limy_ 4 oo pi|Aug(d)| = K5 > 0

In this situation, we show that the first type of quadratic convergence of Propo-
sition 3.1 holds. Moreover, we describe the asymptotics for uy.

Step 5.1: We first prove that the quadratic-convergence (I) holds in this case.
More precisely,

Lemma 5.1. Let (Vi)ren € C°(B) and (ug)ken € C*(B) such that (5), (6) and
(7) hold. We assume that uy, is radially symmetrical for all k € N. We assume that
(12) holds. We assume that there exists §p € (0,1) and K5, € R such that

lim 22| Aug(80)] = Ks, > 0.
k—4o00

Then the first type of quadratic convergence of Proposition-Definition 3.1 holds. In
addition, we have that there exists K > 0 such that
. Auy,
im
k—+o00 Auk (0)

=K in Clloc(B \ {0}).

Proof of Lemma 5.1: Let R > 0. Since, up to a subsequence,
lim i Aug () = Ks, # 0. (30)
k— 400

It follows from (18) that
HAvk”Ll(BR(O)) =0(1)

when k — +o00. It follows from equation (14), inequation (16) and elliptic theory
that

1AVl 018 a0y = O1) (31)
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when k — +o00. Inequation (16), equations (14) and (31), the Harnack inequality
and standard elliptic theory yield that there exists v € C®(R*) such that

lim v, = v in C} (RY), (32)

k—+oo

where A%y = €% in the distribution sense. Elliptic theory yields that v € C*(R*).
We are then in Case (i) or (ii) of Proposition-Definition 3.1.

We claim that we are in Case (ii) of Proposition-Definition 3.1. We proceed by
contradiction and assume that Case (i) of Proposition-Definition 3.1 holds. We
then get that v = vy where

D V96
V6 + |of?
for all z € R%. We let R > 0. We let k — +o0 in (18) and get that

() (LC)

/ |Av(z) — K5,|de < CR?.
Br(0)

Since v = vy, using the explicit expression of vy above and letting R — 400, we
get that there exists a constant C' > 0 independant of R > 0 such that

|K5,] < CR™2

for all R > 0. Letting R — 400, we get that K5, = 0. A contradiction with our
initial assumption (30). Then Case (i) does not hold and we are in Case (ii).

It follows from Case (ii) of Proposition-Definition 3.1 and Theorem 1.2 of [11] that
there exists a > 0 such that

v(z) =—aand lim Av(z)=8a. (33)

|z]—+o00 |£ZZ|2 |z|—+o0

We let § € (0,1). With (18), we get that there exists C(d) > 0 such that
/ Ak — 12 Aug(0)| dz < C(6) R (34)
Br(0)

for all R € (0,0u; ). It the follows from (32) that there exists K5 € R such that
limy 40 p3iAug () = Ks. Passing to the limit kK — +oo in (34), we get that

/ |Av — K| dx < C(6)R?
Br(0)

for all R > 0. Letting R — 400 in this inequality and using (33), we get that
K5 =8a >0 for all § € (0,1). In particular, with (30) and (32), we get that there
exists K > 0 such that for any ¢ € (0, 1),

Auk(é)

=K > 0.
k—ir-‘,r-loo Auk(O) >

The last assertion of Lemma 5.1 follows from this limit, equation (E), inequality
(8) the decreasing of Auy and standard elliptic theory. O

Step 5.2: With some arguments very similar to the ones developed in the proof of
Lemma 4.3, we get the following Lemma. We omit the proof:
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Lemma 5.2. Let (Vi)ren € C%(B) and (up)ren € C*(B) such that (5), (6) and
(7) hold. We assume that uy, is radially symmetrical for all k € N. We assume that
(12) holds. We assume that there exists §g € (0,1) such that

lim | Aug ()| = Ks, > 0.
k——+oco

Welet0 < 6 < 1. Then there exists a sequence (ay)ren € R such that limg_s 4o ap, =
oo > 0 and such that

vp(z) = —ag|z|? + O(1) In(2 + |2|?)
forall z € 35%1(0) and all k € N, where O(1) denotes a function such that there
exists C(6) > 0 such that |O(1)(x, k)| < C() for all x € Béulzl(()) and all k € N.

As a consequence of this pointwise estimate, we get the following quantization of
the L'—norm of e*¥*:

Lemma 5.3. Let (Vi)ren € C%(B) and (up)ren € C*(B) such that (5), (6) and
(7) hold. We assume that uy, is radially symmetrical for all k € N. We assume that
(12) holds. We assume that there exists §g € (0,1) such that

lim | Aug(do)| = Ks, > 0.
k——+oco

Then for any § € (0,1), we have that

k— 400

lim Vet dx = / e dx < 1672
Bs(0) R4

In other words, Ve do — (fR4 et dx)éy when k — +oo in the sense of the
measures.

Proof of Lemma 5.3: Tt follows from Lemma 5.2 that there exists C' = C(§) > 0
such that

v(@) < —=fa? 4+ C

for all z € 35#;1(0) and all £ € N. We let R > 0. With a change of variable, we
get that

/ Vie!™ dz = / etk dp < 9 / e 20me ol H4C gy
Bs(0)\Bry, (0) Bs/uy, (0\BRr(0) R4\ BRr(0)

As a consequence,

lim  lim Vet dz = 0. (35)
R=r400 k=400 / B;(0)\Bry, (0)

On the other hand, with a change of variables and letting £ — +o00, we get that

/ Vet dr = / Ve dx = / e*” dx + o(1) (36)
Bru,, (0) Br(0) Br(0)

when k£ — +o0o. Summing (35) and (36) and letting k — +o00 and then R — o0,
we get that

lim Ve dx :/ e da.
k—+o0 B (0) R4
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Moreover, it follows from [11], Theorem 1.2, that

/ e* dr < 1672,
]R4

This ends the proof of Lemma 5.3. (]

Point (ii.b) of Theorem 1.1 follows from Lemma 5.3.

6. THE CASE limy 400 u3Aug(8) =0

In this case, the behavior of the wu’s is much more standard and is similar to
the two-dimensional corresponding problem. We show that the Log-convergence of
Proposition-Definition 3.1 holds. Moreover, we describe the asymptotics for uy.

Step 6.1: We first prove that the Log-convergence holds in this case. More pre-
cisely,

Lemma 6.1. Let (Vi)ren € C%(B) and (ux)ren € C*(B) such that (5), (6) and
(7) hold. We assume that uy, is radially symmetrical for all k € N. We assume that
(12) holds. We assume that there exists §g € (0,1) such that

lim p2A =0.
m g Aug(do) = 0

Then for any x € R4,
lim wg(z) = lni
krtoo V96 + |z]2’

where vy, is as in (13). Moreover, this convergence holds in C}.

(RY).

Proof of Lemma 6.1: With some arguments similar to the ones developed in the
proof of Lemma 5.1, we get that there exists v € C* (R4) such that limg—, 4o vy = v
in C} .(R*). Moreover, A?v = €% and e € L'(R?). We are then in Case (i) or (ii)

of Proposition-Definition 3.1. We let k& — +o0 in (18) and get for any R > 0 in R*
that

/ Av()| dz < CR2. (37)
Br(0)

We assume by contradiction that Case (ii) holds. It then follows from Lin [11] that
lim|| 400 Av(z) = 8a > 0. Letting R — 400 in (37), we get that 8a = 0. A

contradiction. We are then in Case (i) of Proposition-Definition 3.1 and v(x) =

In \/ﬁﬂz for all € R*, that is Log-Convergence holds. This proves Lemma 6.1.

A consequence of this Lemma is the following. With a change of variable, we get

that
/ Vet do = / Vietor dx = / e* dx + o(1)
Bry, (0) Br(0) Br(0)

when k — 4o00. Passing to the limit £ — +o00 and then R — +o00, we get that

lim  lim Vet dx = 1672 (38)
R—+o00 k—+o00 BRuk (O)

Step 6.2: We are in position to deal with the convergence outside 0. This is the
object of the following Lemma:
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Lemma 6.2. Let (Vi)ren € C%(B) and (up)ren € C*(B) such that (5), (6) and
(7) hold. We assume that uy, is radially symmetrical for all k € N. We assume that
(12) holds. We assume that there exists §g € (0,1) such that

lim 2 Auy(5) = 0.

k—+oco

Then limy_, 1 oo up = —00 uniformly on every compact subset of B\ {0}.

Proof of Lemma 6.2: Assume that the conclusion is false. It then follows from
Lemma 3.2 that for any K CC B\ {0}, there exists C'(K) > 0 such that

ur(2)] + |Aug (2)| < C(K) (39)

for all z € K. We let § € (0,1/2) and we let H;s be the Green’s function for A? in
Bs(0) with Navier condition on the boundary, that is for any = € Bs(0), we have
that

A2H5(3;‘, ) = (SI

for all € Bs(x) and Hs(z,-) = AHgs(z,-) =0 on 0Bs(x). We let x € B;s(0) \ {0}.
Since uy, is radially symmetrical, we have that

duy (y) 8 — |z
up(x) = Hs(x, y)Vi(y)e™ ™ dy + up(0) + —————

Bs5(0) 8

We let @ > 0 small. Since uy is uniformly bounded in L*° outside 0 and since

Hs > 0, we get with (5), (38) and (39) that there exists C' > 0 independant of x
and a > 0 such that

uglz) > / Hs(2,y)Vi(y)e @ dy — C
BRN;C(O)

> / Hys(x, py) Vi (y)e* @) dy — C
Br(0)

Y

k—+oo

/ H;(z,0) lim (Vk(y)e4”k(y)> dy — C + o(1)
Br(0)
> 1672 Hs(x,0) — C 4 o(1)

for x € B such that |z| > « and for k large enough depending only on «. Since
2 2
Hs(2,0) = 5 In 2 + % for x € B o(x0). We then get that

1 /
ug(x) > 2lnﬁ —C"+o0(1)

x
for x € B5(0) \ Bo(0) and k large depending only on o > 0. We then get that for
any 0 < a < 8 small,

1

A> / Vet dz > C T dx.
B5(0)\Ba (0) B5(0\Ba(0) |l

We get a contradiction by letting & — 0. Then u; — —oo on compact subsets of
B\ {0} when k — +00 and Lemma 6.2 is proved. O

Step 6.3: We now prove that the whole L' —norm of e*“* is actually 1672. We
borrow ideas from Schoen-Zhang [16], Druet [5] and Druet-Robert [6].
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Lemma 6.3. Let (Vi)ren € C%(B) and (ux)ren € C*(B) such that (5), (6) and
(7) hold. We assume that uy, is radially symmetrical for all k € N. We assume that
(12) holds. We assume that there exists §g € (0,1) such that

li 2 Aug(8o) = 0.
JmpiAu (%)

We let 0 € (0,1). Then there exists (ri)ren € Rso such that ry € [0,0] for all
k€N and

(i) limp— 40 &
(i3) v+ re® (") is decreasing on [4puy, k],
(iii) u, — —oo uniformly on Bs(0) \ By, (0).

= 400,

Proof of Lemma 6.3: We let § € (0,1). Without loss of generality, we assume that
limy 400 #3Aug () = 0 (otherwise, we are back to the previous cases).

Step 6.3.1: We claim that for any R > 4, we have that
s re* (") is decreasing on [4u, Ry

for k large enough. Indeed, we let r € [4py, Ruk| and we let py 1= #Lk With Lemma
6.1, we have that

1 d d
ug (1)’ _ il uk (rpk) _ 12 v (1)
(re"*t) (1) oyt o (m e )(Pk) Be g (7“6 )(Pk)

V96 [ V96 — p?
= re”(r) 0 = k 0
a < + (1)) o) = ((\/96+pi)2 " (1)>

where o(1) — 0 when & — +oo uniformly for r € [4ug, Rug]. Since py > 4, the
right-hand-side is negative. Then (re®*() < 0 and the function r - re**() is
decreasing on [4fu, Rug].

Step 6.3.2: We assume that r — re™*(") is decreasing on [4ug,d] for all k& € N.
Then the conclusion of the Lemma holds with r; := §, and Lemma 6.3 is proved.

From now on, we assume that
r — re* (") is not decreasing on [44y, 8]. (40)
We let
— inf{p € [4un,0)/ (re" D) (p) = 0.}
Step 6.53.3: We claim that

lim & — 400, (re™MY(r) < 0 when 4p; < r < 7, and (re™ ™Y (ry) = 0.
k—+o00 Mk
(41)

Indeed, it follows from Step 6.3.1 and (40) that rj is defined and satisfies the two
last statements of (41). The first statement is a consequence of Step 6.3.1.
Step 6.3.4: We claim that

lim e (") =0, (42)

k—+oco



FOURTH ORDER EQUATION 21
Indeed, we let R > 4. Tt follows from (41) that re“s(") is decreasing on [Ruy, 7).
We then get that

rke“’“(r’“) < Rukeuk(R/Lk)SRevk(R)

(Rev(R) +0(1)) < <\/§>6+\/%R2 —|—0(1)>

where o(1) — 0 when k — +oc0. Letting kK — +o00 and then R — 400, we get (42).
This ends Step 6.3.4.

We let

IN

g (z) = ug(rez) — uk(rg) (43)
for all k € N and all z € Brgl(O).

Step 6.3.5: We claim that there exists a > 1 such that for any z € R*\ {0}, we

have that
. 1 a—1
lm wg(rpz) — uk(rg) = aln — +

koo w t g (el -, 44)

Moreover, this convergence holds in C7,,.(R*\ {0}). Indeed, equation (6) rewrites
as
AQ’[Lk(:E) = Vk(rkx)rée&uk(’f‘kﬂl) — Vk(,rkx),rﬁelluk(rk)eﬁk(m) (45)

forall ke Nand all z € B, (0). The system (41) yields that

4
riil,(r) < —1 for 2% < <1 and @ (1) = 1. (46)
Tk

Proceeding as in Lemma 4.2 and using the definition (43), we get that there exists
C = C(d) > 0 such that

C
~/ 20 < 2
|, (r) + 1 rer| < .

(47)
for all k € N and all 7 € (0,0r;'). Taking r = 1 in (47) and using (46), we then
obtain that, up to a subsequence, there exists p € R such that

lim 72 Aug(d) = p. (48)

k—+oco

Since (1) = 0, it follows from (47) and (48) that for any U cC R*\ {0}, there
exists C'(U) > 0 such that
|y ()| < C'(U)

for all x € U and all k € N. It then follows from (45), (42) and standard elliptic
theory that there exists @ € C*(R*\ {0}) such that A% = 0 and

i — @ (49)
in C3 _(R*\ {0}) when k — +o0. Since @ is radially symmetrical, we get that there
exist a,b,c,d € R such that

1 b
i(z) =aln — + — +clz* +d (50)
[ |2?
for all z € R*\ {0}. Passing to the limit in (47) and using (48), we get that

_ p ¢
— < —
|’ (r) + 4r| = (51)
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for all > 0. It follows from (50) and (51) that b = 2c + £ = 0, so that we can
write

1
u(x) :alnm—g

for all z € R*\ {0}. Passing to the limit in (46), we get that

|z|? + d

ri'(r) < —1for r <1 and @'(1) = —1.
With the explicit expression (50) of @, we get that

aflz%ZOandng.

Since @(1) = 1, the claim follows.

Step 6.3.6: We claim that
a > 2.

Indeed, integrating by parts, we get that

/ 2 0;u Auy dx
B, (0)

= @v) 2 Oz, Vug) OAuy,
= /837%(0) < 9 (Auk) + Auk EY (I,Vuk) ey do (52)

where v denotes the outer normal vector at 9B, (0). Using the change of variable
y = rix and the convergence (44), we get that

A
/ ((I’U) (Aug)? + Auka’vuk) — (ac,Vuk)a uk) do
9B, (0)

2 Oov ov
(m, V) ~ \2 - 8(3:, Vﬂk) - 8Aﬂk
— W EA Aig, D VUk)
[ (2 an 200 o v 250 ) o
(x,v), . _\o _O(z,Vu) L OAG
- W) Aq)? 4 Ag DY gou 1
/831(0) ( 5 (AQ)* + A ey (x,Va) % do + o(1)
= —4r%a® + o(1) (53)

where 0(1) — 0 when & — +00. On the other hand, using (6), we have that

/ 2 0up A%uy do = / ' oupe™ dx + / (Vi — 1)z’ Qqupe™ de.
By, (0) By, (0)

By, (0)
(54)
It follows from Lemma 4.2 and (48) that there exists C' > 0 such that

2" Oun ()| < C (55)
for all x € B,,(0). Properties (5), (7) and (55) yield

lim (Vi — D' dqupe™ dx = 0. (56)
k—+oc0 Brk (0)

Plugging (53) and (56) into (52) and (54), we get that

/ ' Oupet™ dr = —4ra® 4 o(1)
By (0)
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when & — +o00. Integrating by parts, we get that

—47%q? = / z'0;
B'V‘k (0)

= —/ e dr + / Me‘l“k do + o(1)
B, (0) 9B, (0) 4

= —/ ek dy 4 pletur(me) / Me‘w’“ do + o(1). (57)
By, (0) 9B1(0)

e4uk

dx 4+ o(1)

With (42) and (49), we then get that
/ et dy = 4m%a® 4 o(1)
By, (0)

where o(1) — 0 when k — +o00. Since (38) and (41) hold, we then get that |a|? > 4.
Since a > 1, we get that a > 2, and the claim is proved.

Step 6.3.7: We let 6 € (0,1). We claim that

lim sup up = —o0.
k——+oco [r&,0]

Indeed, it follows from (44) and (49) that r@/(r) = —a + (a — 1)r%. Since a > 1, we
get that @ is decreasing on (0, A /ﬁ) and increasing on (, [ 55, +oo). It follows

from the study of the monotonicity of uy provided in Case 3.1.3 of Step 3.1 that
there exists 75, € (0,6) such that u; decreases on (0,7x) and increases on (7%, 9).

Since (44) and (49) hold and since the monotonicity of @ changes at , /%5, we get
that
. Tk a
1 — = . 58
k—ir}r’loo Tk a—1 ( )

We let yx € Bs(0) \ By, (0) such that

_osup gk = ug(Yk)-
B5(0)\Br,,(0)

We distinguish two cases:

f:l = +00. Then with (58), we get that u
increases on [1x, 4], and then uy(yx) < ug(d). With Lemma 6.2, we then get that
limk_,+oo uk(yk) = —0OCQ.

Case 6.3.7.2: we assume that |yx| = O(rg) when k — +oo. We let 2z, = ¥£. Since
lyx| > 7, we get that, up to a subsequence, limg_, o0 2k = 200 # 0. With (43),
(49) and Case 6.3.7.1, we get that

Case 6.3.7.1: we assume that limy_,

up(yr) = ur(yr) — uk () + ug(7i)
< o)~ () 4 n) <00 + )
T

and then with Lemma 6.2, we get that limg_, oo ug(yr) = —oo. This proves the
claim.
In particular, this proves Lemma 6.3. O

Step 6.4: With the same kind of arguments as above, the following monotonicity
holds (we omit the proof):
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Lemma 6.4. Let (Vi)ren € C%(B) and (up)ren € C*(B) such that (5), (6) and
(7) hold. We assume that uy, is radially symmetrical for all k € N. We assume that
(12) holds. We assume that there exists §g € (0,1) such that

. 2 _
kBIJ?oo prAug(dp) = 0.
We let § € (0,1) and n € (1,2). Then there exists R, > 0, there exists (r)ren €
Rso such that ry, € [0,6] for all k € N and
(i) img_, 4 0o L—’; = +00,
(i) 7+ r1e™ (") s decreasing on (R poses ) s

(iii) up — —oo uniformly on Bs(0)\ By, (0).

Step 6.4 We are in position to get the energy estimate for e*“~.

Lemma 6.5. Let (Vi)ren € C°(B) and (ug)ken € C*(B) such that (5), (6) and
(7) hold. We assume that uy, is radially symmetrical for all k € N. We assume that
(12) holds. We assume that there exists dg € (0,1) such that

lllll :“ AU (;U - ().
zhen ’OT any 6 S (07 ].); we have that:

lim Vet dx = 1672,
k— 400 B (0)

In particular, Vie*"* — 16w26y when k — +o0o in the sense of measures.

Proof of Lemma 6.5: We prove the claim. We choose € (1,2) and R, > 0, (7%)ren
as in Lemma 6.4. We let R > R,,. It follows from Lemmae 6.1 and 6.4 that

4n p4ur (Ruy)
/ e4uk dx S / (Rﬂk) 467] dl’-i—O(].)
Bs(0)\Bry, (0) By, (0)\Bry,, (0) T

s 4,4 4wy (Rpy)

R .

< c(Ruk)‘*"e‘*uk(Rﬂk)/ P dr 4 o(1) < C—HE——
R,u,k n -

4
¢ < V96R ) +0(1)

+0(1)

—n—1\v96+ R?

where limy_, ;o0 0(1) = 0. Summing this integral and (38), letting ¥ — +o00 and
then R — 400, we get the result. This proves Lemma 6.5. (]

Point (ii.a) of Theorem 1.1 follows from Lemma 6.5.
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