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Abstract. We let Ω be a smooth bounded domain of R4 and a sequence

of functions (Vk)k∈N ∈ C0(Ω) such that limk→+∞ Vk = 1 in C0
loc(Ω). We

consider a sequence of functions (uk)k∈N ∈ C4(Ω) such that

∆2uk = Vke
4uk

in Ω for all k ∈ N. We address in this paper the question of the asymptotic

behavior of the (uk)′s when k → +∞. The corresponding problem in dimen-

sion 2 was considered by Brézis-Merle and Li-Shafrir (among others), where
a blow-up phenomenon was described and where a quantization of this blow-

up was proved. Surprisingly, as shown by Adimurthi, Struwe and the author

in [1], a similar quantization phenomenon does not hold for this fourth order
problem. Assuming that the uk’s are radially symmetrical, we push further

the analysis of [1]. We prove that there are exactly three types of blow-up and

we describe each type in a very detailed way.

1. Introduction

Let Ω be a bounded domain of R4. Let (Vk)k∈N ∈ C0(Ω) be a sequence such
that

lim
k→+∞

Vk = 1 (1)

in C0
loc(Ω). Let (uk)k∈N be a sequence of functions in C4(Ω) such that

∆2uk = Vke
4uk (E)

in Ω for all k ∈ N. Here and in the sequel, ∆ = −
∑
∂ii is the Laplacian with

minus sign convention. In this paper, we address the question of the asymptotics
of the uk’s when k → +∞. A natural (and simple) behavior is when there exists
u ∈ C3(Ω) such that, up to a subsequence,

lim
k→+∞

uk = u (2)

in C3
loc(Ω). In this situation, we say that (uk)k∈N is relatively compact in C3

loc(Ω).
However, the structure of equation (E) is much richer due to its scaling invariance
properties. The scaling invariance is as follows. Given k ∈ N, xk ∈ Ω and µk > 0 ,
we let

ũk(x) := uk(xk + µkx) + lnµk (3)
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for all x ∈ µ−1
k (Ω− xk). Letting Ṽk(x) = Vk(xk + µkx) for all x ∈ µ−1

k (Ω− xk), we
get that the rescaled function ũk satisfies

∆2ũk = Ṽke
4ũk

on µ−1
k (Ω−xk) – an equation like (E). This scaling invariance forces some situations

more subtle than (2) to happen. A very basic example is the following: we consider
a sequence (µk)k∈N ∈ R>0 such that limk→+∞ µk = 0. Let a function v ∈ C4(R4)
such that e4v ∈ L1(R4) and

∆2v = e4v. (4)

The simplest example is the function x 7→ ln
√

96√
96+|x|2 . For any k ∈ N, we define

the function

fk(x) = v
(
µ−1
k x

)
− lnµk

for all x ∈ R4. Then fk satisfies (E) with Vk ≡ 1 for all k ∈ N, but the sequence
(fk)k∈N does not converge in C0

loc(R4): indeed, we have that

lim
k→+∞

fk(0) = +∞ and Vke
4fk dx ⇀

(∫
R4

e4v dx

)
δ0

when k → +∞ weakly for the convergence of measures. Here and in the sequel,
δ0 denotes the Dirac mass at 0, and we say that the energy of the sequence (fk) is∫
R4 e

4v dx. Scaling as in (3), we get that

lim
k→+∞

fk(µkx) + lnµk = v(x)

for all x ∈ R4. In other words, (fk) converges to v up to rescaling. Concerning
terminology, we say that the sequence (uk)k∈N blows-up if it is not relatively com-
pact in C3

loc(Ω), so that, up to any subsequence, (2) does not hold. In the above
example, the (fk)’s blow up. In this paper, we are concerned with the blow-up
behavior of solutions of (E).

In dimension two, the corresponding problem involves the Laplacian (and not the
bi-Laplacian). This problem has been studied (among others) by Brézis-Merle [3]
and Li-Shafrir [10]. We also refer to Druet [5] and Adimurthi-Struwe [2] for the
description of equations with more intricate nonlinearities and to Tarantello [17] for
equations with singularities. An important phenomenon that holds in dimension
two is the quantization of the energy. Following standard terminology, we say
that there is quantization if there exists a positive constant Cm > 0 such that the
energy of any blowing-up sequence of solutions to the equation under consideration
is (roughly speaking) asymptotically a multiple of Cm. In particular, when blow-up
occurs, the sequence of solutions carries at least the energy Cm or carries no energy.

Surprisingly, such a quantization result is false when we come back to our initial
four-dimensional problem (E). Let λ ∈ (0,+∞) arbitrary: in a joint work with
Adimurthi and Michael Struwe [1], we exhibit a sequence of solutions to (E) that
blows-up, carries the energy λ and develop singularities on a 3−dimensional hy-
persurface of R4. Still in [1], we described the behavior of arbitrary solutions to
(E) and proved that any blowing-up sequence (uk)k∈N concentrates at the zero
set of a nonpositive nontrivial bi-harmonic function, and that outside this set,
limk→+∞ uk = −∞ uniformly. In view of the results of [1], giving a more precise
description requires additional hypothesis on (uk)k∈N.
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A natural hypothesis is to impose a Navier boundary condition, (that is uk = ∆uk =

0 on ∂Ω) or a Dirichlet boundary condition (that is uk = ∂uk
∂ν = 0 on ∂Ω): actually,

in these cases, we get that there is no blow-up and we recover relative compactness,
these claims are easy consequences of the result in [18]. Wei [18] also studied the
case where ∆uk = 0 on ∂Ω and uk = ck on ∂Ω, where (ck)k∈N ∈ R is a sequence of
real numbers such that limk→+∞ ck = −∞: in this context, Wei described precisely
the asymptotics and recovered a quantization result as in Li-Shafrir. In [14], we
consider the case where the L1−norm of ∆uk is uniformly bounded on a given
subset of Ω: in this context, we also recover a quantization result (that is the
energy of a blowing-up solution is a multiple of an explicit constant).

In the present paper, we consider the case when Ω = B is a ball and when the uk’s
are radially symmetrical with respect to the center of the ball for all k ∈ N. Without
loss of generality, we assume that B = B1(0) is the unit ball of R4 centered at 0.
In this rather natural situation, and contrary to the situation considered in [14],
there is no quantization. This phenomenon is due to the abundance of solutions
to equation (4) (see C.S.Lin [11]), contrary to the two-dimensional corresponding
equation, where up to affine transformations, there is only one solution.

Let (uk)k∈N be a sequence of blowing-up solutions to (E), with a sequence (Vk)k∈N ∈
C0(B) such that (1) holds. Assuming that the uk’s are radially symmetrical, the
first step in studying the blow-up behavior of the (uk)’s is to prove that Vke

4uk dx
converges to the product of a real number (refered to as the energy) by a Dirac
mass at 0 for the convergence of measures when k → +∞: it is much more tricky
to have informations about the energy in front of the Dirac mass, and this is the
object of Theorem 1.1. The intricate issue in this theorem concerns the localization
of the energy at the microscopic level. More precisely, after rescaling as in (3), we
prove (in general) that the (uk)’s converge when k → +∞ to a solution v ∈ C4(R4)
of (4) such that e4v ∈ L1(R4): since the L1−norm is invariant under the rescaling
(3), we get that there exists a sequence (rk)k∈N of positive real numbers such that
limk→+∞ rk = 0 and such that the L1−norm of e4uk in Brk(0) converges to the
L1−norm of e4v in R4. The difficult step is to prove that there is no energy left
outside this ball of radius rk when k → +∞, and so, in other words, that the
L1−norm of e4uk outside Brk(0) goes to 0 when k → +∞. Refering to standard
terminology, this corresponds to provinge that there is no energy lost in the necks.
Our main result is the following.

Theorem 1.1. Let (Vk)k∈N ∈ C0(B) be a sequence of functions such that (1)
holds. Let (uk)k∈N be a family of functions in C4(B) which are solutions to (E).
We assume that there exists Λ ∈ R such that∫

B

Vke
4uk dx ≤ Λ

for all k ∈ N and that the (uk)’s blow-up, that is (2) does not hold for any sub-
sequence. In addition, we assume that uk is radially symmetrical for all k ∈ N.
Then, up to a subsequence, there exists α ∈ [0, 16π2] such that

Vke
4uk dx ⇀ αδ0

when k → +∞ for the convergence of measures. More precisely,

(i) either there exists C > 0 such that, up to a subsequence, uk(0) ≤ C for all
k ∈ N: then α = 0 and limk→+∞ uk = −∞ uniformly locally on B \ {0}
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(ii) or limk→+∞ uk(0) = +∞. In this situation, for any δ ∈ (0, 1), we have that

lim
R→+∞

lim
k→+∞

∫
Bδ(0)\B

Re−uk(0) (0)

Vke
4uk dx = 0.

In addition, still in case (ii), the asymptotic behavior at the scale e−uk(0) is ruled
as follows:

(ii.a) if α = 16π2, then

lim
k→+∞

(
uk(e−uk(0)x)− uk(0)

)
= ln

√
96√

96 + |x|2

for all x ∈ R4. Moreover, this convergence holds in C3
loc(R4).

(ii.b) if α ∈ (0, 16π2), then there exists v ∈ C4(R4) such that e4v ∈ L1(R4) and

lim
k→+∞

(
uk(e−uk(0)x)− uk(0)

)
= v(x)

when k → +∞ for all x ∈ R4. Moreover, this convergence holds in C3
loc(R4) and

there exists λ > 0 such that lim|x|→+∞
v(x)
|x|2 = −λ.

(ii.c) If α = 0, then limk→+∞ e−2uk(0)∆uk(0) = +∞ and we have that

lim
k→+∞

uk(e−uk(0)x)− uk(0)

e−2uk(0)∆uk(0)
→ −|x|

2

8

when k → +∞ for all x ∈ R4. Moreover, this convergence holds in C3
loc(R4).

Note that this theorem is optimal: for any α ∈ [0, 16π2], we exhibit in section 2
examples of blowing-up solutions to (E) such that their energy converges to α. Note
also that this theorem is specific to the radial case and does not hold in general for
nonradial solutions (see for instance Adimurthi-Robert-Struwe [1]).

In a joint work with Olivier Druet [6], we studied the corresponding problem on four-
dimensional Riemannian manifolds, where the bi-Laplacian is replaced by a fourth-
order elliptic operator refered to as P : when the kernel of P is such that Ker P =
{constants}, we get that blow-up occurs at finitely many isolated points, and that
each point carries exactly the energy 16π2. Note that in the context of Theorem 1.1,
the kernel of the bi-Laplacian contains more than the constant functions. Related
references in the context of Riemannian manifolds are Malchiodi [12] and Malchiodi-
Struwe [13]. As a remark, the corresponding question in dimension n ≥ 5 was
considered in Hebey-Robert [8], we refer also to Hebey-Robert-Wen [9].

This paper is organized as follows. In section 2, we exhibit examples of blowing-
up solutions to (E) having any energy ranging in [0, 16π2]. In sections 3 to 6, we
prove Theorem 1.1. More precisely, in section 3, we introduce the three types of
convergence that correspond to the cases α = 16π2, 0 < α < 16π2 and α = 0
of Theorem 1.1. The case α = 0 of Theorem 1.1 is proved in section 4. The case
0 < α < 16π2 of Theorem 1.1 is proved in section 5. The case α = 16π2 of Theorem
1.1 is proved in section 6. In the sequel, C denotes a positive constant, with value
allowed to change from one line to the other. Note also that all the convergence
results are up to a subsequence, even when it is not precised.

Acknowledgements: the author thanks Adimurthi and Michael Struwe for hav-
ing suggested him to work on these questions and for stimulating discussions. The
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author is indebted to Olivier Druet and Emmanuel Hebey for stimulating discus-
sions.

2. Examples of Log- and Quadratic-Convergences

We exhibit situations in which the three patterns (ii.a), .b) and .c) occur.

2.1. Log-Convergence. We let k ∈ N? and define the function

uk(x) := ln
k
√

96√
96 + k2|x|2

for all x ∈ R4. We have that

uk(e−uk(0)x)− uk(0) = ln

√
96√

96 + |x|2

for all x ∈ R4. As easily checked,

∆2uk = e4uk

and
Vke

4uk dx ⇀ 16π2δ0

in B1(0) in the sense of measures when k → +∞, and we are in the situation
described in (ii.a).

2.2. Quadratic-Convergence (I). We let α ∈ (0, 16π2). It follows from [4] that
there exists v ∈ C4(R4) such that v ≤ v(0) = 0 and ∆2v = e4v in R4 and∫
R4 e

4v dx = α. For any k ∈ N?, we define the function

uk(x) := v (kx) + ln k

for all x ∈ R4. We have that
∆2uk = e4uk

in B for all k ∈ N? and we have that

uk(e−uk(0)x)− uk(0) = v(x)

for all x ∈ R4 and all k ∈ N?. In addition, we have that

Vke
4uk dx ⇀ αδ0

in B1(0) in the sense of measures when k → +∞ and, using [11], we are in the
situation described in (ii.b).

2.3. Quadratic-Convergence (II). We let the unique radially symmetrical func-

tion ϕ ∈ C4(R4) such that ∆2ϕ = e−
|x|2

2 in R4, ϕ(0) = ∆ϕ(0) = 0. We let

uk(x) := ln k − k6|x|2

8
+ k−8ϕ

(
k3x
)

for all k ∈ N? and x ∈ R4. We define

Vk = e−4uk∆2uk

for all k ∈ N?. All these functions are explicit (see [1]) and we get that

lim
k→+∞

Vk = 1 in C0
loc(R4).

Moreover, we have that
Vke

4uk dx ⇀ 0
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in B1(0) in the sense of measures when k → +∞ and we are in the situation
described in (ii.c). We refer to [1] for details about these assertions. A similar
method permits to construct families (uk) and (Vk) such that (1) and (E) hold and
such that uk ≤ uk(0) = 0 and Vke

4uk dx ⇀ 0 when k → +∞, and we are in the
situation described in (i).

These three examples show that for any α ∈ [0, 16π2], their exists a blowing-up
sequence of solutions to (E) with energy α.

3. Preliminary estimates for (E)

We let B be the open unit ball of R4 and (Vk)k∈N ∈ C0(B) a sequence such that

lim
k→+∞

Vk = 1 in C0
loc(B). (5)

We let (uk)k∈N ∈ C4(B) such that for any k ∈ N, we have that

∆2uk = Vke
4uk (6)

in B. We assume that is there exists Λ ∈ R such that for any k ∈ N, we have that∫
B

e4uk dx ≤ Λ. (7)

We assume that the function uk is radially symmetrical with respect to the center
of the unit ball B, that is 0. For any radially symmetrical function h, there exists
h̃ defined on an interval of [0,+∞) such that h(x) = h̃(|x|) for all x such that
this expression makes sense. With a standard abuse of notation, we write h(r),

h′(r), etc for h̃(r), h̃′(r) respectively. This section is devoted to the proof of general
estimates on the (uk)’s and to the definition of the three types of convergence that
will let us distinguish the three situations of blow-up in Theorem 1.1.

Step 3.1: We first deal with the behavior of uk on subsets where it is bounded
from above:

Lemma 3.1. Let (Vk)k∈N ∈ C0(B) and (uk)k∈N ∈ C4(B) such that (5), (6) and
(7) hold. We assume that uk is radially symmetrical for all k ∈ N. We let ω ⊂⊂ B.
Then, there exists C(ω) > 0 such that

|x|euk(x) ≤ C(ω) (8)

for all x ∈ ω and all k ∈ N.

Proof of Lemma 3.1: We let δ1 ∈ (0, 1) such that ω ⊂ Bδ1(0). We let δ2 ∈ (δ1, 1).
Since (5) holds, we assume without loss of generality that

Vk(x) ≥ 1

2
(9)

for all x ∈ Bδ2(0) and all k ∈ N. With equation (6), we get that ∆(∆uk) > 0 on
B, and then ∆uk (considered as a function of r ∈ [0, 1)) is strictly decreasing on
[0, δ2]. We distinguish three situations:

Case 3.1.1: We assume that ∆uk ≥ 0 on Bδ2(0). In this situation, we get that uk
is decreasing on [0, δ2]. We let x ∈ Bδ1(0). With (7) and (9), we get that

Λ ≥
∫
B|x|(0)

Vke
4uk dy ≥ e4uk(x)

2
Vol(B|x|(0)) ≥ π2|x|4e4uk(x)

4
.

In particular, (8) holds in Case 3.1.1.
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Case 3.1.2: We assume that ∆uk ≤ 0 on Bδ2(0). In this situation, we get that uk
is increasing on [0, δ2]. We let x ∈ Bδ1(0). With (7) and (9), we get that

Λ ≥
∫
Bδ2 (0)\B|x|(0)

Vke
4uk dy ≥ e4uk(x)

2
Vol(Bδ2(0) \B|x|(0))

≥ π2(δ4
2 − |x|4)e4uk(x)

4
≥ π2(δ4

2 − δ4
1)e4uk(x)

4
.

In particular, (8) holds in Case 3.1.2.

Case 3.1.3: We assume that ∆uk takes some positive and some negative values in
Bδ2(0). Since ∆uk is decreasing, there exists sk ∈ (0, δ2) such that

∆uk > 0 in [0, sk), ∆uk(sk) = 0, and ∆uk < 0 in (sk, δ2].

In particular, there exists τk ∈ [sk, δ2] such that uk is decreasing in [0, τk) and uk
is increasing in [τk, δ2] (note that the case τk = δ2 is possible). We let x ∈ Bδ1(0).
If |x| ≤ τk, we proceed as in Case 3.1.1. If |x| ≥ τk, we proceed as in 3.1.2. In
particular, (8) holds in Case 3.1.3.
These three cases prove Lemma 3.1. �

Step 3.2: The preceding step permits us to deal with the convergence outside 0.
This is the object of the following Lemma:

Lemma 3.2. Let (Vk)k∈N ∈ C0(B) and (uk)k∈N ∈ C4(B) such that (5), (6) and
(7) hold. We assume that uk is radially symmetrical for all k ∈ N. Then we are in
one and only one of the following situations:

(a) there exists u ∈ C4(B \ {0}) such that, up to a subsequence,

lim
k→+∞

uk = u in C3
loc(B \ {0}).

(b) there exists a sequence (ak)k∈N ∈ R>0 such that limk→+∞ ak = +∞, there
exists ϕ ∈ C4(B \ {0}) such that ∆2ϕ = 0, ϕ < 0, and such that

lim
k→+∞

uk
ak

= ϕ in C3
loc(B \ {0}).

In particular, uk → −∞ uniformly on every compact subset of B \ {0}.

We omit the proof of the Lemma: it is a direct consequence of the results of [1]
combined with Lemma 3.1. We refer to [1] for details.

Step 3.3: This short step is devoted to the case when uk is bounded from above.
More precisely we have:

Lemma 3.3. Let (Vk)k∈N ∈ C0(B) and (uk)k∈N ∈ C4(B) such that (5), (6) and
(7) hold. We assume that uk is radially symmetrical for all k ∈ N. We assume that
there exists δ0 ∈ (0, 1) and C(δ0) > 0 such that

uk(x) ≤ C(δ0) (10)

for all x ∈ Bδ0(0). Then we are in one and only one of the following situations:

(a) there exists u ∈ C4(B) such that, up to a subsequence,

lim
k→+∞

uk = u in C3
loc(B).

In particular,
Vke

4uk dx ⇀ e4u dx

when k → +∞ in the sense of measures.
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(b) there exists a sequence (ak)k∈N ∈ R>0 such that limk→+∞ ak = +∞, there
exists ϕ ∈ C4(B) such that ∆2ϕ = 0, ϕ < 0 in B \ {0}, and such that

lim
k→+∞

uk
ak

= ϕ in C3
loc(B).

In particular,
Vke

4uk dx ⇀ 0

when k → +∞ in the sense of measures.

Proof of Lemma 3.3: it follows from (8) and (10) that for any δ ∈ (0, 1), there exists
C(δ) > 0 such that uk(x) ≤ C(δ) for all x ∈ Bδ(0). We proceed as in [1] and we
obtain that the function ϕ in Lemma 3.2 extends to the whole domain B, and is
bi-harmonic in B. Since ϕ is radially symmetrical, ϕ ≤ 0 and ϕ 6≡ 0, we get that
ϕ < 0 in B \ {0}. This proves Lemma 3.3. �

Step 3.4:

Lemma 3.4. Let (Vk)k∈N ∈ C0(B) and (uk)k∈N ∈ C4(B) such that (5), (6) and
(7) hold. We assume that uk is radially symmetrical for all k ∈ N. We assume that
there exists δ0 ∈ (0, 1) such that

lim
k→+∞

sup
Bδ0 (0)

uk = +∞. (11)

Then for all δ ∈ (0, 1) and for k > 0 large enough, we have that supBδ(0) uk = uk(0).

Proof of Lemma 3.4: It follows from (8) and (11) that for any δ ∈ (0, 1), we have that
limk→+∞ supBδ(0) uk = +∞. It follows from the study of the monotonicity carried

out in Step 3.1 that supBδ(0) uk ∈ {uk(0), uk(δ)}. With (8), we get that there exists

C(δ) > 0 such that uk(δ) ≤ C(δ) for all k ∈ N. Since limk→+∞ supBδ(0) uk = +∞,
we get that the supremum is achieved at 0 for k > 0 large enough. This proves
Lemma 3.4. �

From now on, we assume that the sequence (uk) satisfies the hypothesis of Lemma
3.4. In particular, we assume that for any δ ∈ (0, 1), we have that

sup
Bδ(0)

uk = uk(0) and lim
k→+∞

uk(0) = +∞. (12)

Step 3.5: We now introduce the three fundamental types of convergence for (E).
This is a specificity of the bi-harmonic operator, compared to the Laplacian:

Proposition-Definition 3.1. Let (Vk)k∈N ∈ C0(B) and (uk)k∈N ∈ C4(B) such
that (5), (6) and (7) hold. We assume that uk is radially symmetrical for all k ∈ N.
We assume that (12) holds. We let

µk := e−uk(0) and vk(x) := uk(µkx)− uk(0) (13)

for all k ∈ N and all x ∈ Bµ−1
k

(0). Then one and only one of the following situations

holds:

(i: Log-convergence) For all x ∈ R4,

lim
k→+∞

vk(x) = ln

√
96√

96 + |x|2
.

Moreover, this convergence holds in C3
loc(R4).



FOURTH ORDER EQUATION 9

(ii: Quadratic-Convergence (I).) There exists a > 0, v ∈ C4(R4) such that

∆2v = e4v in R4 and lim
|x|→+∞

v(x)

|x|2
= −a

and such that

lim
k→+∞

vk = v in C3
loc(R4).

(iii: Quadratic-Convergence (II).) We have that limk→+∞∆vk(0) = +∞ and,
for all x ∈ R4,

lim
k→+∞

vk(x)

∆vk(0)
→ −|x|

2

8
.

Moreover, this convergence holds in C3
loc(R4).

Proof of Lemma 3.1: We let Ṽk(x) := Vk(µkx) for all x ∈ Bµ−1
k

(0) and all k ∈ N.

In particular,

lim
k→+∞

Ṽk = 1 in C0
loc(R4).

Equation (6) rewrites as

∆2vk = Ṽke
4vk (14)

in Bµ−1
k

(0). Inequality (7) rewrites as∫
B
µ
−1
k

(0)

Ṽke
4vk dx ≤ Λ (15)

for all k ∈ N. Moreover, it follows from (12) and the definition (13) of vk that

vk(x) ≤ vk(0) = 0 (16)

for all x ∈ Bµ−1
k

(0). We let R > 0. We proceed as in [1] and let wk ∈ C4(BR(0))

such that {
∆2wk = Ṽke

4vk in BR(0)
wk = ∆wk = 0 on ∂BR(0)

}
.

It follows from (16) and standard elliptic theory that there exists C(R) > 0 such
that

‖wk‖C3,1/2(BR(0)) ≤ C(R) (17)

for all k ∈ N. We let ϕk := vk −wk. It follows from (16) and (17) that there exists
C(R) > 0 such that

ϕk(x) ≤ C(R)

for all x ∈ BR(0) and all k ∈ N. Since ∆2ϕk = 0, proceeding as in [1], we
get that either ϕk converges in C4

loc(BR(0)), or it converges in C4
loc(BR(0)) up to

multiplication by a sequence of positive real numbers. Coming back to the function
vk = wk +ϕk and using arbitrarily large R > 0, we get that we are in one and only
one of the following cases:

Case 3.5.1: There exists v ∈ C3(R4) such that

lim
k→+∞

vk = v in C3
loc(R4).

Pasing to the limit in (14), we get that ∆2v = e4v in the distribution sense, and
then v ∈ C4(R4) by elliptic theory. With (16), we get that v(x) ≤ v(0) = 0 for all
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x ∈ R4. Letting k → +∞ in (15), we get that e4v ∈ L1(R4). It follows from [11]
(Theorem 1.1 and 1.2) that

either v(x) = ln

√
96√

96 + |x|2
or there exists a > 0 such that lim

|x|→+∞

v(x)

|x|2
= −a.

We recover (i) and (ii) of Proposition-Definition 3.1. This ends Case 3.5.1.

Case 3.5.2: There exists ϕ ∈ C3(R4), there exists (ak)k∈N ∈ R>0 such that
limk→+∞ ak = +∞ and

lim
k→+∞

vk
ak

= ϕ in C3
loc(R4).

Moreover, ϕ 6≡ 0 and ∆2ϕ = 0 in the distribution sense, and then ϕ ∈ C4(R4) by
elliptic theory. Passing to the limit in (16), we get that ϕ(x) ≤ ϕ(0) = 0 for all
x ∈ R4. It follows that there exists α > 0 such that ϕ(x) = −α|x|2 for all x ∈ R4.
Estimating ∆vk(0), we get that

lim
k→+∞

∆vk(0) = +∞ and lim
k→+∞

vk(x)

∆vk(0)
= −|x|

2

8

for all x ∈ R4. Moreover, this convergence holds in C3
loc(R4). In this case, we

recover (iii) of Proposition-Definition 3.1. This ends Case 3.5.2, and therefore the
proof of Proposition-Definition 3.1.

�

Step 3.6: We state a very useful integral inequality. In the next section, this
inequality will allow us to distinguish the three types of convergence above.

Lemma 3.5. Let (Vk)k∈N ∈ C0(B) and (uk)k∈N ∈ C4(B) such that (5), (6) and
(7) hold. We assume that uk is radially symmetrical for all k ∈ N. We assume that
(12) holds. Then, for any 0 < δ < 1, there exists C(δ) > 0 such that∫

BR(0)

|∆vk − µ2
k∆uk(δ)| dx ≤ C(δ)R2 (18)

for all k ∈ N and all R < δµ−1
k . In this expression, µk and vk are as in (13).

Proof of Lemma 3.5: We follow the argument of Robert-Struwe [15]. We let Gδ be
the Green’s function for the Laplacian on Bδ(0) with Dirichlet boundary condition.
Since ∆uk is radially symmetrical, we get that

∆uk(z) =

∫
Bδ(0)

Gδ(z, y)∆2uk(y) dy + ∆uk(δ)

for all z ∈ Bδ(0). We choose x ∈ R4 such that |x| < δµ−1
k . Using (13), we get that

∆vk(x)− µ2
k∆uk(δ) =

∫
Bδ(0)

µ2
kGδ(µkx, y)∆2uk(y) dy. (19)

Standard estimates on the Green’s function (see for instance [7]) yield that there
exists C(δ) > 0 such that

|Gδ(x, y)| ≤ C(δ)

|x− y|2
(20)
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for all x, y ∈ Bδ(0). Integrating (19), using (20) and (6), we get that∫
BR(0)

|∆vk − µ2
k∆uk(δ)| dx

≤
∫
x∈BR(0)

∫
y∈Bδ(0)

µ2
kGδ(µkx, y)Vk(y)e4uk(y) dy dx

≤ C(δ)

∫
Bδ(0)

Vk(y)e4uk(y)

(∫
BR(0)

µ2
k

|µkx− y|2
dx

)
dy

≤ C(δ)

∫
Bδ(0)

Vke
4uk(y)

(
CR2

)
dy ≤ C(δ)ΛR2,

where C(δ) > 0 is independant of k ∈ N and R ∈ (0, δµ−1
k ). In this last inequality,

we have used (7). This proves Lemma 3.5. �

The key-quantity in Step 3.6 is the limit of µ2
k∆uk(δ) when k → +∞. We separate

the study in three cases, each of the following three sections is devoted to one of
these cases. Thanks to them, we will recover the three notions of convergence of
Proposition 3.1.

4. The case limk→+∞ µ2
k∆uk(δ) = +∞

In this situation, we show that the second type of quadratic convergence of
Proposition 3.1 holds and that Vke

4uk ⇀ 0 when k → +∞ in the sense of measures.

Step 4.1: We prove that quadratic-convergence (II) of Proposition 3.1 holds in
this case. More precisely,

Lemma 4.1. Let (Vk)k∈N ∈ C0(B) and (uk)k∈N ∈ C4(B) such that (5), (6) and
(7) hold. We assume that uk is radially symmetrical for all k ∈ N. We assume that
(12) holds. We assume that there exists δ0 ∈ (0, 1) such that

lim
k→+∞

µ2
k|∆uk(δ0)| = +∞, (21)

where µk is as in (13). Then, the second type of quadratic convergence of Proposi-
tion 3.1 holds. In addition, for any δ ∈ (0, 1),

lim
k→+∞

∆uk
∆uk(δ)

= 1

in C1
loc(B) when k → +∞.

Proof of Lemma 4.1: Let δ0 ∈ (0, 1) as in the Lemma. Let R > 0. It follows from
(18) and (21) that ∥∥∥∥∆

(
vk

µ2
k∆uk(δ0)

)
− 1

∥∥∥∥
L1(BR(0))

= o(1) (22)

when k → +∞. It follows from (14), (16) and (21) that

∆

(
∆

(
vk

µ2
k∆uk(δ0)

)
− 1

)
=

Ṽke
4vk

µ2
k∆uk(δ0)

= o(1)
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where o(1) → 0 in C0(BR(0)). It follows from (22) and standard elliptic theory
that ∥∥∥∥∆

(
vk

µ2
k∆uk(δ0)

)
− 1

∥∥∥∥
L∞(BR/2(0))

→ 0 (23)

when k → +∞. With (14) and (16), we get that there exists ψR ∈ C4(BR/2(0))
such that ψR 6≡ 0 and

lim
k→+∞

vk
µ2
k∆uk(δ0)

= ψR in C3(BR/4(0)).

Moreover, (16) yields ψR(x) ≤ ψR(0) = 0 for all x ∈ BR/4(0). With (23), we get

that ∆ψR = 1. Since the functions are radial, we get that ψR(x) = −|x|2/8 for all
x ∈ BR/4(0). In particular, taking R arbitrarily large, we get that

lim
k→+∞

vk
µ2
k∆uk(δ0)

= −|x|
2

8
in C3

loc(R4). (24)

Computing the Laplacian of vk at 0, we get that

lim
k→+∞

∆uk(0)

∆uk(δ0)
= 1.

In particular, ∆uk(δ0) > 0 for k > 0 large and limk→+∞∆uk(0) = +∞. Combining
this limit with (24), we obtain that the second type of quadratic convergence of
Proposition 3.1 holds.

We let ψk ∈ C2(B) such that ψk = ∆uk
∆uk(0) . With the equation (6) and the estimate

(8), we get that

lim
k→+∞

∆ψk = 0 in C0
loc(B \ {0}).

Since ∆uk is decreasing, we have that ψk(x) ≤ 1 for all x ∈ B. Noting that we
have that limk→+∞ ψk(δ0) = 1, it follows from elliptic theory that there exists
ψ ∈ C2(B \ {0}) such that limk→+∞ ψk = ψ in C1

loc(B \ {0}) and ∆ψ = 0. Letting
k → +∞, we get that ψ(δ0) = 1. Since ψ ≤ 1 in B and ψ is non-increasing, we get
that ψ ≡ 1. In addition, since ψk is decreasing and achieves the value 1 at 0, we
get that

lim
k→+∞

∆uk
∆uk(0)

= 1 in C0
loc(B).

This ends the proof of Lemma 4.1. �

Step 4.2: In the case of quadratic convergence, the quadratic term happens to
dominate the other ones asymptotically. More precisely, we have the following.
Note that this Lemma does not use hypothesis (21).

Lemma 4.2. [Pointwise estimate (I)] Let (Vk)k∈N ∈ C0(B) and (uk)k∈N ∈ C4(B)
such that (5), (6) and (7) hold. We assume that uk is radially symmetrical for all
k ∈ N. We assume that (12) holds. Then for any 0 < δ < 1 there exists C(δ) > 0
such that

|x|
∣∣∣∣∇uk(x) +

∆uk(δ)

4
x

∣∣∣∣ ≤ C(δ)

for all x ∈ Bδ(0) and all k ∈ N.
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Proof of Lemma 4.2: We let δ ∈ (0, 1). We let Hδ be the Green’s function ∆2 on
Bδ(0) with Navier condition, that is for any x ∈ Bδ(0),{

∆2Hδ(x, ·) = δx in D′(Bδ(0))
Hδ(x, ·) = ∆Hδ(x, ·) = 0 on ∂Bδ(0)

As easily checked, we have that Hδ = Gδ ∗ Gδ where ∗ denotes the product of
convolution and Gδ is the Green’s function for ∆ on Bδ(0) with Dirichlet boundary
condition. Since uk is radially symmetrical, we get that

uk(x) =

∫
Bδ(0)

Hδ(x, y)∆2uk(y) dy + uk(δ) +
δ2 − |x|2

8
∆uk(δ)

for all x ∈ Bδ(0). Differentiating this identity, we get that

∇uk(x) =

∫
Bδ(0)

∇Hδ(x, y)∆2uk(y) dy − ∆uk(δ)

4
x (25)

for all x ∈ Bδ(0). Standard estimates on the Green’s function (see for instance [7])
yield that there exists C(δ) > 0 such that

|∇Hδ(x, y)| ≤ C(δ)

|x− y|
(26)

for all x, y ∈ Bδ(0). Plugging (26) into (25), we get that∣∣∣∣∇uk(x) +
∆uk(δ)

4
x

∣∣∣∣ ≤ C(δ)

∫
Bδ(0)

e4uk(y)

|x− y|
dy

for all x ∈ Bδ(0). Using the pointwise estimate (8), we get that∫
Bδ(0)

e4uk(y)

|x− y|
dy ≤

∫
Bδ(0)∩B|x|/2(0)

e4uk(y)

|x− y|
dy +

∫
Bδ(0)\B|x|/2(0)

e4uk(y)

|x− y|
dy

≤ 2

|x|

∫
Bδ(0)

e4uk(y) dy + C

∫
Bδ(0)\B|x|/2(0)

1

|y|4|x− y|
dy

≤ 2Λ

|x|
+
C

|x|

∫
Bδ/|x|(0)\B1/2(0)

1

|y|4
∣∣∣ x|x| − y∣∣∣ dy

≤ C ′(δ,Λ)

|x|
for all x ∈ Bδ(0) \ {0} and all k ∈ N. Here C ′(δ,Λ) depends only on δ and Λ. This
proves Lemma 4.2. �

Step 4.3: We are in position to describe precisely the asymptotics of the uk’s when
k → +∞. This is the object of the following Lemma:

Lemma 4.3. [Pointwise estimate (II)] Let (Vk)k∈N ∈ C0(B) and (uk)k∈N ∈ C4(B)
such that (5), (6) and (7) hold. We assume that uk is radially symmetrical for all
k ∈ N. We assume that (12) holds. We assume that there exists δ0 ∈ (0, 1) such
that

lim
k→+∞

µ2
k|∆uk(δ0)| = +∞.

We let 0 < δ < 1. Then

uk

(
x√

∆uk(δ)

)
− uk(0) = −|x|

2

8
+O(1) ln(2 + |x|2) (27)
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for all x ∈ B
δ
√

∆uk(0)
(0) and all k ∈ N, where O(1) denotes a function such that

there exists C(δ) > 0 such that |O(1)(x, k)| ≤ C(δ) for all x ∈ B
δ
√

∆uk(0)
(0) and

all k ∈ N.

Proof of Lemma 4.3: We let x ∈ B
δ
√

∆uk(0)
(0) such that |x| > 1. We let x0 = x

|x| .

With the pointwise estimate of Lemma 4.2, we get that

uk

(
x√

∆uk(δ)

)
− uk

(
x0√

∆uk(δ)

)

=

∫ 1

0

∂

∂t

[
uk

(
(1− t) x0√

∆uk(δ)
+ t

x√
∆uk(δ)

)]
dt

=
1√

∆uk(δ)

∫ 1

0

(x− x0)i∂iuk

(
(1− t)x0 + tx√

∆uk(δ)

)
dt

= −1

4

∫ 1

0

(x− x0)i((1− t)x0 + tx)i dt

+
1√

∆uk(δ)

∫ 1

0

(x− x0)i

(
∂iuk

(
(1− t)x0 + tx√

∆uk(δ)

)
+

√
∆uk(δ)

4
((1− t)x0 + tx)i

)
dt

= −|x|
2

8
+
|x0|2

8
+O(1)

∫ 1

0

|x− x0|
|(1− t)x0 + tx|

dt

= −|x|
2

8
+
|x0|2

8
+O(1)

∫ 1

0

|x| − 1

t(|x| − 1) + 1
dt

= −|x|
2

8
+
|x0|2

8
+O(1) ln |x| (28)

where O(1) is a function which is bounded with respect to both x and k ∈ N. We
claim that

lim
k→+∞

(
uk

(
x√

∆uk(δ)

)
− uk(0)

)
= −|x|

2

8
(29)

for all x ∈ R4, and that this convergence holds in C1
loc(R4). We prove the claim.

We write that

∆

(
uk

(
x√

∆uk(δ)

)
− uk(0)

)
=

∆uk

(
x√

∆uk(δ)

)
∆uk(δ)

,

for all x ∈ Bδ(0) and all k ∈ N. It follows from Lemma 4.1, (12) and standard
elliptic theory, that there exists ϕ ∈ C1(R4) such that

lim
k→+∞

(
uk

(
x√

∆uk(δ)

)
− uk(0)

)
= ϕ(x)

for all x ∈ R4 when k → +∞. Moreover, ϕ ∈ C2(R4), ∆ϕ = 1 and ϕ ≤ ϕ(0) = 0.

Since ϕ is radially symmetrical, we get that ϕ(x) = − |x|
2

8 . This proves the claim.

The asymptotic (27) follows from (28) and (29). This proves Lemma 4.3. �

Step 4.4: We prove the vanishing of the L1−norm of e4uk when k → +∞.



FOURTH ORDER EQUATION 15

Lemma 4.4. Let (Vk)k∈N ∈ C0(B) and (uk)k∈N ∈ C4(B) such that (5), (6) and
(7) hold. We assume that uk is radially symmetrical for all k ∈ N. We assume that
(12) holds. We assume that there exists δ0 ∈ (0, 1) such that

lim
k→+∞

µ2
k|∆uk(δ0)| = +∞.

Then, for any δ ∈ (0, 1), we have that∫
Bδ(0)

e4uk dx→ 0

when k → +∞. In particular Vke
4uk dx ⇀ 0 when k → +∞ in the sense of

measures.

Proof of Lemma 4.4: We let δ ∈ (0, 1). With the definition (13) of µk and a change
of variables, we get that∫

Bδ(0)

e4uk dx =
1

µ4
k∆uk(δ)2

∫
B
δ
√

∆uk(δ)
(0)

e
4

(
uk

(
x√

∆uk(δ)

)
−uk(0)

)
dx.

Since limk→+∞ µ2
k|∆uk(δ0)| = +∞, Lemma 4.1 yields that limk→+∞ µ2

k∆uk(δ) =
+∞. The asymptotic (27) of Lemma 4.3 yield the conclusion of the Lemma 4.4. �

Point (ii.c) of Theorem 1.1 follows from Lemma 4.4.

5. The case limk→+∞ µ2
k|∆uk(δ)| = Kδ > 0

In this situation, we show that the first type of quadratic convergence of Propo-
sition 3.1 holds. Moreover, we describe the asymptotics for uk.

Step 5.1: We first prove that the quadratic-convergence (I) holds in this case.
More precisely,

Lemma 5.1. Let (Vk)k∈N ∈ C0(B) and (uk)k∈N ∈ C4(B) such that (5), (6) and
(7) hold. We assume that uk is radially symmetrical for all k ∈ N. We assume that
(12) holds. We assume that there exists δ0 ∈ (0, 1) and Kδ0 ∈ R such that

lim
k→+∞

µ2
k|∆uk(δ0)| = Kδ0 > 0.

Then the first type of quadratic convergence of Proposition-Definition 3.1 holds. In
addition, we have that there exists K > 0 such that

lim
k→+∞

∆uk
∆uk(0)

= K in C1
loc(B \ {0}).

Proof of Lemma 5.1: Let R > 0. Since, up to a subsequence,

lim
k→+∞

µ2
k∆uk(δ0) = Kδ0 6= 0. (30)

It follows from (18) that

‖∆vk‖L1(BR(0)) = O(1)

when k → +∞. It follows from equation (14), inequation (16) and elliptic theory
that

‖∆vk‖C1(BR/2(0)) = O(1) (31)
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when k → +∞. Inequation (16), equations (14) and (31), the Harnack inequality
and standard elliptic theory yield that there exists v ∈ C3(R4) such that

lim
k→+∞

vk = v in C3
loc(R4), (32)

where ∆2v = e4v in the distribution sense. Elliptic theory yields that v ∈ C4(R4).
We are then in Case (i) or (ii) of Proposition-Definition 3.1.

We claim that we are in Case (ii) of Proposition-Definition 3.1. We proceed by
contradiction and assume that Case (i) of Proposition-Definition 3.1 holds. We
then get that v = v0 where

v0(x) = ln

√
96√

96 + |x|2

for all x ∈ R4. We let R > 0. We let k → +∞ in (18) and get that∫
BR(0)

|∆v(x)−Kδ0 | dx ≤ CR2.

Since v = v0, using the explicit expression of v0 above and letting R → +∞, we
get that there exists a constant C > 0 independant of R > 0 such that

|Kδ0 | ≤ CR−2

for all R > 0. Letting R → +∞, we get that Kδ0 = 0. A contradiction with our
initial assumption (30). Then Case (i) does not hold and we are in Case (ii).

It follows from Case (ii) of Proposition-Definition 3.1 and Theorem 1.2 of [11] that
there exists a > 0 such that

lim
|x|→+∞

v(x)

|x|2
= −a and lim

|x|→+∞
∆v(x) = 8a. (33)

We let δ ∈ (0, 1). With (18), we get that there exists C(δ) > 0 such that∫
BR(0)

|∆vk − µ2
k∆uk(δ)| dx ≤ C(δ)R2 (34)

for all R ∈ (0, δµ−1
k ). It the follows from (32) that there exists Kδ ∈ R such that

limk→+∞ µ2
k∆uk(δ) = Kδ. Passing to the limit k → +∞ in (34), we get that∫

BR(0)

|∆v −Kδ| dx ≤ C(δ)R2

for all R > 0. Letting R → +∞ in this inequality and using (33), we get that
Kδ = 8a > 0 for all δ ∈ (0, 1). In particular, with (30) and (32), we get that there
exists K > 0 such that for any δ ∈ (0, 1),

lim
k→+∞

∆uk(δ)

∆uk(0)
= K > 0.

The last assertion of Lemma 5.1 follows from this limit, equation (E), inequality
(8) the decreasing of ∆uk and standard elliptic theory. �

Step 5.2: With some arguments very similar to the ones developed in the proof of
Lemma 4.3, we get the following Lemma. We omit the proof:
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Lemma 5.2. Let (Vk)k∈N ∈ C0(B) and (uk)k∈N ∈ C4(B) such that (5), (6) and
(7) hold. We assume that uk is radially symmetrical for all k ∈ N. We assume that
(12) holds. We assume that there exists δ0 ∈ (0, 1) such that

lim
k→+∞

µ2
k|∆uk(δ0)| = Kδ0 > 0.

We let 0 < δ < 1. Then there exists a sequence (ak)k∈N ∈ R such that limk→+∞ ak =
a∞ > 0 and such that

vk(x) = −ak|x|2 +O(1) ln(2 + |x|2)

for all x ∈ Bδµ−1
k

(0) and all k ∈ N, where O(1) denotes a function such that there

exists C(δ) > 0 such that |O(1)(x, k)| ≤ C(δ) for all x ∈ Bδµ−1
k

(0) and all k ∈ N.

As a consequence of this pointwise estimate, we get the following quantization of
the L1−norm of e4uk :

Lemma 5.3. Let (Vk)k∈N ∈ C0(B) and (uk)k∈N ∈ C4(B) such that (5), (6) and
(7) hold. We assume that uk is radially symmetrical for all k ∈ N. We assume that
(12) holds. We assume that there exists δ0 ∈ (0, 1) such that

lim
k→+∞

µ2
k|∆uk(δ0)| = Kδ0 > 0.

Then for any δ ∈ (0, 1), we have that

lim
k→+∞

∫
Bδ(0)

Vke
4uk dx =

∫
R4

e4v dx < 16π2.

In other words, Vke
4uk dx ⇀ (

∫
R4 e

4v dx)δ0 when k → +∞ in the sense of the
measures.

Proof of Lemma 5.3: It follows from Lemma 5.2 that there exists C = C(δ) > 0
such that

vk(x) ≤ −a∞
2
|x|2 + C

for all x ∈ Bδµ−1
k

(0) and all k ∈ N. We let R > 0. With a change of variable, we

get that∫
Bδ(0)\BRµk (0)

Vke
4uk dx =

∫
Bδ/µk (0)\BR(0)

Ṽke
4vk dx ≤ 2

∫
R4\BR(0)

e−2a∞|x|2+4C dx.

As a consequence,

lim
R→+∞

lim
k→+∞

∫
Bδ(0)\BRµk (0)

Vke
4uk dx = 0. (35)

On the other hand, with a change of variables and letting k → +∞, we get that∫
BRµk (0)

Vke
4uk dx =

∫
BR(0)

Ṽke
4vk dx =

∫
BR(0)

e4v dx+ o(1) (36)

when k → +∞. Summing (35) and (36) and letting k → +∞ and then R → +∞,
we get that

lim
k→+∞

∫
Bδ(0)

Vke
4uk dx =

∫
R4

e4v dx.
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Moreover, it follows from [11], Theorem 1.2, that∫
R4

e4v dx < 16π2.

This ends the proof of Lemma 5.3. �

Point (ii.b) of Theorem 1.1 follows from Lemma 5.3.

6. The case limk→+∞ µ2
k∆uk(δ) = 0

In this case, the behavior of the uk’s is much more standard and is similar to
the two-dimensional corresponding problem. We show that the Log-convergence of
Proposition-Definition 3.1 holds. Moreover, we describe the asymptotics for uk.

Step 6.1: We first prove that the Log-convergence holds in this case. More pre-
cisely,

Lemma 6.1. Let (Vk)k∈N ∈ C0(B) and (uk)k∈N ∈ C4(B) such that (5), (6) and
(7) hold. We assume that uk is radially symmetrical for all k ∈ N. We assume that
(12) holds. We assume that there exists δ0 ∈ (0, 1) such that

lim
k→+∞

µ2
k∆uk(δ0) = 0.

Then for any x ∈ R4,

lim
k→+∞

vk(x) = ln

√
96√

96 + |x|2
,

where vk is as in (13). Moreover, this convergence holds in C3
loc(R4).

Proof of Lemma 6.1: With some arguments similar to the ones developed in the
proof of Lemma 5.1, we get that there exists v ∈ C4(R4) such that limk→+∞ vk = v
in C3

loc(R4). Moreover, ∆2v = e4v and ev ∈ L1(R4). We are then in Case (i) or (ii)
of Proposition-Definition 3.1. We let k → +∞ in (18) and get for any R > 0 in R4

that ∫
BR(0)

|∆v(x)| dx ≤ CR2. (37)

We assume by contradiction that Case (ii) holds. It then follows from Lin [11] that
lim|x|→+∞∆v(x) = 8a > 0. Letting R → +∞ in (37), we get that 8a = 0. A
contradiction. We are then in Case (i) of Proposition-Definition 3.1 and v(x) =

ln
√

96√
96+|x|2 for all x ∈ R4, that is Log-Convergence holds. This proves Lemma 6.1.

�

A consequence of this Lemma is the following. With a change of variable, we get
that ∫

BRµk (0)

Vke
4uk dx =

∫
BR(0)

Ṽke
4vk dx =

∫
BR(0)

e4v dx+ o(1)

when k → +∞. Passing to the limit k → +∞ and then R→ +∞, we get that

lim
R→+∞

lim
k→+∞

∫
BRµk (0)

Vke
4uk dx = 16π2. (38)

Step 6.2: We are in position to deal with the convergence outside 0. This is the
object of the following Lemma:



FOURTH ORDER EQUATION 19

Lemma 6.2. Let (Vk)k∈N ∈ C0(B) and (uk)k∈N ∈ C4(B) such that (5), (6) and
(7) hold. We assume that uk is radially symmetrical for all k ∈ N. We assume that
(12) holds. We assume that there exists δ0 ∈ (0, 1) such that

lim
k→+∞

µ2
k∆uk(δ0) = 0.

Then limk→+∞ uk = −∞ uniformly on every compact subset of B \ {0}.

Proof of Lemma 6.2: Assume that the conclusion is false. It then follows from
Lemma 3.2 that for any K ⊂⊂ B \ {0}, there exists C(K) > 0 such that

|uk(z)|+ |∆uk(z)| ≤ C(K) (39)

for all z ∈ K. We let δ ∈ (0, 1/2) and we let Hδ be the Green’s function for ∆2 in
Bδ(0) with Navier condition on the boundary, that is for any x ∈ Bδ(0), we have
that

∆2Hδ(x, ·) = δx

for all x ∈ Bδ(x) and Hδ(x, ·) = ∆Hδ(x, ·) = 0 on ∂Bδ(x). We let x ∈ Bδ(0) \ {0}.
Since uk is radially symmetrical, we have that

uk(x) =

∫
Bδ(0)

Hδ(x, y)Vk(y)e4uk(y) dy + uk(δ) +
δ2 − |x|2

8
∆uk(δ).

We let α > 0 small. Since uk is uniformly bounded in L∞ outside 0 and since
Hδ > 0, we get with (5), (38) and (39) that there exists C > 0 independant of x
and α > 0 such that

uk(x) ≥
∫
BRµk (0)

Hδ(x, y)Vk(y)e4uk(y) dy − C

≥
∫
BR(0)

Hδ(x, µky)Ṽk(y)e4vk(y) dy − C

≥
∫
BR(0)

Hδ(x, 0) lim
k→+∞

(
Ṽk(y)e4vk(y)

)
dy − C + o(1)

≥ 16π2Hδ(x, 0)− C + o(1)

for x ∈ B such that |x| ≥ α and for k large enough depending only on α. Since

Hδ(x, 0) = 1
8π2 ln δ

|x| + |x|2−δ2

32π2δ2 for x ∈ Bδ/2(x0). We then get that

uk(x) ≥ 2 ln
1

|x|
− C ′ + o(1)

for x ∈ Bδ(0) \ Bα(0) and k large depending only on α > 0. We then get that for
any 0 < α < β small,

Λ ≥
∫
Bβ(0)\Bα(0)

Vke
4uk dx ≥ C

∫
Bβ(0)\Bα(0)

1

|x|8
dx.

We get a contradiction by letting α → 0. Then uk → −∞ on compact subsets of
B \ {0} when k → +∞ and Lemma 6.2 is proved. �

Step 6.3: We now prove that the whole L1−norm of e4uk is actually 16π2. We
borrow ideas from Schoen-Zhang [16], Druet [5] and Druet-Robert [6].
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Lemma 6.3. Let (Vk)k∈N ∈ C0(B) and (uk)k∈N ∈ C4(B) such that (5), (6) and
(7) hold. We assume that uk is radially symmetrical for all k ∈ N. We assume that
(12) holds. We assume that there exists δ0 ∈ (0, 1) such that

lim
k→+∞

µ2
k∆uk(δ0) = 0.

We let δ ∈ (0, 1). Then there exists (rk)k∈N ∈ R>0 such that rk ∈ [0, δ] for all
k ∈ N and

(i) limk→+∞
rk
µk

= +∞,

(ii) r 7→ reuk(r) is decreasing on [4µk, rk],
(iii) uk → −∞ uniformly on Bδ(0) \Brk(0).

Proof of Lemma 6.3: We let δ ∈ (0, 1). Without loss of generality, we assume that
limk→+∞ µ2

k∆uk(δ) = 0 (otherwise, we are back to the previous cases).

Step 6.3.1: We claim that for any R > 4, we have that

r 7→ reuk(r) is decreasing on [4µk, Rµk]

for k large enough. Indeed, we let r ∈ [4µk, Rµk] and we let ρk := r
µk

. With Lemma

6.1, we have that

(reuk(r))′(r) = µ−1
k

d

dr

(
rµke

uk(rµk)
)

(ρk) = µ−1
k

d

dr

(
revk(r)

)
(ρk)

= µ−1
k

(
d

dr

(
rev(r)

)
+ o(1)

)
(ρk) =

√
96

µk

( √
96− ρ2

k

(
√

96 + ρ2
k)2

+ o(1)

)
where o(1) → 0 when k → +∞ uniformly for r ∈ [4µk, Rµk]. Since ρk ≥ 4, the
right-hand-side is negative. Then (reuk(r))′ < 0 and the function r 7→ reuk(r) is
decreasing on [4µk, Rµk].

Step 6.3.2: We assume that r → reuk(r) is decreasing on [4µk, δ] for all k ∈ N.
Then the conclusion of the Lemma holds with rk := δ, and Lemma 6.3 is proved.

From now on, we assume that

r → reuk(r) is not decreasing on [4µk, δ]. (40)

We let

rk := inf{ρ ∈ [4µk, δ]/ (reuk(r))′(ρ) = 0.}

Step 6.3.3: We claim that

lim
k→+∞

rk
µk

= +∞, (reuk(r))′(r) < 0 when 4µk < r < rk and (reuk(r))′(rk) = 0.

(41)
Indeed, it follows from Step 6.3.1 and (40) that rk is defined and satisfies the two
last statements of (41). The first statement is a consequence of Step 6.3.1.

Step 6.3.4: We claim that

lim
k→+∞

rke
uk(rk) = 0. (42)
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Indeed, we let R ≥ 4. It follows from (41) that reuk(r) is decreasing on [Rµk, rk].
We then get that

rke
uk(rk) ≤ Rµke

uk(Rµk) ≤ Revk(R)

≤
(
Rev(R) + o(1)

)
≤

(
R
√

96√
96 +R2

+ o(1)

)
where o(1)→ 0 when k → +∞. Letting k → +∞ and then R→ +∞, we get (42).
This ends Step 6.3.4.

We let

ũk(x) = uk(rkx)− uk(rk) (43)

for all k ∈ N and all x ∈ Br−1
k

(0).

Step 6.3.5: We claim that there exists a ≥ 1 such that for any x ∈ R4 \ {0}, we
have that

lim
k→+∞

uk(rkx)− uk(rk) = a ln
1

|x|
+
a− 1

2
(|x|2 − 1). (44)

Moreover, this convergence holds in C3
loc(R4 \ {0}). Indeed, equation (6) rewrites

as

∆2ũk(x) = Vk(rkx)r4
ke

4uk(rkx) = Vk(rkx)r4
ke

4uk(rk)eũk(x) (45)

for all k ∈ N and all x ∈ Br−1
k

(0). The system (41) yields that

rũ′k(r) ≤ −1 for
4µk
rk
≤ r ≤ 1 and ũ′k(1) = −1. (46)

Proceeding as in Lemma 4.2 and using the definition (43), we get that there exists
C = C(δ) > 0 such that

|ũ′k(r) +
∆uk(δ)

4
r2
kr| ≤

C

r
(47)

for all k ∈ N and all r ∈ (0, δr−1
k ). Taking r = 1 in (47) and using (46), we then

obtain that, up to a subsequence, there exists ρ ∈ R such that

lim
k→+∞

r2
k∆uk(δ) = ρ. (48)

Since ũk(1) = 0, it follows from (47) and (48) that for any U ⊂⊂ R4 \ {0}, there
exists C ′(U) > 0 such that

|ũk(x)| ≤ C ′(U)

for all x ∈ U and all k ∈ N. It then follows from (45), (42) and standard elliptic
theory that there exists ũ ∈ C4(R4 \ {0}) such that ∆2ũ = 0 and

ũk → ũ (49)

in C3
loc(R4 \ {0}) when k → +∞. Since ũ is radially symmetrical, we get that there

exist a, b, c, d ∈ R such that

ũ(x) = a ln
1

|x|
+

b

|x|2
+ c|x|2 + d (50)

for all x ∈ R4 \ {0}. Passing to the limit in (47) and using (48), we get that

|ũ′(r) +
ρ

4
r| ≤ C

r
(51)
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for all r > 0. It follows from (50) and (51) that b = 2c + ρ
4 = 0, so that we can

write

ũ(x) = a ln
1

|x|
− ρ

8
|x|2 + d

for all x ∈ R4 \ {0}. Passing to the limit in (46), we get that

rũ′(r) ≤ −1 for r < 1 and ũ′(1) = −1.

With the explicit expression (50) of ũ, we get that

a− 1 =
|ρ|
4
≥ 0 and ρ ≤ 0.

Since ũ(1) = 1, the claim follows.

Step 6.3.6: We claim that

a ≥ 2.

Indeed, integrating by parts, we get that∫
Brk (0)

xi∂iuk∆2uk dx

=

∫
∂Brk (0)

(
(x, ν)

2
(∆uk)2 + ∆uk

∂(x,∇uk)

∂ν
− (x,∇uk)

∂∆uk
∂ν

)
dσ (52)

where ν denotes the outer normal vector at ∂Brk(0). Using the change of variable
y = rkx and the convergence (44), we get that∫

∂Brk (0)

(
(x, ν)

2
(∆uk)2 + ∆uk

∂(x,∇uk)

∂ν
− (x,∇uk)

∂∆uk
∂ν

)
dσ

=

∫
∂B1(0)

(
(x, ν)

2
(∆ũk)2 + ∆ũk

∂(x,∇ũk)

∂ν
− (x,∇ũk)

∂∆ũk
∂ν

)
dσ

=

∫
∂B1(0)

(
(x, ν)

2
(∆ũ)2 + ∆ũ

∂(x,∇ũ)

∂ν
− (x,∇ũ)

∂∆ũ

∂ν

)
dσ + o(1)

= −4π2a2 + o(1) (53)

where o(1)→ 0 when k → +∞. On the other hand, using (6), we have that∫
Brk (0)

xi∂iuk∆2uk dx =

∫
Brk (0)

xi∂iuke
4uk dx+

∫
Brk (0)

(Vk − 1)xi∂iuke
4uk dx.

(54)
It follows from Lemma 4.2 and (48) that there exists C > 0 such that

|xi∂iuk(x)| ≤ C (55)

for all x ∈ Brk(0). Properties (5), (7) and (55) yield

lim
k→+∞

∫
Brk (0)

(Vk − 1)xi∂iuke
4uk dx = 0. (56)

Plugging (53) and (56) into (52) and (54), we get that∫
Brk (0)

xi∂iuke
4uk dx = −4π2a2 + o(1)



FOURTH ORDER EQUATION 23

when k → +∞. Integrating by parts, we get that

−4π2a2 =

∫
Brk (0)

xi∂i
e4uk

4
dx+ o(1)

= −
∫
Brk (0)

e4uk dx+

∫
∂Brk (0)

(x, ν)

4
e4uk dσ + o(1)

= −
∫
Brk (0)

e4uk dx+ r4
ke

4uk(rk)

∫
∂B1(0)

(x, ν)

4
e4ũk dσ + o(1). (57)

With (42) and (49), we then get that∫
Brk (0)

e4uk dx = 4π2a2 + o(1)

where o(1)→ 0 when k → +∞. Since (38) and (41) hold, we then get that |a|2 ≥ 4.
Since a ≥ 1, we get that a ≥ 2, and the claim is proved.

Step 6.3.7: We let δ ∈ (0, 1). We claim that

lim
k→+∞

sup
[rk,δ]

uk = −∞.

Indeed, it follows from (44) and (49) that rũ′(r) = −a+ (a− 1)r2. Since a > 1, we

get that ũ is decreasing on
(

0,
√

a
a−1

)
and increasing on

(√
a
a−1 ,+∞

)
. It follows

from the study of the monotonicity of uk provided in Case 3.1.3 of Step 3.1 that
there exists τk ∈ (0, δ) such that uk decreases on (0, τk) and increases on (τk, δ).

Since (44) and (49) hold and since the monotonicity of ũ changes at
√

a
a−1 , we get

that

lim
k→+∞

τk
rk

=

√
a

a− 1
. (58)

We let yk ∈ Bδ(0) \Brk(0) such that

sup
Bδ(0)\Brk (0)

uk = uk(yk).

We distinguish two cases:

Case 6.3.7.1: we assume that limk→+∞
|yk|
rk

= +∞. Then with (58), we get that uk
increases on [τk, δ], and then uk(yk) ≤ uk(δ). With Lemma 6.2, we then get that
limk→+∞ uk(yk) = −∞.

Case 6.3.7.2: we assume that |yk| = O(rk) when k → +∞. We let zk = yk
rk

. Since

|yk| ≥ rk, we get that, up to a subsequence, limk→+∞ zk = z∞ 6= 0. With (43),
(49) and Case 6.3.7.1, we get that

uk(yk) = uk(yk)− uk(τk) + uk(τk)

≤ ũk(zk)− ũk
(
τk
rk

)
+ uk(τk) ≤ O(1) + uk(δ)

and then with Lemma 6.2, we get that limk→+∞ uk(yk) = −∞. This proves the
claim.

In particular, this proves Lemma 6.3. �

Step 6.4: With the same kind of arguments as above, the following monotonicity
holds (we omit the proof):
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Lemma 6.4. Let (Vk)k∈N ∈ C0(B) and (uk)k∈N ∈ C4(B) such that (5), (6) and
(7) hold. We assume that uk is radially symmetrical for all k ∈ N. We assume that
(12) holds. We assume that there exists δ0 ∈ (0, 1) such that

lim
k→+∞

µ2
k∆uk(δ0) = 0.

We let δ ∈ (0, 1) and η ∈ (1, 2). Then there exists Rη > 0, there exists (rk)k∈N ∈
R>0 such that rk ∈ [0, δ] for all k ∈ N and

(i) limk→+∞
rk
µk

= +∞,

(ii) r 7→ rηeuk(r) is decreasing on [Rηµk, rk],

(iii) uk → −∞ uniformly on Bδ(0) \Brk(0).

Step 6.4 We are in position to get the energy estimate for e4uk .

Lemma 6.5. Let (Vk)k∈N ∈ C0(B) and (uk)k∈N ∈ C4(B) such that (5), (6) and
(7) hold. We assume that uk is radially symmetrical for all k ∈ N. We assume that
(12) holds. We assume that there exists δ0 ∈ (0, 1) such that

lim
k→+∞

µ2
k∆uk(δ0) = 0.

Then for any δ ∈ (0, 1), we have that:

lim
k→+∞

∫
Bδ(0)

Vke
4uk dx = 16π2.

In particular, Vke
4uk ⇀ 16π2δ0 when k → +∞ in the sense of measures.

Proof of Lemma 6.5: We prove the claim. We choose η ∈ (1, 2) and Rη > 0, (rk)k∈N
as in Lemma 6.4. We let R > Rη. It follows from Lemmae 6.1 and 6.4 that∫

Bδ(0)\BRµk (0)

e4uk dx ≤
∫
Brk (0)\BRµk (0)

(Rµk)4ηe4uk(Rµk)

r4η
dx+ o(1)

≤ C(Rµk)4ηe4uk(Rµk)

∫ δ

Rµk

r3−4η dr + o(1) ≤ CR
4µ4
ke

4uk(Rµk)

η − 1
+ o(1)

≤ C

η − 1

( √
96R√

96 +R2

)4

+ o(1)

where limk→+∞ o(1) = 0. Summing this integral and (38), letting k → +∞ and
then R→ +∞, we get the result. This proves Lemma 6.5. �

Point (ii.a) of Theorem 1.1 follows from Lemma 6.5.
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