QUANTIZATION EFFECTS FOR A FOURTH ORDER
EQUATION OF EXPONENTIAL GROWTH IN DIMENSION
FOUR

FREDERIC ROBERT

ABSTRACT. We investigate the asymptotic behavior as k — +o0o of sequences
(ur)ken € C*(Q) of solutions of the equations A2uy, = Vi,e**r on Q, where Q is
a bounded domain of R* and limg 400 Ve =1in CIOOC(Q). The corresponding
2-dimensional problem was studied by Brézis-Merle and Li-Shafrir who pointed
out that there is a quantization of the energy when blow-up occurs. As shown
by Adimurthi, Struwe and the author [1], such a quantization does not hold in
dimension four for the problem in its full generality. We prove here that under
natural hypothesis on Auyj, we recover such a quantization as in dimension 2.

1. INTRODUCTION

Let Q be a bounded domain of R*. Let a sequence (Vi )ren € C°(Q) be such
that

li =1 1.1
D T -
in CP (). Let (ug)ren be a sequence of functions in C*(9) such that

A2uk = Vk64uk (E)
in Q for all £ € N. Here and in the sequel, A = — > 9;; is the Laplacian with

minus sign convention. In this paper, we address the question of the asymptotics
of the uy’s when k — 400. A natural (and simple) behavior is when there exists
u € C*(Q) such that

li = 1.2
Gl = u (1.2)

in C} (). In this situation, we say that (uy)ren is relatively compact in C} ().
However, the structure of equation (F) is much richer due to its scaling invariance
properties. The scaling invariance is as follows. Given k € N, x, € Q and ug > 0,
we let

() = ug(zr + prx) + In g (1.3)

for all © € pu; ' (Q — x1,). Letting Vi (x) = Vi(xy, + ppz) for all x € p 1 (Q — xy,), we
get that the rescaled function wy satisfies

A2’I~Lk = Vk€4uk

on py ' (Q—w) — an equation like (E). This scaling invariance forces some situations
more subtle that (1.2) to happen. A very simple example is the following: we
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consider a sequence (p)ren € R such that limg_, 4o pr = 0 and for any &k € N,
we define the function
V961

fr(z) =In W
for all z € R*. Then f; satisfies (E) with V4 = 1 for all k € N. The sequence
(fx)ken does not converge in CP _(R*): we have that

lim fz(0) = +o0o and lim f; = —oc uniformly locally on R*\ {0}.
k— 400 k——+o00
In addition, we get that
Ve e dz — 16726,

when k — 400 weakly for the convergence of measures. Scaling as in (1.3), we get

that
V96
lim z)— fr(0)=ln —————
for all z € R%. Concerning terminology, we say that the sequence (uy)gen blows-up
if it is not relatively compact in C} (), so that, up to any subsequence, (1.2) does
not hold. In the above example, the (fx)’s blow up. In this paper, we are mainly

concerned with the blow-up behavior of solutions of (E).

In dimension two, the corresponding problem has been studied (among others)
by Brézis-Merle [3] and Li-Shafrir [8]. We also refer to Druet [5] and Adimurthi-
Struwe [2] for the description of equations with more intricate nonlinearities and to
Tarantello [14] for equations with singularities. Li and Shafrir proved the following:

Theorem 1.1 (Li-Shafrir [8]). Let ¥ be a bounded domain of R?, (Vi )ken € C°(X)
be a sequence of functions such that limg_ oo Vi = 1 in ClOOC(E), and (U )ken €
C?(X) be a sequence such that

Ay, = Vkemik
in X for all k € N, and such that there exists A € R such that fz Vie?® dx < A for
all k € N. Then either (i) the sequence (uy)ren is relatively compact in C1(Q), or

(#1) there exists N € N, there exist T1,...,Tn € €, there exist ay,...,ay € N* such

that, up to a subsequence
N

Vi, et — Z dwe; 0z,
i=1
weakly for the convergence of measures when k — +o00. Moreover, limy_, 1 o U =
—oo uniformly locally in ¥\ {Z1,...,Tn}.

We refer to this statement as a quantization result. The justification of this
terminology is as follows: if in Theorem 1.1 we have blow-up (that is case (i)
does not hold), then for any w CC ¥ such that dw N {Z1,...,Tn} = 0, we have that
limg 400 fw V2% dx € 4wN. Moreover, the sequence (ug)ken develop singularities
on a set at most finite, that is {Zy,...,Zn}.

Surprisingly, such a quantization result is false when we come back to our initial
four-dimensional problem (E). In a joint work with Adimurthi and Michael Struwe
[1], we exhibit a sequence of solutions to (E) that blows-up, carry a non-quantified
energy and develop singularities on a hypersurface of R%. In [1], we described the
behaviour of arbitrary solutions to (E) and proved that any blowing-up sequence
(uk)ken concentrates at the zero set of a nonpositive bi-harmonic function, and that
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outside this set, limg_, o0 ur = —o0 uniformly. In view of the examples provided
in [1], this result is optimal. Therefore, giving a more precise description requires
additional hypothesis on (uy).

A natural hypothesis is to impose a Navier boundary condition, (that is uy = Auy =
0 on 09) or a Dirichlet condition (that is uj, = 9% = 0 on 09): actually, in these
cases, we get that there is no blow-up and we recover relative compactness. Wei
[15] studied a problem similar to (E) assuming that Auy = 0 on 9 and uy = ¢ on
00, where (c;)ren € R is a sequence of real numbers such that limg_, o ¢ = —00:
in this context, Wei describes precisely the asymptotics and recovers quantization.
Another natural hypothesis is to assume that the functions wy are radially sym-
metrical: in this situation, we describe completely the asymptotics in [12]. In all
these situations, the critical quantity to observe happens to be Auy as shown in
the following example. We let o € (0,1672). It follows from [4] that there exists
v € C*(R*) radially symmetrical such that v < v(0) =0 and

A%y =€ in R* and e dr = a.
R4
Contrary to the two-dimensional case, where the only solutions to the corresponding
equation are of a type similar to fi with a quantization of the energy, we get in four
dimensions many solutions with arbitrary small energy. More precisely, it follows
from [9] that there exists C' > 0 such that Av(x) > C for all x € R*. For any
k € N*, we define the function

gr(x) = v(kx) + Ink

for all x € R%. As easily checked, due to the scaling invariance (1.3) of (E), g
verifies (E) with Vi = 1. We also get that the sequence (gi)ren blows up. It
follows from straightforward computations that

lim Vet dz = a.
k—+oc0 B1(0)

Moreover, for any w C R*, we have that

lim Agi = 4o

k— 400
uniformly in w. Since @ > 0 can be chosen as small as we want, we then get blowing-
up sequences with arbitrary positive small energy, and there is no quantization here.
Note that concerning the sequence (fi)ren of the first example, we have that for
any w CC R*\ {0}, there exists C'(w) > 0 such that

[Afi(z)] < Cw)

for all k € N* and all # € w. The fundamental difference between the (fx)’s and
the (gi)’s is that in the first case, the Laplacian is bounded outside the singularity,
and in the second case, the Laplacian goes to +oco uniformly. This fact is actually
general. The objective of this paper is to prove the following result:

Theorem 1.2. Let Q be a bounded domain of R*, (Vi)ken € C°(Q) be a sequence
such that (1.1) holds, and (ux)ren be a sequence of functions in C*(Q) such that
(E) holds, and such that there exists A > 0 such that [, Ve dx < A for all
k € N. Assume there exist C > 0 and wy CC Q such that ||(Aug)—||1 < C and

[AukllLr(we) < C
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for k € N. Then (i) either (uy)ren is relatively compact in C3 (), or (ii) there

loc
exists N € N, there exist x1,...,xn € (2, there exist ay,...,an € N* such that

N
Vietts — Z 1672 ;0
i=1
weakly in the sense of measures when k — +00 up to a subsequence. Moreover, still
in Case (i), we have that limg_, 4 oo ur, = —00 uniformly locally in Q\ {z1,...,xn}.

As a remark, note that the control of the positive part of Auy is only required
on an arbitrary subdomain of 2. This result is optimal as shown in the preceding
example involving the function gi. In a joint work with Olivier Druet [6], we studied
the corresponding problem on four-dimensional Riemannian manifolds, where the
bi-Laplacian is replaced by a fourth-order elliptic operator refered to as P: when
the kernel of P is such that Ker P = {constants}, we get similar results as in
Theorem 1.2 with the additional information that o; = 1 for all ¢ € {1,..., N}. The
techniques used in [6] are different from the techniques used here: the main reason
is that for equation (F), the kernel of the bi-Laplacian contains more than the
constant functions. Related references in the context of Riemannian manifolds are
Malchiodi [10] and Malchiodi-Struwe [11]. As a remark, the corresponding question
in dimension n > 5 was considered in Hebey-Robert [7].

This paper is organized as follows. In section 2, we prove that under our hypothesis,
concentration holds on finitely many points and not on a hypersurface. In section
3, we prove that, up to rescaling, the wug’s converge to a generic pattern when
k — +oo. In section 4, we analyse precisely the blow-up and we prove Theorem
1.2 in section 5. In the sequel, C denotes a positive constant, with value allowed
to change from one line to the other. Note also that all the convergence results are
up to a subsequence, even when it is not precised.

Acknowledgement: the author thanks Adimurthi and Michael Struwe for hav-
ing pointed out this problem, and also thanks them for stimulating discussions.
The author thanks Emmanuel Hebey for stimulating discussions on this problem.

2. CONSTRUCTION OF THE CONCENTRATION POINTS

In the sequel, we let  be a bounded domain of R*. We consider a sequence
(Vi)ken € C°(9) such that (1.1) holds. Let (ug)ren be a sequence of functions in
C*(Q) such that (E) holds. We assume that there exists A > 0 such that

/ Vet dx < A (2.1)
Q
for all £ € N. We assume that there exist wg CC Q2 and C > 0 such that
[Aug|| 11 (we) < C (2.2)
and
[(Aug)-[l <C (2.3)

for all & € N. The objective of this section is to prove that the (uy)’s concentrate
at a finite number of points. This is the object of the following proposition:

Proposition 2.1. Let Q be a bounded domain of R*. Let (Vi)ren € C°(Q) be a
sequence such that (1.1) holds. Let (uy)ren be a sequence of functions in C*(Q)
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such that (E) holds. We assume that there exists A > 0 such that (2.1) holds. We
assume that (2.3) and (2.2) hold. We define

So := ¢z € Q/liminf lim inf/ Vet dy > 8% b . (2.4)
=0 k—+oo B,;(z)

which is a finite set. Then for any w CC Q\ Sy, there exists C(w) > 0 such that
|Aug(z)| < C(w) and ug(z) < C(w)
for all x € w and all kK € N. More precisely, we are in one and only one of the

following situations:
(A1) there exists u € C*(Q\ Sp) such that

kgrfoo Up = U in C?OC(BJ(xO))

(A2) limg_, 4 oo ur, = —00 uniformly locally on '\ Sp.

The proof of Proposition 2.1 proceeds in two steps. Note that it follows from
(2.1) that Sp is at most finite. We let (ug)ren, (Vi)ren and A as in the statement
of Proposition 2.1.

Step 2.1: We let g € Q\ Sp. We claim that there exists § > 0 such that we are
in one and only one of the following situations:

(B1) there exists u € C*(Bs(z0)) such that limy_, 1o ux = u in C} (Bs(xo)).

(B2) there exists ¢ € C*(Bs(wg)) such that A2¢ =0, ¢ < 0, ¢ # 0 there exists a
sequence (Bi)ren € R such that limy_, o Sx = 400 and

U
lim — = ¢
k——+o0 ﬂk

in C} . (Bs(wo) N {¢ < 0}).

Proof of the claim: This claim is a particular case of the Theorem obtained in [1].
As a preliminary remark, note that the two cases (B1) and (B2) are disjoint. Since
29 € Q\ Sp, we let 6 > 0 and o < 872 be such that

/ Vie*™ do < o < 872
Bg(:ﬂo)

for all £k € N. We let w;, be such that

Awy, = Vie®™ in Bs(zo), wp = Awy, = 0 on dBs(xg). (2.5)
It follows from [9] (see also [1], [15]) that there exists p > 1 such that
/ etrlvel gy < ¢ (2.6)
Bs(zo)

for all kK € N. We let hy := up — wy, on Bs(xg). Clearly A2h;, = 0. It follows from
(2.1) and (2.6) that |[(h&)+ |21 (Bs(ze)) = O(1) when k — +o00. We distinguish two
situations:

Case 2.1.1: We assume that |[hgl|L1(B;,4(z0)) = O(1) when k — +oo. Since hy, is
bi-harmonic, there exists ho, € C*(Bs(g)) such that

kgrfoo hi = hoo (2.7)
in C} (Bs(wo)). We refer to [1] for details about this assertion. Plugging (2.6) and

(2.7) in (2.5), we get that (wg)gen is bounded in Cp (Bs(zo)), and so is (ug)ken-
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It then follows from standard elliptic theory that there exists u € C*(Bj(z0)) such
that limy 100 ux = u in C} _(Bs(x0)), and we recover Case (B1) of the claim. This
proves the claim in Case 2.1.1.

Case 2.1.2: We assume that limg_, 1 ||hk||L1(B5/2(m0)) = +oo. Since hy is bi-
harmonic, there exists ¢ € C*(Bs(20)) \ {0} such that A%¢ = 0, ¢ < 0, there exists
a sequence (fx)ren € R such that limy_, o Bx = +00 and such that

by
li — = 2.8
in C (Bs(z0)). We refer to [1] for details about this assertion. In particular,
hx — —oo uniformly locally on ¢ < 0. Arguing as in Case 2.1.1, we then obtain
that (wy)ken converges in Cp (Bs(zo) N {¢ < 0}). It then follows from (2.8) that

limg 400 55 = ¢ in C} (Bs(zo)N{¢p < 0}), and we recover Case (B2) of the claim.
This proves the claim in Case 2.1.2. (]

Step 2.2: We are in position to prove Proposition 2.1. Since €\ Sy is connected
and harmonic functions are analytic, it follows from Step 2.1 that we are in one
and only one of the following situations:

Case 2.2.1: There exists u € C*(Q\ Sp) such that limg_, 4 oo up = u in C} _(Q\ Sp).
In this situation, we recover Case (Al) of Proposition 2.1.

Case 2.2.2: There exists ¢ € C*(Q\ Sp) such that A2¢ =0, ¢ <0, ¢ # 0, there
exists a sequence (Bx)ren € R such that limy_, 4 o Bx = +oo and

lim =& =g in C} (2N {p <0} \ So). (2.9)

k—+o00 ﬂk

We claim that A¢ = 0. Indeed, there exists x € wy (wo was defined in (2.2))
such that ¢(x) < 0 (otherwise ¢ = 0 on wy and then ¢ = 0 on 2\ Sy since
harmonic fonctions are analytic. A contradiction). We then get that (2.9) holds in
a neighborhood of zg. By (2.2), we then get that A¢ = 0 in a neighborhood of z.
Since A¢ is harmonic, and therefore analytic, we get that A¢ =0 on 2\ Sp. This
proves the claim.

Since ¢ Z 0, ¢ < 0 and A¢ = 0, it follows from the maximum principle that ¢ < 0
on Q\ Sp. Consequently,

. ug . 3
kkrfoo ﬂk - QS m leoc(Q \ SO)
In particular, we get that limg_, 4 o ur = —o0 uniformly locally on ©Q\ Sy. From the

equation (F) and (2.3), it follows from elliptic theory that either limy_, oo Aug =
+00 uniformly locally in 2\ Sy, or (Aug)gen is uniformly bounded when k — +o00
locally in '\ Sp: it follows from hypothesis (2.2) that the first situation cannot
hold, and we get that Case (A2) of Proposition 2.1 holds.

Clearly Proposition 2.1 is a consequence of Steps 2.1 and 2.2.

3. POINTWISE ESTIMATES

This section is devoted to the proof of the following Proposition:
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Proposition 3.1. Let Q be a bounded domain of R*. We let (Vi.)ren € C°(Q) be
a sequence such that (1.1) holds. Let (ug)ren be a sequence of functions in C*(€2)
such that (E) holds. We assume that there exists A > 0 such that (2.1) holds. We
assume that (2.3) and (2.2) hold. We assume that

So # 0.

Then there exists N € N*, there exists families of points (1 k)keN, - (TN.k)keN N
Q such that for all i € {1,..., N}, we have that limy_, 400 Tk = x; € Sy and such
that for any w CC Q, there exists C(w) > 0 such that

)?|Aug(2)] < C(w)

inf — 2 ug (x) <C d inf —
(ie{ll,r.l..,N} @ — @ixl)e < C(w) an (l n N} |z — 2k

gasey

for allk € N and all x € w. Moreover,

. Lik — Ljk
hm | 2, Js |
k—~400 efuk(qu,k)

= 400 for all i # j,

and for any i € {1,...,N} and any x € R*, we have that

V96
lim (up(zip + e “*@r)p) — uy(z; =ln———.
k)—)-‘roo( k:( k ) k( ;k?)) \/%‘i‘ \$|2
Moreover, this convergence holds in C} (R*). In addition, limy_, o ur = —00

uniformly on every compact subset of '\ Sp.

This section is devoted to the proof of Proposition 3.1. We consider w CC €.
Up to taking w larger, we assume that Sy C w. We follow the proof of [13]. We let
T € W be such that

ug (k) = sup uy.
w

Since Sp # 0 and Sy C w, we get that limg_ 1o ur(xr) = +o0o. In this situation,
it follows from Proposition 2.1 that limyg_, 1o 2 = 2o € So NwW = Sy Nw. We let
6 > 0 small be such that

Bss(z1) C w and Bas(xg) N So = {0}
for all £k € N. We define
e = e~ @) and v (z) := ug(zp + prx) — ug(zk) (3.1)
and Vk(x) = Vi(ag + prz) for |z| < i—i and all k£ € N. Equation (F) yields
A2y, = VielVr, (3.2)
with vg(z) < v(0) = 0.
Step 3.1: We claim that there existe C' > 0 independant of k and R such that

/ |Avy| dz < CR? + CR* 13 (3.3)
Br(0)

for all K € N and all R < (5,u,;1. We prove the claim. We let Gsj be the Green’s
function for the Laplacian on Bs(xy) with Dirichlet boundary condition. We get
that

Auy(z) = /B L Ga( D) dy + i)
s(Tk
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for all z € Bs(xy), where ¢y, is the unique harmonic function on Bgs(xy) such that
vr(y) = Aug(y) for all y € 0Bs(zx). From Proposition 2.1 and the comparison
principle, we get that there exists C' > 0 such that

lor(2)] < C (3.4)
for all z € Bj(zy). We let z € R* be such that |z| < §u,'. Using the definition
(3.1) of vg, we get that

Avg(z) = / 1 Go i (x + e, ) Aur (y) dy + pir(@n + pr).
Bs(zk)

Integrating this equation, using (F), (2.1), (3.4) and standard estimates on the
Green’s function, we get that

[ sulde < o f 0 RGsuent mag)et O dydo + CRY
Br(0) Br(0) JBs(xk)

2
C etur ) / S o s dz | dy+ CR12
Bs(z) Br(0) [Tk + e — Y|

C et W) (CR?) dy < CAR* + CR1i},
Bs (k)

for all £ € N. This proves the claim.

IN

IN

Step 3.2: We claim that for any x € R*, we have that

lim wvg(x) = V96

koo 56+ (a2
moreover this convergence holds in C} (R*). We briefly prove the claim. By (3.3),
we get that Awvy is bounded in L}, when k — +o0. Since vy, < vg(0) = 0, it then
follows from (3.2) and standard elliptic theory that, up to a subsequence, there
exists v € C*(R*) such that limy_ oo vx = v in C} (R?), with A%y = €% and
e € L'(R*). Passing to the limit k& — 400 in (3.3) and using the classification
of Lin [9], we get that v = Uy. We refer to [13] for details about the proof. In

particular, we get that

= Up(a), (3.5)

lim lim Vet dx = 1672,
R—+4+o00 k—+o0 BRHk (wk)

Step 3.3: We claim that there exists N € N*, there exist (z1,k)ken, - (TN.k)keN
such that for all w CC 2, there exists C'(w) > 0 such that

(ie{linf N} |z — xi7k|>6uk(z) <C(w) (3.6)

for all z € w and all k € N. Here 1 ;, := z.

Proof of the claim: Without loss of generality, we can assume that Sy C w. If there
exists C(w) > 0 such that |z — zx|e**®) < C(w) for all k € N and all z € w, then
we are done. Otherwise, let y, € @ be such that

sup |z — g |e™ @ = |y, — z]e* W) 5 oo (3.7)

TEW

when k — +o0o. We define

g () = up(yr + vez) — ur(yx)
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for all z € v, '(w — yi), where vy, := e~ W) for all k € N. Tt follows from (3.7)
that 4y, is bounded from above uniformly locally on R* independantly of k. We
proceed as in Steps 3.1 and 3.2 and prove that 4 converges to Uy in C} _(R*), and
that these two rescaled functions do not interact one with the other. We then add
another level of energy 1672, If (3.6) holds with z1 ; = x) and xa ) = yi, then we
are done. Otherwise, the process goes on and must cease, because when we have
constructed N points, we have that the energy 1672N and by (2.1) we must have
1672 N < A. We refer to [13] for the details. O

Step 3.4: We claim that

lim up = —o0
k—+o00

uniformly on every compact subset of €\ Sp.

Proof of the claim: We prove the claim by contradiction and assume that the
conclusion is false. It then follows that point (Al) of Proposition 2.1 holds, and
then that wy is uniformly bounded in C} (2 \ Sp). We let zgp € Sy and 6 > 0
be such that Bas(rg) € Q and Bas(xg) N Sy = {xo}. We let z; € Q be such
that u(zr) = supp,(,,) ur and we define v, and py as in (3.1). As in the proof
of Proposition 3.1, we get that limg_, . 2 = ¢ € w N Sy and that (3.5) holds.
We let Hs be the Green’s function for A? in Bs(x) with Navier condition on the
boundary, that is for any = € Bs(z¢), we have that A?Hs(x,-) = &, in D'(Bs(z0))
and Hs(z, ) = AHs(x,-) = 0 on dBs(xg). For any © € Bs(xo) \ {0}, we then have
that

(@) = / Hy(z, 9)Vi (9)e™® dy + i (x)
Bs(xo)

where A%py = 0, ¢i(y) = ur(y) and Apy(y) = Aug(y) for y € 9Bs(xo). It
follows from point (A1) of Proposition 2.1 and the comparison principle that ¢
is uniformly bounded when k — +oo. We let « € B;s(zg) such that |x — zg| > «a.
Since Hs > 0, we get with (1.1), (E), a change of variable and (3.2) that

up(z) > / Hs(z,y)Vi(y)e ™ ® dy — C
BRHk(Ik)

> / Hs(x, o + puy) Vie(y)e™* @) dy — C
Br(0)

Y

/ Hs(x,2z9) lim (Vk(y)e4”k(y)) dy — C
Br(0) k

—+00
for all © € Bsja(xo) \ Balwo). With standard properties of Hj, we get that
Hs(x,29) > #lnrlml — C for € Bs/a(x0). From (3.5), we then get that
for any € € (0,2),

1

n _ /
|z — 0]

up(z) > (2—¢€)1

for @ € Bs/a(w0) \ Ba(wo),  # 2o and k large depending on a and e. We then get
that for any 0 < a < 8 small,

1
A> / Vet dx > C T 4T,
B(20)\ Ba(20) Bj(20)\Bal(zo) [¥ ~ T0]
for k large depending on a. We then get a contradiction by letting o — 0. Then
Case (A1) of Proposition 2.1 does not hold and Case (A2) holds. We then get that
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limg_, 1 oo ur, = —00 on compact subsets of Q\ Sy when & — +oco. This proves the
claim. [l

Step 3.5: We claim that for any w CC €, there exists C(w) > 0 such that

inf —zix))?A <C 3.8
(inf 1o = el Au@)] < Cw) (338)

for all z € w and all £ € N.
Proof of the claim: We let xg € Sy and § > 0 be such that Bss(zg) C  and
Bss(z9) NSy = {xo}. We denote Hj the Green’s function for A on Bays(xg) with
Dirichlet boundary condition. It follows from Green’s representation formula that

Aup() = /B L Hel ) A dy + ) (3.9)

for all x € Bas(xp). In this expression, 9y is such that Ay = 0 in Bas(zp) and
Yr(xr) = Aug(x) on 0Bas(xg). It follows from Proposition 2.1 and the comparison
principle that there exists Cs > 0 such that

[k(2)] < Cs (3.10)

for all € Bas(xg). We consider a sequence (yx)ren € Bs(xo) that converges. We
assume that limg_, o yx = ¢ when k& — +o0o. With standard properties of the
Green’s function, (3.9) and (3.10), we get that there exists C' > 0 such that

etur(y)
|Aug(yx)| < C — dy+C.
BQJ(I()) |yk‘ - y|
We define Ry(x) = infieqq, . ny |z — 2k for all z € Q, we define 0;, = éi:i:'

and Q; , = {y € Bas(zo)/Ri(y) = |y — xi x|} By (2.1) and the pointwise estimate
(3.6), we then get that

|Aug(yr)] < C +C +C
Bas(20)\UB |y —a; 1| (Ti k) UB |y —a; 5| (Tik)
o=l lvs =ikl
N N
<y vy [ we
i=1 Qi,k\BM(zi,k) i=1 Bm(xhk)
2 2
N 1
< C / dy
2 s oy o) = TP T
v =ikl
N duy (y)
e
+C / - _dy+C
; Blyk*%‘,k\ (i,k) Rk(yk)2

1 C
< C / dz +C
Z R\B, (0) Tk (Yx)?105,k — 212|2|* Rk(yk)2
for all k£ € N large enough, and then
Ri(yx)*| Aug (yr)| = O(1) (3.11)

when & — 400 in case limg 100 yp = ®o. When limg 1o yr # o, inequality
(3.11) is a consequence of Proposition 2.1. Since the sequence yy is arbitrary, this
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proves (3.8) on Bs(xg). As easily checked, (3.8) follows from this estimate taken in
the neighborhood of each of the points in Sy and Proposition 2.1. (]

Proposition 3.1 is a consequence of Steps 3.1 to 3.5.

4. BLOW-UP ANALYSIS

The proof of Theorem 1.2 goes through an induction that will use the following
proposition. The paper of Li-Shafrir [8] was a source of inspiration.

Proposition 4.1. Let 7o € R*, § > 0 and A > 0. We let V}, € C(Bys(z0)) be
such that limy_, 1o Vi = 1 in CO(Bys(x0)). We let ux, € C*(Bys(wo)) be such that

AQuk = Vke4u"' (4'1)

in Bys(zo). We assume that

( )
Bys(zo)

for all k € N. We let p;, > 0 be such that limy_, 1 pr = 0. We assume that there
exists (Tg, = T1,k)keN, - (TN k) ken € Bas(xo) such that for any i € {1,...,N}, we
have that

lm 2 = d i 1) = +00. 43
k—%rfoox’k Ty an k_ﬂr_loouk(x7k) 400 (4.3)

Moreover, we assume that there exists C' > 0 such that

inf |z — 2 4le*® < Cand  inf |z — x4 2Aug(z)] < C (4.4)
i€{1,...,N} i€{1,...,N}

for all k € N and all x € Bas(zy) \ By, (x1). We assume that

i %k~ Tikl _

~+o00 (4.5)
k—-+o0 ik

foralli# j,i,j € {1,...,N}. In this expression, we have let p; = e~ @ix) . We
assume that

. V96
Im  (ug(zip + pipx) — ug(Tig)) =

In ——
k—+o0 V96 + |z ]2
for all x € R*, and that this convergence holds in C3 (R*). We let (rg)ken be such

that r, > 0 for all k € N and that limy_, y o 7 = 1 € [0,5]. We define

(4.6)

= {z €{2,.,N}/ "T’“TJ = O(1) when k — —i—oo} . (4.7)
k

Tik—Tk
Tk

Note that I may be empty. We define T; = limg_s 4 oo foriel. We assume

that &; # 0 for all i € I and that
pr = o(Tk) (4.8)
and that g = p1, = o(ry) when k — +oo. We let v, R be such that
1
O<r< Tomln{{|.’f?l|/’t S I} U {‘SE’I —i‘j‘/Lj el, z; # .’i‘J}} (49)
and 5
3max {|Z;|/i €I} < R < o (4.10)
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In case r = 0, we define 2% = 4o00. We define
Dy, := Bpr, (zk) \ U By, (Tik)-
iel
Then, if ux = o(pk), we have that
lim et e (@) o = 0.
k—+oo Dy\Bs,, (wk)
If pr = O(uk), we have that

lim  lim e (@) gy = 0.
Rotoo k240 /DB, (wr)

This section is devoted to the proof of the proposition. Up to relabelling the
T;’s, we assume that there exists ¢ : {1,...,{} — {1,..., N} such that T4y # Te(;)
for all 7 # j, and

{z;/iel} = {:f:¢(i)/z' e{l,.,1}}, and I ={2,...,9(])}. (4.11)
Moreover, we assume that ¢ is increasing and &; = Z4(;) for all j such that ¢(i) <
Jj < ¢(i+1). Note that 1 ¢ I and that ¢(1) # 1. For all i € {1,..., N}, we define

Tik — Th

Tik = (4.12)

Tk

Step 4.1 (Rescaling): We define

l
Q= <B3R(0) \ U Bu(%(z’),k)) \ B (0).

With the choice (4.10) of R, we have that z; + ryx € Bas(xg) C Bas(zo) for all
x € Q. Welet z € Q and j € {1,..., N}. We distinguish three cases:

Case 4.1.1: We assume that j € I. We let ¢ € {1,...,1} be such that ¢(i) <
Jj < ¢(i +1). Then, from (4.9), (4.10), the definition (4.12) and the choice of the
numbering of the Z;’s, we have that

ok e — ik = rle = Eikl > e (|2 = Tkl = [Zoe) .k — Tikl)
12 14
> M) > rel > re—|al. 4.13
> nv+o(l)) =g 2 riegl (4.13)

Case 4.1.2: We assume that j € {2,..., N} is such that j ¢ I. Then with (4.10),
the definition (4.12) and the definition (4.7) of I, we get that

- - T
|2k + ot — x| = 1|z — Zj0] > 7 (|Z50] — 3R) > g > ﬁm. (4.14)

Case 4.1.3: If j =1, we get that
|z + rex — xg| = ez > pk. (4.15)

It follows from (4.13)-(4.15) that
inf — x| >Cw, R 4.16
ot e = ] 2 Cn Rine (4.16)

and xj, + rxx € Bas(zi) \ By, (Tg).
for all z € Q. For x € B3r(0), we define

g (z) = ug(zk + rex) + Inrg. (4.17)
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It follows from (4.16), (4.1) and (4.4) that there exists C' > 0 such that
A%y, = Vie*™ in Byg(0) (4.18)
and i
z]e®™(®) < C and |z]?|Adg(z)| < C (4.19)

for all z € Q. Here, we have defined Vk(x) := Vi (xg + rpax) for all x € B3r(0) and
all k € N.

Step 4.2 (Harnack inequality): We claim that there exists C = C(v, R), there
exists 8 = B(v, R) > 0 such that
Jé] sup ay, < inf ap+ (1 —=pB)Inr+C (4.20)
(B (0\U!_, Baw (#(i).1)) A(Br(0\Ui—; B2w(@g(i),x))

for all » > 0 such that

3
Pk < < 2R,

Tk
Proof of the claim: We let s > 0 be such that 3%: < s < 2R and we prove the
claim for » = si. Up to a subsequence, we assume that limg_, 4o, s = s > 0. We
distinguish two cases:

Case 4.2.1: We assume that

0<s< %V' (4.21)
With (4.9) and (4.10), we get that
B3 (0)\ B1(0) C ?—:
For any = € B3 (0) \E% (0), we define
Up(z) = g (spx) + In sg. (4.22)
It follows from (4.19) that there exists C' > 0 such that
Ui(xz) < C and |AU(2)| < C (4.23)

for all k € Nand all z € B (0) \F% (0). Tt then follows from the Harnack inequality
that there exists 5,C > 0 such that
B sup Uy < inf Up+C (4.24)
9B (0) 9B1(0)
for all k € N. Coming back to @ with (4.22), using the assumption (4.21), (4.9)
and (4.10) we get that

l
G, (Bsk(o) \ U Bzy(%(i),k)) = 0B, (0)

i=1
and then (4.20) follows from (4.24). This ends Case 4.2.1.

Case 4.2.2: We assume that

4
i <s<2R. (4.25)

We define l
A= <B3R(O) \ U Biu(%(i))) \ Bx(0).
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It follows from (4.9) and (4.8) that
A CQy

for kK > 0 large enough. Moreover, it follows from (4.9) and (4.10) that A is
connected. It follows from (4.19) that there exists C' > 0 such that
g (z) < C and |Aug(z)] < C

for all z in a neighborhood of A. With Harnack’s inequality, we get that there
exists 3,C > 0 such that

Bsup iy < infay + C (4.26)
A A
for all £k € N. With (4.9), (4.10) and (4.25), we get that

!
9 (BSk(O) \ U B2v(i"¢>(z'),k)> C A

i=1
From (4.25) and (4.26), we get that there exists § = 8(v,R) >0, C =C(v,R) >0
such that

8 sup g < inf g+ (1 —B)Insy +C
3(Bs;, (O\UiZy Bau (Zs(i) 1)) (B (0\Uizy Bav (Foi).k)
for all £k € N. This ends Case 4.2.2, and the proof of the claim is complete. O

Step 4.3 (Upper bound): We claim that there exists # > —1, there exists Ry > 0
such that

140 146
sup ﬂk§(1++>lnsk+lnrk+c (4.27)
O(Bu, (0\UL, Bow (Foi.1)) B B
for all £ € N where s, > 0 is such that
3
s € {rpk,zR] if 11 = o(pr) (4.28)
k
and
R
Sk € [ ;’”’“,2}2} if pr = O (), (4.29)
k

where py and pg are as in Proposition 4.1.

Proof of the claim: We let Uy, be defined as in (4.22) on Bsr (0). We assume that
5k

0<s <8 (4.30)
Let Hj, be the Green’s function of A2 on
! -
Dy = B1(0)\ | Bz (W) = B1(0) (4.31)
- " Sk

with Navier condition on the boundary, that is for any x € Dy, we have that
A?Hs(z,-) = J, in the distribution sense, Hs(x,:) = AHs(x,-) = 0 on 0B1(0).
Note that equality (4.31) is a consequence of (4.9), (4.10) and (4.30). It follows
from Green’s representation formula that

Uk(0) = . H,,(0,y) AUk (y) dy + ¢x(0) + 91, (0) (4.32)
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where
_ . A21/Jk =0 in Dk
{ A‘P’; ;JO g;g’;) } and { Aty =AU, ondD; . (4.33)
Pr = Yk k Yp =0 on 9Dy,

It follows from (4.8), (4.9) and (4.10) that 0Dy, = 9B1(0) C s;,'Q4. We then get
from (4.23), the maximum principle and (4.33) that there exists C' > 0 such that

[Yr(0)] < C (4.34)
for all k € N. It follows from the comparison principle and (4.33) that
X > inf Uy. 4.
¢r(0) > Inf Uk (4.35)

We take R > 0. Moreover, by (4.28), (4.29) we get that
B sy, (0) € Byy2(0) C Dy (4.36)

SkTh
with Ry > 2R. Noting that Hy > 0, we get from (4.32), (4.34), (4.35) and (4.36)
that

Uy (0) > / Hy(0,4) AU (y) dy + inf Uy, — C.
B gy, (0) D

SETk

It follows from standard elliptic estimates that there exists C' > 0 such that

1
H > —1In— —
k(ovy)— 87'('2 n|y| C
for y € By/2(0) \ {0}. We then get that
1 1
U (0 z/ <lnC>A2Ukydy+inkaC.
02 Iy 0 5= Wdv+ 8,

SkTk
With the change of variable y = S;‘—’;kz and coming back to the definitions (4.17)
and (4.22), we get that

In % / (121n5’”’“+121n1C)ka)e“uk(xmz)“k(“”dz
M B(0) \8T Hke 8m 2]

+ inf Uy — C,
0Dy

where Vi, (2) := Vi(zk + pxz). By (4.6), we then get that

5 0k (R) SETE | .
> (1 1 f
C(R) > ( + oz I i +é%k Uy,
with limp | limg 40 0x(R) = 0. Choosing R large enough, and then choosing
Ro > 2R large, we get that there exists § > —1 such that
C>(1+0) 2" 4 i Uy,
Mk 0Dy,

for all & € N. Coming back to @ and using (4.20), we get the inequality of the
Lemma. This ends the proof of the claim when (4.30) holds. In case (4.30) does not
hold, the claim follows from the case s = 7v and the Harnack inequality (4.20).0
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Step 4.4 (Proof of Proposition 4.1): We let yr € Bogr(0) \ Uézl Bow(Z(i),k)
be such that

Ropg,

3pk . .
sl > T i i = olpe) or [y] > if pr = O(ur).

where Ry is as in (4.27). Defining s, = |yx|, we get that

!
Yr €0 <Bsk (0)\ U B2u(53¢(i),k)> .
i=1
It follows from (4.27) that

N 1+0> 1+60. 7
m <—(1+——)In — ——In— +C. 4.37
o) < ( 0 ] - 5w (4.37)

We distinguish two cases:
Case 4.4.1: We assume that p; = o(pg). We then get by (4.37) that

4ax(y) g
_ _ € Yy
/(BQR(O)\Uil Baw(&¢(i)x) )\ B 3py, (0)

Tk
146

418 4 ﬁ"
<c (“k) L y<c (“’“) — o(1)
Bar(0\Bapy (0) \ T y| "t Pi
Tk

when k — +00. Coming back to the definition of 4y, and the relabelling (4.11), this
proves Proposition 4.1 in Case 4.4.1.

Case 4.4.2: We assume that pr = O(py) when k — +0co. We take R > Ry. We
then get by (4.37) that

dax(y) g
_ _ € Yy
-/(B2R(0)\Uﬁ_1 Bau (E4(i),1))\B g, (0)

T

S C
<c / (“’“) o dy < — i
Bar(0\B g, (0) \ Tk ly[*+5 RY5

Tk
for all k¥ € N. Coming back to the definition of 4, and the relabelling (4.11), this
proves Proposition 4.1 in Case 4.4.2.

5. PROOF OF THEOREM 1.2

We prove Theorem 1.2 by induction. We consider N € N*. We say that (Hy)
holds if the following Proposition holds:
Proposition (Hy): Let 29 € R*, § > 0 and A > 0. Let ui, € C*(Bys(z0)) and
Vi, € C%(Bus(o)) be such that limyg_, oo Vi, = 1 in C, (Bys(wo)) and

loc

A2uk = Vk€4uk (5.1)

in Bys(xo) and

/ et dx < A.
Bys(x0)
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We assume that there exists 1 < K < N, xy = T1k,...,Txk € Bas(xo) such that
for any i € {1,..., K}, we have that

lim ;) =zo and Um wug(x;y) = +oo.
k— 400 k——+oo

Moreover, we assume that there exists C' > 0 such that

inf |z —z0e*® < Cand  inf |z — x| Au(z)| < C (5.2)
€{l,...,.K} i€{1,....K}

for all k € N and all x € Bos(xy). We assume that
lim [Zin — 2] = 400 (5.3)
k=400 ik

foralli#3j,i,5€{1,...,K}. In this expression, we have let ju; 1, = e~ ") We
assume that

V96
G (ug (@i + pipe) — uk(ip)) = In V96 + [1]2 (5.4)

for all x € R*, and that this convergence holds in C} (R*). Then, we have that

loc
/ Vieet @) dp = 1672 K + o(1)
Bs(@o)
when k — 4o00.
We prove by induction that (Hy;) holds for all N > 1.

Step 5.1 (Proof of (H,)): We claim that (H;) holds. We prove the claim. We
apply Proposition 4.1 with r, = § and px, = 0. We then get that

lim  lim Vieed s @) dg = 0. (5.5)
R—+00 k—+o0 B% (wo)\BRuk (ifk)

Plugging (5.4), Proposition 3.1 and (5.5) together yields

/ Vet @) dp = 1672 + o(1)
Bs (o)

when k — 4o00. This proves the claim, and therefore (H, ).

Step 5.2 (Induction): We let N > 2. We assume that (Hy_,) holds. We
let (uk)ren € C*(Buas(zp)). We assume that uy verifies the hypothesis of (Hy).
Without loss of generality, we assume that K = N. Up to renumbering, we define

Tk = ggﬂmi,k -z} = li;l{{lm,k — Tikl}-

From (5.3), we get that

lim Tk _ +00
k—+o0 41 k
We define
I = {z €{2,.., N}/ 2LEZT0k _ 0(1) as k — +oo} .
r1,k
Note here that I; # (. We define by induction:

Te+l,k = inf{|x1’k — ~Tj,lc‘/j Q {1} ulhu..u Iq} (56)

Tpp1 = {z Z{1}ULU...UL,/ @ =0(1) as k — —|—oo} , (5.7)
q+1,k
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when these quantities are defined. Since we have a finite number of points, this
process must end. We let gy € N be such that r¢ j is defined for ¢ € {1,...,qo} and
not afterwards. Moreover, for any g < qg, we have that

lim Tatlk _ ~+00.
k—+o0o Tqk
Step 5.2.1: We claim that
lim Vie? (@) do = 1672 Card({1} U 1),

k—+oo Ber’k(afk)

where z, = x1 . We prove the claim. We apply Proposition 4.1 with ug, pr =0
and 1, =71 %. For R, v and ¢ as in the proof of Proposition 4.1, similarly to what
was done for the proof of (H;) we get that

lim B et (@) dp = 1672, (5.8)
k=400 J By, (z)\UlZy Bury (gi).1)

We fix i € {1, ...,1}. We define
v (2) = ur(Tei)e + TrT) +InTy

and Vk(z) = Vi(wy@),1 + i) for all 2 € Br(0) and all £ € N. From (5.1), we have
that
A%y, = Ve  in By, (0) and / etk do < A.
B4, (0)
For any j such that ¢(i) < j < ¢(i + 1), we define
. Tik = Tk

k=
J o

It follows from the definition of ¢ that limy_, 4o, X, = 0 for all j € {¢(7), ..., p(i +
1) — 1}. Arguing as in Step 4.1, and letting U; := {¢(i),...,p(: + 1) — 1}, we get
that

inf |z — X xle”® < Cand inf |z — X;4}|Ave(z)] < C
JEU; JeU;

for all x € By, (0). For any j,m € {¢(i),...,¢(i + 1) — 1}, j # m, we have by (5.3)
that
I Xje — Xkl 1250 — Tk
e~ vk(Xjk) e~ uk(Z; k)
when k — 4o00. By the definition of I; and (5.3), we get that limg_, 4 o0 v (X 1) =
+oo for all j. By (5.4), a straightforward computation shows that for any j €
{¢(i), ..., (i + 1) — 1}, we have that for any z € R%,

— +00

—1 96
n—yo"
V96 + |x|?
when k — +o0o. Moreover, this convergence holds in C} (R*). We then apply

the induction hypothesis (Hy_,) with v; (which has at most N — 1 concentration
points) and we get that

vp (X + e K0z — oy (X )

/ Vil (@) g — / Veet @) dy = (61 + 1) — 6(i))167% + o(1)
Burk ($¢(i),k) B,,(O)
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when k — 4o00. Since this inequality is valid for all i, we get from (5.8) that
lim Viee? @) doy = 1672 Card({1} U I).
k—+oo BR'r'k (ivk)
This proves the claim, and then Step 5.2.1.
Step 5.2.2: We take ¢ < qp and assume that for any R > 0 large enough, we have
that
lim Viee? (@) gz = 167% Card({1} U L, U ... U I,). (5.9)

k~>+oo BR-rq'k(wk)
We claim that for any R > 0 large enough, we have that
lim Vie? (@) dg = 1672 Card({1} U T, U ... U T4 1).
k—+o0 BR7‘q+1,k(xk)
We prove the claim. We define
Ry = max{lxk_w/i € Iq} )
Tq,k
We consider pr = Ri7qx/3 with Ry > 6Ry and 1, = rgy16. Welet ¢ € {1} U
Iy U...UI; and & € Bas(xi) \ By, (v1). We assume that i € I,, p < ¢g. From the

definitions (5.6), (5.7) and from the estimate (5.2), we get that there exists C' > 0
such that

2|Auk(m)| <C

inf |z -— xi,k|e“’“(“‘) < C and inf |z —mp
igI,U...Ul, igl,U...Ul,

for all k € N and all € Bos(wi) \ B, (xx). Note that 1 ¢ I; U... U I;. We apply
Proposition 4.1 with wug, px and r,. Similarly to what was done in Step 5.2.1, we
get, using our induction hypothesis, that for R >> 1 large

lim Vie? (@) dg = 1672 Card(I,11).

k=40 Bryy 1w @\Bryr, , (@)

The claim then follows from this last equality and (5.9).
Step 5.2.3: From Step 5.2.2, we get that

lim Viee? = (@) do = 1672N, (5.10)

k—+oc0 Bquoﬁk(fﬂk)

for all R > 0 large enough. Similarly to what was done in Step 5.2.2, there exists
Ro > 0 such that for all € Bus(zx) \ BRyr,,  (Tk), we have that

|z — 2p]e" @ < C and |z — 212 Aug(z)| < C.
We apply Proposition 4.1 with r; = % and pp = Rorg,,,. We then get that
lim Viee* s (@) dg = 0.
k—+4o00 B%(Ik)\BSRO’"qO,k(Ik)

This limit, (5.10) and Proposition 3.1 yield

lim Vieu: (@) gy — 1672 N.
k—+oco Bs (930)

This proves the quantification with N points. We have then proved that (Hy)
holds.
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In particular, we have proved by induction that (Hy) holds for all N.

Step 5.3 (Proof of Theorem 1.2): We let u; be as in the statement of the
Theorem 1.2. It follows from Proposition 3.1 that the hypothesis of (Hy;) holds in
the neighborhood of each of the points of Sy. As a consequence, we apply locally
(Hy)- It then follows that

N
Viet™s =Y 160,65,
i=1
weakly in the sense of measures when k& — +00. And the proof of Theorem 1.2 is
complete.
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