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Abstract

Let B be the unit ball of RN , N ≥ 3, and a, f : R → R be two smooth
functions. For ε > 0 small, the equation

∆u+ a(|x|)u = N(N − 2)f(|x|)u
N+2
N−2

−ε in B, on ∂B (1)

has a positive radially symmetrical solution uε. We describe the asymptotic
behaviour of (uε) as ε→ 0. We also recover existence results for the critical
equation.
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1 Introduction and statement of the results

Let B be the unit ball in RN , N ≥ 3, and a, f : R→ R two smooth functions. We
regard x 7→ a(|x|) and x 7→ f(|x|) as functions of the variable x ∈ RN . As easily
seen, these functions are locally Lipschitz. In particular, they are locally in C0,α

for all α ∈]0, 1[. In order to fix ideas, we suppose that f > 0 and that f(0) = 1.
Then we consider the following problem:

(I)

 ∆u+ a(|x|)u = N(N − 2)f(|x|)up in B

u > 0 in B, u = 0 on ∂B

where ∆ = −
∑

∂2

∂x2
i

is the Laplacian with the minus sign convention, and p =
N+2
N−2 is critical from the view point of Sobolev embeddings. We let H1

0 (B) be the
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standard Sobolev space, defined as the completion of D(B), the set of smooth
functions with compact support in B, with respect to the norm

‖u‖ =

√∫
B

|∇u|2dx .

In the sequel, we suppose that the operator u 7→ ∆u+a(|x|) is coercive on H1
0 (B).

This is the case when a > −λ1, where λ1 is the first eigenvalue of ∆ for the
Dirichlet problem.

Situations where (I) does not have a solution are in Pohozaev [Poh]. In
particular, (I) does not possess a solution if a ≡ 0 and f ≡ 1. However, as it is
subcritical from the view point of Sobolev embeddings, the problem

(Iε)

 ∆uε + a(|x|)uε = N(N − 2)f(|x|)up−εε in B

uε > 0 in B, uε = 0 on ∂B

has a solution uε ∈ C2(B) for all ε ∈]0, p− 1[. This solution can be assumed to be
minimizing and radially symmetrical (MRS), where uε is said to be MRS if uε is
radially symmetrical and∫

B

(
|∇uε|2 + a(|x|)u2

ε

)
dx(∫

B
f(|x|)up−ε+1

ε dx
) 2
p−ε+1

= inf
v∈D(B)R\{0}

∫
B

(
|∇v|2 + a(|x|)v2

)
dx(∫

B
f(|x|)|v|p−ε+1

dx
) 2
p−ε+1

where D(B)R denotes the set of smooth radially symmetrical functions with com-
pact support in B. The arguments required for the proof of this result are by now
classical. We refer to Hebey [Heb1], proposition 1, for the proof of this result.

On the one hand, we are concerned in this article with the existence of con-
ditions on a and f for (I) to have a solution. On the other hand, we are concerned
with the asymptotic behaviour of uε as ε → 0 when (I) does not have a solu-
tion. The existence of solutions for (I) has been studied by various authors. In
particular, when f ≡ 1 and a ≡ λ, λ ∈ R, Brézis and Nirenberg [BrNi] got that
(I) has a solution if and only if λ ∈]0, λ1[ when N ≥ 4, and λ ∈] 1

4λ1, λ1[ when
N = 3. Independently, asymptotic type studies were first developed by Atkinson
and Peletier [AtPe]. With arguments from ODE’s theory, and assuming that a ≡ 0
and f ≡ 1, they got that

lim
ε→0

εu2
ε(0) =

4Γ(N)

(N − 2)Γ(N2 )2
,

and that, for all x ∈ B\{0},

lim
ε→0

ε−1/2uε(x) =

√
N − 2Γ(N2 )

2
√

Γ(N)

(
1

|x|N−2
− 1

)
.
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Brézis and Peletier [BrPe] returned to this problem, but with arguments from
PDE’s theory, and they conjectured that a similar behaviour should occur in the
non radial case. This was proved to be true independently by Han [Han] and Rey
[Rey]. When a ≡ 0 and f is non-constant, our problem was studied by Hebey
[Heb2],[Heb4]. Existence results for (I) and the asymptotic behaviour of the uε’s
were given in these articles. A closely related problem is studied in Y.Y. Li [Li].

We generalize in the present work what was done in [Heb2]. In particular,
we do not assume anymore that a ≡ 0. As one may easily check, the linear term
au, and more precisely its negative part a−u, leads to serious difficulties. These
difficulties where overcome in [Rob1] under the assumption that the LN/2-norm of
the negative part a− of a is small. We prove here that this condition can in turn
be removed, the only condition to be required being that ∆ + a is coercive.

In what follows, we set

ka
def
= inf{l ≥ 0/a(l)(0) 6= 0}

kf
def
= inf{l ≥ 1/f (l)(0) 6= 0}

with the convention that ka =∞ (respectively kf =∞) if a(l)(0) = 0 for all l ≥ 0
(respectively f (l)(0) = 0 for all l ≥ 1). We denote by G the Green’s function of
the operator ∆ + a, so that G is such that

∆yG(x, y) + a(|y|)G(x, y) = δx

on B ×B minus its diagonal, and G(x, y) = 0 for y ∈ ∂B and x ∈ B. (As already
mentioned, ∆ + a is supposed to be coercive). If y 6∈ ∂B, G(x, y) > 0, while
(x, y) 7→ G(x, y) is symmetrical in (x, y). Moreover, G(x, 0) is radially symmetrical.
We let g(r) = G(x, 0) where r = |x|. This function is defined on ]0, 1]. If a ≡ 0,

g(r) =
1

(N − 2)ωN−1

(
1

rN−2
− 1

)
where ωN−1 denotes the volume of the standard sphere of RN . For k ∈ N and
q > 0, we let

Ik,q =

∫ ∞
0

rk

(1 + r2)
(N−2)q

2

dr

when this integral makes sense, and we let ωk be the volume of the standard sphere
of Rk+1. We also let

αk(N) =
(k + 1)(k + 2)Ik+N−1,2

(N − 2)2Ik+N+1,p+1
, α(N) =

I2N−3,p+1

(N − 3)!ω2
N−1

and

Φ(a) =

∫ 1

0

(
a(r) +

1

2
ra′(r)

)
g(r)2rN−1dr .
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As easily checked, Φ is defined as soon as ka > N −4. Our first result is concerned
with the existence of solutions to (I). This result generalizes previous results ob-
tained by Demengel and Hebey [DeHe] with another method.

Theorem 1 If we are in one of the following cases:

1. ka < N − 4,

(a) kf < ka + 2, and f (kf )(0) > 0

(b) kf = ka + 2, and αka(N)a(ka)(0) < f (ka+2)(0)

(c) kf > ka + 2, and a(ka)(0) < 0

2. ka = N − 4,

(a) kf < N − 2, and f (kf )(0) > 0

(b) kf ≥ N − 2, and a(ka)(0) < 0

3. ka > N − 4,

(a) kf < N − 2, and f (kf )(0) > 0

(b) kf ≥ N − 2, and g′(1)2 + 2Φ(a) < α(N)f (N−2)(0)

then (I) possesses a MRS solution, obtained as the limit of a subsequence of uε in
C2(B).

As already mentioned, there are situations in which the uε’s do not converge,
but develop a concentration. The concentration is characterized by one of the
following properties: a subsequence of (uε) which converges almost everywhere
converges to 0, or uε → 0 in Lq(B) as soon as q < p + 1. Such a situation occurs
when a ≡ 0 and f ≡ 1. This follows from Hopf’s maximum principle and the
Pohozaev identity applied to (I),

(N − 2)2

2

∫
B

|x|f ′(|x|)up+1dx−
∫
B

(
a(|x|) +

1

2
|x|a′(|x|)

)
u2dx =

1

2

∫
∂B

|∇u|2dσ .

Still according to this identity, the uε’s also develop a concentration when f is
decreasing and a + 1

2ra
′ ≥ 0. As a first step, the concentration is ruled by the

following classical result:

Theorem 2 If the uε’s develop a concentration, then

1. limε→0 uε = 0 in C2
loc(B\{0}) and limε→0 ||uε||∞ = +∞

2. limε→0 uε
p+1−ε = ωN

2N
δ0 in the sense of distributions

3. limε→0
uε(0)
||uε||∞ = 1
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where ||uε||∞ is the L∞-norm of uε.

Given k ∈ N, we now set

α
(1)
k,N =

2N+1(k + 2)ωN−1Ik+N−1,2

(N − 2)3k!ωN
, α

(2)
k,N =

2N+1ωN−1Ik+N−1,p+1

(N − 2)(k − 1)!ωN

and

α
(1)
N =

2N+2ωN−1

(N − 4)!(N − 2)
3
ωN

, α
(2)
N =

2N+1ω3
N−1

(N − 2)ωN
.

Generalizing the results of [AtPe], [BrPe], and [Heb2], the asymptotic behaviour
of the uε’s is ruled by the following result:

Theorem 3 If the uε’s develop a concentration, then

lim
ε→0

uε(0)uε(x) = (N − 2)ωN−1G(x, 0)

in C2
loc(B\{0}), and:

1. If ka < N − 4 and

(a) kf < ka + 2, then εuε(0)
2kf
N−2 → −α(2)

kf ,N
f (kf )(0)

(b) kf = ka + 2, then εuε(0)
2kf
N−2 → α

(1)
ka,N

a(ka)(0)− α(2)
ka+2,Nf

(ka+2)(0)

(c) kf > ka + 2, then εuε(0)
2(ka+2)
N−2 → α

(1)
ka,N

a(ka)(0)

2. If ka = N − 4 and

(a) kf < N − 2, then εuε(0)
2kf
N−2 → −α(2)

kf ,N
f (kf )(0)

(b) kf ≥ N − 2, then ε
uε(0)2

lnuε(0)
→ α

(1)
N a(ka)(0)

3. If ka > N − 4 and

(a) kf < N − 2, then εuε(0)
2kf
N−2 → −α(2)

kf ,N
f (kf )(0)

(b) kf = N−2, then εuε(0)2 → −α(2)
N−2,Nf

(N−2)(0)+α
(2)
N g′(1)2+2α

(2)
N Φ(a)

(c) kf > N − 2, then εuε(0)2 → α
(2)
N g′(1)2 + 2α

(2)
N Φ(a)

where α
(1)
k,N , α

(2)
k,N , α

(1)
N , α

(2)
N , are Φ(a) as above.

The following sections are devoted to the proofs of these three theorems.
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2 Elements from concentration theory

We let (uε) be a sequence of MRS solutions to (Iε). In what follows, we suppose
that

lim
ε→0

∫
B

(
|∇uε|2 + auε

2
)
dx(∫

B
fup+1−ε

ε dx
) 2
p+1−ε

=
N(N − 2)ω

2
N

N

4
. (2)

Note that the right hand side in this relation is the inverse of the square of the
best constant K(N, 2) for the Sobolev inequality corresponding to the embedding
of H1(RN ) in Lp+1(RN ). We say that x0 ∈ B is a concentration point of the uε’s
if for all δ > 0,

lim sup
ε→0

∫
B∩B(x0,δ)

f(|x|)up+1−ε
ε dx > 0 .

We suppose here that any subsequence of (uε) which converges almost everywhere
converges to 0. Then, the uε’s develop a concentration. Multiplying (Iε) by uε and
integrating by parts, we get that

lim
ε→0

∫
B

(
|∇uε|2 + auε

2
)
dx =

N(N − 2)ωN
2N

and

lim
ε→0

∫
B

fup+1−ε
ε dx =

ωN
2N

.

Since the operator ∆ + a is coercive, the sequence (uε) is bounded in H1(B).

Given x0 ∈ B and δ > 0, we let η ∈ C∞(RN ) be a cut-off function such that
0 ≤ η ≤ 1, η = 1 in B(x0, δ/2), and η = 0 in RN\B(x0, δ). Multiplying (Iε) by
η2uε

k, where k ≥ 1, we easily obtain that

4k

(k + 1)
2

∫
B

|∇(ηu
k+1
2

ε )|
2

dx− 2(k − 1)

(k + 1)
2

∫
B

η(∆η)uk+1
ε dx

− 2

k + 1

∫
B

|∇η|2uk+1
ε dx+

∫
B

aη2uk+1
ε dx = N(N − 2)

∫
B

f(|x|)η2uk+p−ε
ε dx .

The following result follows from this relation and our original assumption. It is
by now classical, and we refer to [Heb2] or [Heb3] for its proof.

Lemma 2.1 The following properties hold:

1. uε → 0 in Lq(B) for all 1 < q < p+ 1, in particular for q = 2

2. If x0 ∈ B is a concentration point, then for all δ > 0,

f(x0)
1− 2

N

(
lim sup
ε→0

∫
B∩B(x0,δ)

f(|x|)up+1−ε
ε dx

) 2
N

≥ ωN
2
N

4
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3. (uε) possesses one and only one concentration point, the point x0 = 0

4. limε→0 ||uε||L∞(B) = +∞

5. limε→0 uε = 0 in C2
loc(B\{0})

6. limε→0 uε
p+1−ε = ωN

2N
δ0 in the sense of distributions

In particular, if xε ∈ B is such that uε(xε) = ||uε||L∞(B), then limε→0 xε = 0.

Now we let µ
−N−2

2
ε = ||uε||L∞(B), and, for x ∈ Bε, we set

Vε(x) = µ
N−2

2
ε uε(xε + kεx)

where kε = µ
1−N−2

4 ε
ε and Bε = B

(
−xε
kε
, 1
kε

)
. Clearly, 0 ≤ Vε ≤ 1, Vε(0) = 1 and

∪Bε = RN . Moreover, Vε is such that

∆Vε(x) + k2
εa(xε + kεx)Vε(x) = N(N − 2)f(xε + kεx)Vε(x)

p−ε
(3)

where x ∈ Bε and a(x) = a(|x|), f(x) = f(|x|). An easy claim, see [Rob1] for
details, is that the Vε’s converge C2 to a function v on any compact subset, and
that  ∆v = N(N − 2)vp in RN

0 ≤ v ≤ 1 , v(0) = 1 .

By Caffarelli, Gidas and Spruck [CGS], it follows that

v(x) =

(
1

1 + |x|2

)N−2
2

.

Then we have the following result. We refer to [Rob1] for its proof.

Lemma 2.2 The two following properties hold:

1. limε→0 Vε = v in Lp+1
(
RN
)

2. limε→0 µ
ε
ε = 1

where µε, Vε, v are as above, and Vε is extended by 0 outside Bε.
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3 An asymptotic estimate

As in section 2, we assume that the uε’s develop a concentration. Our main goal
here is to establish the following fondamental estimate:

Proposition 1 For all x in B,

uε(x) ≤ A

(
µε

µε2 + |x− xε|2

)N−2
2

(4)

where A > 0 is a constant independent of x and ε.

Such an estimate was obtained by Han [Han] and Hebey [Heb2] when a ≡ 0,
and by [Rob1] under the assumption that ||a−||

L
N
2 (B)

is small enough. As already

mentioned, the linear part au, and more precisely the negative part a−u of au,
makes that we have to face a much more critical situation than in [Han] and [Heb2].
Several steps that we detail in this section are involved in the proof of this result.

3.1 A first estimate

As a first step in the proof of the proposition, we prove the following:

Lemma 3.1 Given (cε) a sequence of real numbers which has a limit as ε→ 0,

|x− xε|
N−2

2 +cεεuε(x) ≤ A (5)

for all ε > 0, and all x ∈ B, where A > 0 is a constant which does not depend on
ε and x. Moreover, for all R > 0, there exists ε(R) > 0 such that

∀x ∈ B, |x− xε| ≥ Rµε ⇒ |x− xε|
N−2

2 +cεεuε(x) ≤ ε(R)

where limR→+∞ ε(R) = 0.

Proof: We use arguments that were developed by Druet [Dru]. For x ∈ B,
we set

wε(x) = |x− xε|
N−2

2 +cεεuε(x)

and let yε be a point such that wε(yε) = ||wε||∞. We assume by contradiction that
wε(yε)→∞. Then yε → 0. We write

wε(yε) = |yε − xε|
N−2

2 +cεεuε(yε)

≤ |yε − xε|
N−2

2 +cεεuε(xε)

≤ |yε − xε|
N−2

2 +cεεµε
−(N−2

2 +cεε)µε
cεε .
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It follows that
|yε − xε|

µε
→ +∞ .

Let k′ε = uε(yε)
− 2
N−2 + ε

2 . Since uε(yε) → +∞, we get that k′ε → 0. For x ∈
B
(
− yεk′ε ,

1
k′ε

)
, we set

uε(x) = uε(yε)
−1
uε(yε + k′εx) .

As one easily checks,

∆uε(x) + k′ε
2
a(yε + k′εx)uε(x) = N(N − 2)f(yε + k′εx)ūε(x)

p−ε

for all x ∈ B
(
− yεk′ε ,

1
k′ε

)
. For ε small, 1 ≤ uε(yε) ≤ µ

−N−2
2

ε , and then uε(yε)
ε → 1.

Now, take x ∈ B(0, 2). For ε sufficiently small, B(0, 2) ⊂ B
(
− yεk′ε ,

1
k′ε

)
, and

|xε − yε − k′εx| ≥ |xε − yε| − |k′εx|

≥ |xε − yε|
(

1− 2
k′ε

|xε − yε|

)
≥ 1

2
|xε − yε|

since
k′ε

|xε−yε| → 0. Taking x ∈ B(0, 2),

uε(yε + k′εx) =
wε(yε + k′εx)

|xε − yε − k′εx|
N−2

2 +cεε

≤ 2
N−2

2 +cεε
wε(yε)

|xε − yε|
N−2

2 +cεε

= 2
N−2

2 +cεεuε(yε) .

As a consequence, ūε(x) ≤ 2
N
2 for ε small and all x ∈ B(0, 2). Independently,∫

B(0,2)

ūp+1
ε dx = uε(yε)

−εN2
∫
B(yε,2k′ε)

up+1
ε dx

while
B(yε, 2k

′
ε) ∩B(xε, Rµε) = ∅

for all R > 0, as soon as ε is small enough. From lemma 2.2, we easily get that∫
B(xε,Rµε)

c

up+1
ε dx→

∫
B(0,R)c

vp+1dx .

It follows that for all R > 0,

lim sup

∫
B(0,2)

ūp+1
ε dx ≤

∫
B(0,R)c

vp+1dx
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and then ∫
B(0,2)

ūp+1
ε dx→ 0 .

In other words, ūε → 0 in Lp+1 (B(0, 2)), and (ūε) is bounded. Coming back to
the equation satisfied by ūε, and by standard elliptic theory, it follows that ūε → 0
in C0 (B(0, 1)), a contradiction with the relation ūε(0) = 1. This ends the proof of
the first part of the lemma.

To prove the second part of the lemma, we assume that there exists R0, ε0 > 0
such that

sup
|x−xε|≥Rµε

wε ≥ ε0

for all R > R0. Taking a smaller ball than B(0, 2), one obtains the result following
the preceding proof, and the lemma is proved. �

Note that one of the consequences of lemma 3.1 is that Vε(x) ≤ A|x|−N−2
2

for all x ∈ Bε\{0}.

3.2 An estimate for xε

We prove in this subsection the following result:

Lemma 3.2 |xε| = o(kε) .

Proof: Since uε is radially symmetrical,
∫
B
xiuε

kdx = 0 for all i = 1, . . . , N
and all k ∈ N. Noting that∫

B

xiuε
kdx =

kNε

µεk
N−2

2

∫
Bε

(xiε + kεz
i)V kε dz

this leads to
xiε
kε

∫
Bε

Vε
kdz +

∫
Bε

ziVε
kdz = 0 .

By lemma 3.1, Vε(x) ≤ A|x|−N−2
2 for all x ∈ Bε\{0}. Choosing k such that k >

2(N+1)
N−2 , and since v is radially symmetrical, we get with Lebesgue’s dominated

convergence theorem that∫
Bε

Vε
kdz →

∫
RN

vkdz > 0∫
Bε

ziVε
kdz →

∫
RN

zivkdz = 0 .

It follows that xiε = o(kε) for all i, a relation from which the lemma easily follows.
�
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3.3 A second estimate

We let vε be defined by

vε(x) = µ
N−2

2
ε uε(kεx) .

Clearly, vε is radially symmetrical. A priori, and contrary to Vε, vε(0) does not
equal 1. On the other hand, writing vε(x) = Vε(x − xε

kε
), and according to lemma

3.2, we see that vε(0)→ 1. In particular, this proves the third part of theorem 2:

Lemma 3.3 limε→0
uε(0)
||uε||∞

= 1.

More generally, vε → v in C2(K) for all compact K in RN , where vε is

extended by 0 outside B
(

0, 1
kε

)
. Moreover, vε satisfies in B

(
0, 1

kε

)
the equation

∆vε + k2
εa(kεx)vε = N(N − 2)f(kεx)vp−εε .

As easily seen, Vε has the same properties than vε. In particular, vε(x) ≤ A|x|−N−2
2

for all x in B
(

0, 1
kε

)
\{0}. We prove here the following result:

Lemma 3.4 For all ν ∈]0, N − 2[, there exists C(ν) > 0 such that:

|x|n−2−νµ
−N−2

2 +ν
ε uε(x) ≤ C(ν), ∀x ∈ B (6)

in other words, ∀ν ∈]0, N − 2[, there exists C(ν) > 0 such that:

vε(x) ≤ C(ν)

|x|N−2−ν , ∀x ∈ B
(

0,
1

kε

)
\{0} .

In particular,
∫
RN v

p−ε
ε dx is bounded if we take ν ≤ 2

p .

Proof: We basically follow the proof of [DrRo]. It is clear that (6) is true on any
ball B(0, Rµε) when ε goes to 0. We prove the lemma by comparing uε with another
function throughout with a maximum principle. Choose ε0 > 0 and 0 < η < 1 and
set ã = a−ε0

1−η such that the operator u 7→ ∆u+ ãu is coercive on B. We denote by

G̃ the Green’s function for this operator with Dirichlet condition on the boundary.
We now let Lε be the operator

Lεu = ∆u+ au−N(N − 2)fup−1−ε
ε u .

Some computations lead to

LεG̃(0, x)1−η = G̃(0, x)1−η

(
ε0 −N(N − 2)fup−1−ε

ε + η(1− η)

(
|∇G̃|
G̃

)
(0, x)2

)
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for all x ∈ B\{0}. Standard properties of the Green’s function assert that there
exists C1 > 0, δ ∈]0, 1[ such that

|∇G̃|
G̃

(0, x) ≥ C1

|x|
, ∀x ∈ B(0, δ)\{0} .

Such a property, and the following ones, follows from the construction of the
Green’s function. A possible reference where such properties are proved in details
is Robert [Rob2]. We also refer to Aubin [Aub].

With lemma 3.1, we know that there exists ε(R) > 0 such that

|x|2up−1−ε
ε (x) ≤ ε(R), ∀|x| ≥ Rµε

with limR→+∞ ε(R) = 0. Then, on B(0, δ)\B(0, Rµε), we have

LεG̃(0, x)1−η ≥ G̃(0, x)1−η
(
ε0 −N(N − 2)f ε(R)

|x|2 + η(1− η)
C2

1

|x|2

)
≥
(
G̃(0, x)1−η

)
η(1−η)C2

1−N(N−2)||f ||∞ε(R)
|x|2 ≥ 0

with R large enough. Now, on B\B(0, δ),

LεG̃(0, x)1−η ≥ G̃(0, x)1−η
(
ε0 −N(N − 2)f ||uε||p−1−ε

L∞(B−B(0,δ))

)
.

Since uε → 0 in C0
loc(B − \{0}), we get

LεG̃(0, x)1−η ≥ 0 in B\B(0, δ) .

We finally obtain that

LεG̃(0, x)1−η ≥ 0 in B\B(0, Rµε) .

Now, there exists C2 > 0 and δ′ ∈]0, 1[ such that

G̃(0, x) ≥ C2

|x|N−2
, ∀x ∈ B(0, δ′)

if we set

Cε =
C1−η

2

R(N−2)(1−η)
µ
−N−2

2 +(N−2)η
ε ,

we get
LεCεG̃(0, x)1−η ≥ Lεuε in B\B(0, Rµε)

CεG̃(0, x)1−η ≥ uε on ∂(B\B(0, Rµε)) .

Since there exists C3 > 0 such that |x|n−2G̃(0, x) ≤ C3, ∀x ∈ B\{0}, we obtain
the lemma with ν = (N − 2)η if

CεG̃(0, x)1−η ≥ uε in B\B(0, Rµε).

12



To obtain this inequality, we just have to prove the following maximum principle
for Lε on Ωε = B\B(0, Rµε): if ϕ ∈ C2(Ωε) ∩ C0(Ωε) verifies Lεϕ ≥ 0 in Ωε and
ϕ ≥ 0 on ∂Ωε, then ϕ ≥ 0 in Ωε. We now prove that Lε is coercive on Ωε, which
will prove the maximum principle we need. Since ∆ + a is coercive on B, we know
that there exists λ > 0 such that∫

B

|∇ϕ|2 dx+

∫
B

aϕ2 dx ≥ λ ||ϕ||2Lp+1(B), ∀ϕ ∈ D(B) .

Now we take ϕ ∈ D(Ωε). We get∫
Ωε

(Lεϕ)ϕdx ≥
∫
B

|∇ϕ|2 dx+

∫
B

aϕ2 dx

−N(N − 2)||f ||∞
∫
B\B(0,Rµε)

up−1−ε
ε ϕ2 dx .

But ∫
B\B(0,Rµε)

up−1−ε
ε ϕ2 dx

≤

(∫
B\B(0,Rµε)

up+1−ε
ε dx

) p−1−ε
p+1−ε (∫

B

|ϕ|p+1−ε dx

) 2
p+1−ε

.

Since
∫
B
up+1−ε
ε dx = 1,

∫
B(0,Rµε)

up+1−ε
ε dx∫

B(0,R)
vp+1−ε
ε dx

→ 1 and vε → v in C0
loc(RN ), we obtain

that there exists ε0(R) > 0 such that ε0(R)→ 0 when R goes to +∞ and∫
B\B(0,Rµε)

up−1−ε
ε ϕ2 dx ≤ ε0(R)||ϕ||2Lp+1(B) .

Then ∫
Ωε

(Lεϕ)ϕdx ≥ (λ− ε0(R))||ϕ||2Lp+1(B) .

Choosing R large enough, we then obtain that the operator Lε is coercive on Ωε.
Consequently, it verifies the maximum principle stated above, and the lemma is
proved. �

3.4 Proof of proposition 1

We now prove proposition 1. As one may easily check, estimate (3) is equivalent
to the existence of a constant A such that for all ε > 0 and all x ∈ B,

|x|N−2uε(xε)uε(x) ≤ A . (7)

13



(Here, we use the fact that xε = o(kε)). Let yε ∈ B be a point where x 7→
|x|N−2uε(x) achieves its maximum. In order to prove (7), we assume by contra-
diction that |x|N−2uε(xε)uε(x) is unbounded. Up to a subsequence, we get that

|yε|N−2uε(xε)uε(yε)→ +∞ . (8)

Without loss of generality, up to another subsequence, we can assume that yε → y0

in B. As a first remark, we claim that |y0| < 1. We prove this claim by contradic-
tion, and assume that |y0| = 1. We let

zε(x) =
uε(x)

uε(yε)
.

The equation satisfied in B by zε is

∆zε + a(x)zε = N(N − 2)f(x)uε(yε)
p−1−εzp−εε

and zε is radially symmetrical. Since |x|N−2uε(x) achieves its maximum at x = yε,
we get that

zε(x) ≤ |yε|
N−2

|x|N−2

and zε is bounded on any compact subset of B\{0}. By point 5. of lemma 2.1,
uε(yε) → 0, since if |y0| = 1, then y0 6= 0. By standard elliptic theory, see for
instance [GT], it follows that (zε) is actually C1,α-bounded in any compact subset
of B\{0}. In particular, since y0 ∈ ∂B and zε = 0 on ∂B,

|zε(yε)| = |zε(yε)− zε(y0)| ≤ A|yε − y0|

where A > 0 does not depend on ε. A contradiction, since zε(yε) = 1. This proves
the above claim.

Now we set yε = kεx̂ε. As another remark, we claim that |x̂ε| → +∞. If not,
then, up to another subsequence,

|yε|N−2uε(xε)uε(yε) = kN−2
ε |x̂ε|N−2µ

−N−2
2

ε uε(kεx̂ε)

≈ |x̂ε|N−2µ
N−2

2
ε uε(kεx̂ε)

= |x̂ε|N−2vε(x̂ε)

which is bounded since vε uniformly converges on any compact subset of RN . This
proves the claim.

Now, let G be the Green’s function for the operator ∆ + a, as defined in the
introduction. In addition to be radially symmetrical, one of its classical properties
is that for all compact subset K ⊂ B, there exists a constant A > 0 such that for
all x ∈ K and all y ∈ B,

|y − x|N−2G(x, y) ≤ A .

14



Then, we write

uε(yε) =

∫
B

G(yε, x̃) (∆uε(x̃) + a(x̃)uε(x̃)) dx̃ .

From the equation satisfied by uε, the equivalence of kε and µε, and the change of
variable x̃ = kεx, it follows that

uε(yε) ≈ N(N − 2)µ
N−2

2
ε

∫
B(0, 1

kε
)

f(kεx)vp−εε (x)G(yε, kεx)dx

and then that

uε(xε)uε(yε) ≤ A
∫
B(0, 1

kε
)

G(yε, kεx)vp−εε (x)dx

where A does not depend on ε. Let us now define

Ω1
ε =

{
x ∈ B

(
0,

1

kε

)
/ |yε − kεx| ≥

1

2
|yε|
}
,

Ω2
ε =

{
x ∈ B

(
0,

1

kε

)
/ |yε − kεx| <

1

2
|yε|
}

.

We write∫
B(0, 1

kε
)

G(yε, kεx)vp−εε (x)dx =

∫
Ω1
ε

G(yε, kεx)vp−εε (x)dx

+

∫
Ω2
ε

G(yε, kεx)vp−εε (x)dx .

According to the above mentioned property of the Green’s function, and since
|y0| < 1 so that the yε’s are in a compact subset of B,∫

Ω1
ε

G(yε, kεx)vp−εε (x)dx ≤ A

∫
Ω1
ε

vp−εε (x)

|yε − kεx|N−2
dx

≤ 2N−2

|yε|N−2
A

∫
B(0, 1

kε
)

vp−εε (x)dx .

Together with the remark we made at the end of lemma 6, we get that∫
Ω1
ε

G(yε, kεx)vp−εε (x)dx ≤ A

|yε|N−2
.

Similarly, ∫
Ω2
ε

G(yε, kεx)vp−εε (x)dx ≤ A
∫

Ω2
ε

vp−εε (x)

|yε − kεx|N−2
dx

15



and if Ωε =
{
x / |x| < 1

2 |yε|
}

, then, with the change of variable y = kεx− yε,∫
Ω2
ε

G(yε, kεx)vp−εε (x)dx ≤ A

kNε

∫
Ωε

1

|y|N−2
vp−εε

(
y + yε
kε

)
dy .

Since |y+yε
kε
| ≥ 1

2 |x̂ε|, and by lemma 6,

1

kNε

∫
Ωε

1

|y|N−2
vp−εε

(
y + yε
kε

)
dy ≤ A

|x̂ε|(N−2−ν)(p−ε)kNε

∫
Ωε

1

|y|N−2
dy

≤ A

|x̂ε|(N−2−ν)(p−ε)kNε

∫ 1
2 |yε|

0

tdt

≤ A|yε|2

|x̂ε|(N−2−ν)(p−ε)kNε
.

Since kε ≤ |yε| ≤ 1, we get with lemma 2.2 that |yε|ε → 1. It follows that |x̂ε|ε → 1,
and we can write that

|yε|2

|x̂ε|(N−2−ν)(p−ε)kNε
≤ A

|x̂ε|2−pν |yε|N−2
.

Choosing ν such that ν < 2
p , we obtain that∫

Ω2
ε

G(yε, kεx)vp−εε (x)dx ≤ o(1)

|yε|N−2
.

It follows that

|yε|N−2uε(xε)uε(yε) ≤ A|yε|N−2

∫
B(0, 1

kε
)

G(yε, kεx)vp−εε (x)dx

≤ A|yε|N−2

∫
Ω1
ε

G(yε, kεx)vp−εε (x)dx

+A|yε|N−2

∫
Ω2
ε

G(yε, kεx)vp−εε (x)dx

≤ A+ o(1)

which contradicts (8). It follows that (7) is true, and then (3) is also true. The
proposition is proved. �

Now that proposition 1 is proved, we go on with the study of the asymptotic
behaviour of the uε’s. This is the aim of the following section, where the first
assertion in theorem 3 is proved.
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4 Convergence to the Green’s function

Here again, we assume that the uε’s develop a concentration. First, we recall a
result obtained by Brézis and Peletier [BrPe]:

Lemma 4.1 Let u be a C2 solution of{
∆u = f in B
u = 0 on ∂B

and let ω be a neighbourhood of ∂B. Then

||u||W 1,q(B) + ||∇u||C0,β(ω′) ≤ A
(
||f ||L1(B) + ||f ||L∞(ω)

)
for all q < N

N−1 , all 0 < β < 1, and all ω′ ⊂⊂ ω.

Note that it follows from this result that∫
∂B

|∇uε|2dσ = O(µε
N−2) .

By lemma 4.1 we indeed just need to get estimates for the L1-norm in B and the
L∞-norm in a neighbourhood of ∂B, of the function gε given by

gε(x) = N(N − 2)f(x)uε(x)p−ε − a(x)uε(x) .

As easily seen, these estimates follow from proposition 1.

Now we prove the first assertion in theorem 3. This is the aim of the follow-
ing lemma where, as in the introduction, G denotes the Green’s function of the
operator ∆ + a.

Lemma 4.2 limε→0 uε(xε)uε(x) = (N − 2)ωN−1G(x, 0) in C2
loc(B\{0}).

Proof: We use the same method as in the proof of proposition 1. See [Rob1]
for details.

5 Convergence to a solution

In this section, we consider a sequence of functions (ũε) such that
∆ũε + aũε = N(N − 2)λεf(x)ũε

p−ε in B

ũε > 0 in B and ũε = 0 on ∂B

N(N − 2)
∫
B
f(x)ũε

p+1−εdx = 1

17



where

λε = inf
v∈D(B)R\{0}

∫
B

(
|∇v|2 + av2

)
dx(

N(N − 2)
∫
B
f |v|p+1−εdx

) 2
p+1−ε

.

We set

λ = inf
v∈D(B)R\{0}

∫
B

(
|∇v|2 + av2

)
dx(

N(N − 2)
∫
B
f |v|p+1dx

) 2
p+1

.

The following results are by now classical. We therefore restrict ourselves to brief
comments on their proofs. For details, see for instance [Heb2].

Lemma 5.1 limε→0 λε = λ .

Proof: Let u ∈ D(B)R\{0}. By Hölder’s inequality,(
N(N − 2)

∫
B

f |u|p+1−εdx

) 2
p+1−ε

≤ V ol(B)
2ε

(p+1)(p+1−ε)

(
N(N − 2)

∫
B

f |u|p+1dx

) 2
p+1

.

It follows that λ ≤ lim infε→0 λε. Conversely, let α > 0 be any positive real number,
and let u ∈ D(B)R\{0} be such that∫

B

(
|∇u|2 + au2

)
dx(

N(N − 2)
∫
B
f |u|p+1dx

) 2
p+1

< λ+ α .

Clearly, when ε→ 0,∫
B

(
|∇u|2 + au2

)
dx(

N(N − 2)
∫
B
f |u|p+1−εdx

) 2
p+1−ε

−→
∫
B

(
|∇u|2 + au2

)
dx(

N(N − 2)
∫
B
f |u|p+1dx

) 2
p+1

.

We then obtain that lim supε→0 λε ≤ λ + α. Since α > 0 is arbitrary, the result
follows. �

We now state the following result.

Lemma 5.2 : Assume that a subsequence of (ũε) converges almost everywhere to
a function ũ 6= 0. Then:

1. ũ is a MRS solution of the problem

(?)

{
∆u+ a(x)u = N(N − 2)λf(x)up in B
u > 0 in B , and u = 0 on ∂B

2. limε→0 ũε = ũ in C2(B).

18



Proof: Point 1 easily follows from classical arguments of variational theory,
like the ones developed, for example, in the study of the Yamabe problem. We first
prove that ũ is a solution of (?), and then that ũ is minimizing. Point 2 follows
from classical arguments of elliptic theory. �

At last, we state the following result.

Lemma 5.3 We always have λ ≤ 1
4 (N(N − 2)ωN )

2
N , and if this inequality is

strict, then, up to a subsequence, ũε converges almost everywhere to a function
ũ 6= 0. Together with lemma 5.2, the convergence is then C2, and ũ is a MRS
solution of problem (?).

Proof: Here again, the result follows from classical variational arguments.
We obtain the first assertion with the function zε given by

zε(x) =
φ(|x|)(

ε2 + |x|2
)N−2

2

where φ is a cut-off function that equals 1 around 0. As ε→ 0, we get indeed that∫
B

(
|∇zε|2 + az2

ε

)
dx(

N(N − 2)
∫
B
f |zε|p+1dx

) 2
p+1

−→ (N(N − 2)ωN )
2
N

4
.

For the second assertion, the energy associated to the problem goes under the
critical energy. The fact that the ũε’s do not develop a concentration under such
an assumption is by now classical. �

6 Proof of the theorems

For length reasons, some details are omited in this section. They can be found in
[Rob1]. Theorem 2 immediately follows from what we said in section 2, and from
lemma 3.3. The first assertion of theorem 3 was proved in section 4. Only theorem
1 and points 1, 2 and 3 of theorem 3 remain to be proved. Everything here comes
from the estimate obtained in proposition 1, and from the Pohozaev identity [Poh].
When applied to the functions uε, this identity gives

N(N − 2)
2
ε

2(p+ 1− ε)

∫
B

f(|x|)up+1−ε
ε dx︸ ︷︷ ︸

Iε

+
N(N − 2)

p+ 1− ε

∫
B

|x|f ′(|x|)up+1−ε
ε dx︸ ︷︷ ︸

IIε

−
∫
B

(
a(|x|) +

1

2
|x|a′(|x|)

)
uε

2dx︸ ︷︷ ︸
IIIε

=
1

2

∫
∂B

|∇uε|2dσ︸ ︷︷ ︸
IVε

.
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In what follows, we assume that the uε’s develop a concentration. With the nota-

tions of section 5, this gives that λ = 1
4 (N(N − 2)ωN )

2
N . In particular, we recover

the results of sections 2, 3, and 4. We estimate in what follows the terms Iε, IIε,
IIIε, and IVε of the Pohozaev identity.

The terms Iε and IVε are the easiest to estimate. We straightforwardly obtain
that

Iε =
(N − 2)3ωN

2N+2
(1 + o(1)) ε

and it follows from lemma 4.2 that

IVε =
1

2
(N − 2)2ω3

N−1g
′(1)2µN−2

ε + o
(
µN−2
ε

)
where g is as in the introduction.

Concerning the term IIε, we write that

f ′(r) =
f (kf )(0)

(kf − 1)!
rkf−1 +O(rkf ) .

Then,∫
B

|x|f ′(|x|)up+1−ε
ε dx =

f (kf )(0)

(kf − 1)!

∫
B

|x|kfup+1−ε
ε dx

+O

(∫
B

|x|kf+1up+1−ε
ε dx

)
=

f (kf )(0)

(kf − 1)!
(1 + o(1))µ

kf
ε

∫
B(0, 1

kε
)

|x|kf vp+1−ε
ε dx︸ ︷︷ ︸

II1ε

+O

(
µ
kf+1
ε

∫
B(0, 1

kε
)

|x|kf+1vp+1−ε
ε dx︸ ︷︷ ︸

II2ε

)
.

If kf < N , and together with proposition 1, II1
ε converges by the dominated

convergence theorem. Watching closely what occurs, we get that

IIε =
(N − 2)2

2

f (kf )(0)

(kf − 1)!
µ
kf
ε

∫
RN
|x|kf vp+1dx+ o

(
µ
kf
ε

)
if kf ≤ N − 2, while IIε = o

(
µN−2
ε

)
if kf > N − 2.
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We are finally concerned with the term IIIε. The study there is more intri-
cate, and we separate the cases ka < N − 4, ka > N − 4, and ka = N − 4. We first
write that

a(r) =
a(ka)(0)

ka!
rka +O

(
rka+1

)
,

a′(r) =
a(ka)(0)

(ka − 1)!
rka−1 +O

(
rka
)
.

If ka < N − 4, we obtain with the same kind of arguments than the ones used
above that

IIIε =
a(ka)(0)

ka!

(
1 +

ka
2

)
µka+2
ε

∫
RN
|x|kav2dx+ o

(
µka+2
ε

)
.

We get point 1 of theorem 3 with what has been said before using the Pohozaev
identity.

We now assume that ka > N − 4. Integrating separately on B\B(0, δ) and
B(0, δ) with 0 < δ < 1 small, we obtain

1

µN−2
ε

∫
B

(
a(|x|) +

1

2
|x|a′(|x|)

)
u2
ε(x)dx

= (N − 2)2ω2
N−1

∫
B

(
a(|x|) +

1

2
|x|a′(|x|)

)
G(x, 0)2dx+ o(1)

and then that

IIIε = (N − 2)2ω3
N−1Φ(a)µN−2

ε + o
(
µN−2
ε

)
.

Using the Pohozaev identity, we then obtain points 3(a) and 3(b) and 3(c) of
theorem 3.

At last, we assume that ka = N − 4. By proposition 1, we easily obtain that∫
B

(
a(|x|) +

1

2
|x|a′(|x|)

)
u2
εdx =

a(ka)(0)

ka!

(
1 +

ka
2

)
µka+2
ε

∫
RN
|x|kav2

εdx

+O
(
µka+2
ε

)
=

(N − 2)a(N−4)(0)

2(N − 4)!
µN−2
ε

∫
RN
|x|N−4v2

εdx

+O
(
µN−2
ε

)
and we are now left with getting an estimate for the term

III1
ε =

∫
RN
|x|N−4v2

εdx .
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Let us consider δ ∈]0, 1[ to be chosen later. By proposition 1,

III1
ε =

∫
B(0, δkε )

|x|N−4v2
εdx+O (1) .

Let (x̂ε) be a sequence of points such that |x̂ε| ≤ δ
kε

. We set

Rε =
vε(x̂ε)

v(x̂ε)
.

If |x̂ε| is bounded, then Rε → 1 since vε → v uniformly on every compact subset
of RN . Otherwise, |x̂ε| → +∞, and, up to a subsequence, two cases occur: Either
there exists δ0 > 0 such that kε|x̂ε| → δ0, or kε|x̂ε| → 0. In the first case, we set
yε = kεx̂ε. Then |yε| ≤ δ and

Rε ≈ |yε|N−2uε(xε)uε(yε) .

It follows from lemma 4.2 that

Rε → (N − 2)ωN−1δ
N−2
0 g(δ0) .

In the second case, where |x̂ε| → +∞ and kε|x̂ε| → 0, integrating on two domains
like in section 3, we obtain Rε → 1. Summarizing: either kε|x̂ε| → 0, and then
Rε → 1, or kε|x̂ε| → δ0, where δ0 > 0, and then Rε → (N − 2)ωN−1δ

N−2
0 g(δ0). Let

α ∈]0, 1[ be given. We note that

lim
δ0→0+

(N − 2)ωN−1δ
N−2
0 g(δ0) = 1

and we choose δ > 0 such that for all δ0 ∈]0, δ[,

1− α ≤ (N − 2)ωN−1δ
N−2
0 g(δ0) ≤ 1 + α .

Then,
1− α ≤ Rε ≤ 1 + α .

Therefore, as easily checked,

1

| ln kε|
III1

ε → ωN−1

and we thus proved that

IIIε =
(N − 2)ωN−1a

(N−4)(0)

2(N − 4)!
µN−2
ε | lnµε|+ o

(
µN−2
ε | ln kε|

)
.

Taking the Pohozaev identity again, we obtain the required estimate.
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We are now left with the proof of theorem 1. According to the results of
section 5, it suffices to show that, under the assumptions of this theorem, at least
one subsequence of (uε) converges almost everywhere to a nonzero function. If not,
the uε’s develop a concentration and we are back to one of the situations described
in theorem 3. Noting the assumptions of theorem 1 are those that make the limits
of the different points of theorem 3 negative, theorem 1 is proved. �

Acknowledgement: The author whishes to express his gratitude to Emmanuel
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[CGS] Caffarelli L.A.; Gidas, B.; Spruck, J. Asymptotic symmetry and local be-
havior of semilinear elliptic equations with Sobolev growth. Comm. Pure
Appl. Math. 42, (1989), 271-297.

[DeHe] Demengel, F.; Hebey, E. On some nonlinear equations involving the p-
laplacian with critical Sobolev growth. Adv. Differential Equations, 3, (1998),
533-574.

[Dru] Druet, O. The best constants problem in Sobolev inequalities. Math. Ann.
314, (1999), 327-346.

[DrRo] Druet, O.; Robert, F. Asymptotic profile and blow-up estimates on com-
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