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1 Introduction and statement of the results

Let B be the unit ball in RN , N ≥ 3, and a, f : R → R two smooth functions. We regard
x 7→ a(|x|) and x 7→ f(|x|) as functions of the variable x ∈ RN . As easily seen, these functions
are locally Lipschitz. In particular, they are locally in C0,α for all α ∈]0, 1[. In order to fix
ideas, we suppose that f > 0 and that f(0) = 1. Then we consider the following problem:

(I)


∆u+ a(|x|)u = N(N − 2)f(|x|)up in B

u > 0 in B, u = 0 on ∂B

where ∆ = −
∑

∂2

∂x2i
is the Laplacian with the minus sign convention, and p = N+2

N−2
is critical

from the view point of Sobolev embeddings. We let H1
0 (B) be the standard Sobolev space,

defined as the completion of D(B), the set of smooth functions with compact support in B,
with respect to the norm

‖u‖ =

√∫
B

|∇u|2dx

In the sequel, we suppose that the operator u 7→ ∆u+ a(|x|) is coercive on H1
0 (B). This is the

case when a > −λ1, where λ1 is the first eigenvalue of ∆ for the Dirichlet problem.

Situations where (I) does not have a solution are in Pohozaev [Poh]. In particular, (I) does
not possess a solution if a ≡ 0 and f ≡ 1. However, as it is subcritical from the view point of
Sobolev embeddings, the problem

(Iε)


∆uε + a(|x|)uε = N(N − 2)f(|x|)up−εε in B

uε > 0 in B, uε = 0 on ∂B

has a solution uε ∈ C2(B) for all ε ∈]0, p− 1[. This solution can be assumed to be minimizing
and radially symmetrical (MRS), where uε is said to be MRS if uε is radially symmetrical and∫

B
(|∇uε|2 + a(|x|)u2

ε) dx(∫
B
f(|x|)up−ε+1

ε dx
) 2
p−ε+1

= inf
v∈D(B)R\{0}

∫
B

(|∇v|2 + a(|x|)v2) dx(∫
B
f(|x|)|v|p−ε+1dx

) 2
p−ε+1
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where D(B)R denotes the set of smooth radially symmetrical functions with compact support
in B. The arguments required for the proof of this result are by now classical.

On the one hand, we are concerned in this article with the existence of conditions on a and f
for (I) to have a solution. On the other hand, we are concerned with the asymptotic behaviour
of uε as ε → 0 when (I) does not have a solution. The existence of solutions for (I) has been
studied by various authors. In particular, when f ≡ 1 and a ≡ λ, λ ∈ R, Brézis and Nirenberg
[BrNi] got that (I) has a solution if and only if λ ∈]0, λ1[ when N ≥ 4, and λ ∈]1

4
λ1, λ1[ when

N = 3. Independently, asymptotic type studies were first developed by Atkinson and Peletier
[AtPe]. With arguments from ODE’s theory, and assuming that a ≡ 0 and f ≡ 1, they got
that

lim
ε→0

εu2
ε(0) =

4Γ(N)

(N − 2)Γ(N
2

)2
,

and that, for all x ∈ B\{0},

lim
ε→0

ε−1/2uε(x) =

√
N − 2Γ(N

2
)

2
√

Γ(N)

(
1

|x|N−2
− 1

)
Brézis and Peletier [BrPe] returned to this problem, but with arguments from PDE’s theory,
and they conjectured that a similar behaviour should occur in the non radial case. This was
proved to be the true independently by Han [Han] and Rey [Rey]. When a ≡ 0 and f is non-
constant, our problem was studied by Hebey [Heb1],[Heb4]. Existence results for (I) and the
asymptotic behaviour of the uε’s were given in these articles. An approach to the case where the
Laplacian is the p−Laplace operator is in Garc̀ıa Azorero and Peral Alonso [GP]. We generalize
in the present work what was done in [Heb1]. In particular, we do not assume anymore that
a ≡ 0. As one may easily check, the linear term au, and more precisely its negative part a−u,
leads to serious difficulties. We overcome these difficulties by assuming that a− is small in a
sense to be precised below.

In what follows, we set
ka

def
= inf{l ≥ 0/a(l)(0) 6= 0}

kf
def
= inf{l ≥ 1/f (l)(0) 6= 0}

with the convention that ka =∞ (respectively kf =∞) if a(l)(0) = 0 for all l ≥ 0 (respectively
f (l)(0) = 0 for all l ≥ 1). We denote by G the Green’s function of the operator ∆ + a, so that
G is such that

∆yG(x, y) + a(|y|)G(x, y) = δx

on B × B minus its diagonal, and G(x, y) = 0 for y ∈ ∂B and x ∈ B. (As already mentioned,
∆+a is supposed to be coercive). If y 6∈ ∂B, G(x, y) > 0, while (x, y) 7→ G(x, y) is symmetrical
in (x, y). Moreover, G(x, 0) is radially symmetrical. We let g(r) = G(x, 0) where r = |x|. This
function is defined on ]0, 1]. If a ≡ 0,

g(r) =
1

(N − 2)ωN−1

(
1

rN−2
− 1

)
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where ωN−1 denotes the volume of the standard sphere of RN . For k ∈ N and q > 0, we let

Ik,q =

∫ ∞
0

rk

(1 + r2)
(N−2)q

2

dr

when this integral makes sense, and we let ωk be the volume of the standard sphere of Rk+1.
We also let

αk(N) =
(k + 1)(k + 2)Ik+N−1,2

(N − 2)2Ik+N+1,p+1

, α(N) =
I2N−3,p+1

(N − 3)!ω2
N−1

and

Φ(a) =

∫ 1

0

(
a(r) +

1

2
ra′(r)

)
g(r)2rN−1dr

As easily checked, Φ is defined as soon as ka > N − 4. Our first result is concerned with the
existence of solutions to (I). This result generalizes previous results obtained by Demengel and
Hebey [DeHe] with another method.

Theorem 1 There exists γ = γ(N), γ > 0 depending only on N , such that if ||a−||
L
N
2 (B)

< γ,

and if we are in one of the following cases:

1. ka < N − 4,

(a) kf < ka + 2, and f (kf )(0) > 0

(b) kf = ka + 2, and αka(N)a(ka)(0) < f (ka+2)(0)

(c) kf > ka + 2, and a(ka)(0) < 0

2. ka = N − 4,

(a) kf < N − 2, and f (kf )(0) > 0

(b) kf ≥ N − 2, and a(ka)(0) < 0

3. ka > N − 4,

(a) kf < N − 2, and f (kf )(0) > 0

(b) kf ≥ N − 2, and g′(1)2 + 2Φ(a) < α(N)f (N−2)(0)

then (I) possesses a MRS solution, obtained as the limit of a subsequence of uε in C2(B).

As already mentioned, there are situations in which the uε’s do not converge, but develop
a concentration. The concentration is characterized by one of the following properties: a
subsequence of (uε) which converges almost everywhere converges to 0, or uε → 0 in Lq(B) as
soon as q < p + 1. Such a situation occurs when a ≡ 0 and f ≡ 1. This follows from Hopf’s
maximum principle and the Pohozaev identity applied to (I),

(N − 2)2

2

∫
B

|x|f ′(|x|)up+1dx−
∫
B

(
a(|x|) +

1

2
|x|a′(|x|)

)
u2dx =

1

2

∫
∂B

|∇u|2dσ

Still according to this identity, the uε’s also develop a concentration when f is decreasing and
a+ 1

2
ra′ ≥ 0. As a first step, the concentration is ruled by the following classical result:
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Theorem 2 If the uε’s develop a concentration, then

1. limε→0 uε = 0 in C2
loc(B\{0}) and limε→0 ||uε||∞ = +∞

2. limε→0 uε
p+1−ε = ωN

2N
δ0 in the sense of distributions

3. limε→0
uε(0)
||uε||∞ = 1

where ||uε||∞ is the L∞-norm of uε.

Given k ∈ N, we now set

α
(1)
k,N =

2N+1(k + 2)ωN−1Ik+N−1,2

(N − 2)3k!ωN
, α

(2)
k,N =

2N+1ωN−1Ik+N−1,p+1

(N − 2)(k − 1)!ωN

and

α
(1)
N =

2N+2ωN−1

(N − 4)!(N − 2)3ωN
, α

(2)
N =

2N+1ω3
N−1

(N − 2)ωN

Generalizing the results of [AtPe], [BrPe], and [Heb1], the asymptotic behaviour of the uε’s is
ruled by the following result:

Theorem 3 There exists γ = γ(N), γ > 0 depending only on N , such that if ||a−||
L
N
2 (B)

< γ,

and if the uε’s develop a concentration, then

lim
ε→0

uε(0)uε(x) = (N − 2)ωN−1G(x, 0)

in C2
loc(B\{0}), and:

1. If ka < N − 4 and

(a) kf < ka + 2, then εuε(0)
2kf
N−2 → −α(2)

kf ,N
f (kf )(0)

(b) kf = ka + 2, then εuε(0)
2kf
N−2 → α

(1)
ka,N

a(ka)(0)− α(2)
ka+2,Nf

(ka+2)(0)

(c) kf > ka + 2, then εuε(0)
2(ka+2)
N−2 → α

(1)
ka,N

a(ka)(0)

2. If ka = N − 4 and

(a) kf < N − 2, then εuε(0)
2kf
N−2 → −α(2)

kf ,N
f (kf )(0)

(b) kf ≥ N − 2, then ε
uε(0)2

lnuε(0)
→ α

(1)
N a(ka)(0)

3. If ka > N − 4 and

(a) kf < N − 2, then εuε(0)
2kf
N−2 → −α(2)

kf ,N
f (kf )(0)

(b) kf = N − 2, then εuε(0)2 → −α(2)
N−2,Nf

(N−2)(0) + α
(2)
N g′(1)2 + 2α

(2)
N Φ(a)

(c) kf > N − 2, then εuε(0)2 → α
(2)
N g′(1)2 + 2α

(2)
N Φ(a)

where α
(1)
k,N , α

(2)
k,N , α

(1)
N , α

(2)
N , and Φ(a) are as above.

The following sections are devoted to the proofs of these three theorems.
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2 Elements from concentration theory

We let (uε) be a sequence of MRS solutions to (Iε). In what follows, we suppose that

lim
ε→0

∫
B

(
|∇uε|2 + auε

2
)
dx(∫

B
fup+1−ε

ε dx
) 2
p+1−ε

=
N(N − 2)ω

2
N
N

4
(1)

Note that the right hand side in this relation is the inverse of the square of the best constant
K(N, 2) for the Sobolev inequality corresponding to the embedding of H1(RN) in Lp+1(RN).
We say that x0 ∈ B is a concentration point of the uε’s if for all δ > 0,

lim sup
ε→0

∫
B∩B(x0,δ)

f(|x|)up+1−ε
ε dx > 0

We suppose here that any subsequence of (uε) which converges almost everywhere converges to
0. Then, the uε’s develop a concentration. Multiplying (Iε) by uε and integrating by parts, we
get that

lim
ε→0

∫
B

(
|∇uε|2 + auε

2
)
dx =

N(N − 2)ωN
2N

and

lim
ε→0

∫
B

fup+1−ε
ε dx =

ωN
2N

Since the operator ∆ + a is coercive, the sequence (uε) is bounded in H1(B).

Given x0 ∈ B and δ > 0, we let η ∈ C∞(RN) be a cut-off function such that 0 ≤ η ≤ 1,
η = 1 in B(x0, δ/2), and η = 0 in RN\B(x0, δ). Multiplying (Iε) by η2uε

k, where k ≥ 1, we
easily obtain that

4k

(k + 1)2

∫
B

|∇(ηu
k+1
2

ε )|
2

dx− 2(k − 1)

(k + 1)2

∫
B

η(∆η)uk+1
ε dx

− 2

k + 1

∫
B

|∇η|2uk+1
ε dx+

∫
B

aη2uk+1
ε dx = N(N − 2)

∫
B

f(|x|)η2uk+p−ε
ε dx

The following result follows from this relation and our original assumption. It is by now classical,
and we refer to [Heb1] or [Heb2] for its proof.

Lemma 2.1 The following properties hold:

1. uε → 0 in Lq(B) for all 1 < q < p+ 1, in particular for q = 2

2. If x0 ∈ B is a concentration point, then for all δ > 0,

f(x0)1− 2
N

(
lim sup
ε→0

∫
B∩B(x0,δ)

f(|x|)up+1−ε
ε dx

) 2
N

≥ ωN
2
N

4

3. (uε) possesses one and only one concentration point, the point x0 = 0
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4. limε→0 ||uε||L∞(B) = +∞

5. limε→0 uε = 0 in C2
loc(B\{0})

6. limε→0 uε
p+1−ε = ωN

2N
δ0 in the sense of distributions

In particular, if xε ∈ B is such that uε(xε) = ||uε||L∞(B), then limε→0 xε = 0.

Now we let µ
−N−2

2
ε = ||uε||L∞(B), and, for x ∈ Bε, we set

Vε(x) = µ
N−2

2
ε uε(xε + kεx)

where kε = µ
1−N−2

4
ε

ε and Bε = B
(
−xε
kε
, 1
kε

)
. Clearly, 0 ≤ Vε ≤ 1, Vε(0) = 1 and ∪Bε = RN .

Moreover, Vε is such that

∆Vε(x) + k2
εa(xε + kεx)Vε(x) = N(N − 2)f(xε + kεx)Vε(x)p−ε (2)

where x ∈ Bε and a(x) = a(|x|), f(x) = f(|x|). By standard elliptic theory, see [GT], theorem
3.9, ∇Vε is uniformly bounded on any compact subset of RN . Together with Ascoli’s theorem,
it follows that the Vε’s converge in C0 to a function v on any compact subset. From standard
elliptic theory, see for instance [GT], the convergence is C2 (on every compact subset), and

∆v = N(N − 2)vp in RN

0 ≤ v ≤ 1 , v(0) = 1

By Caffarelli, Gidas and Spruck [CGS], it follows that

v(x) =

(
1

1 + |x|2

)N−2
2

Then we have the following result:

Lemma 2.2 The two following properties hold:

1. limε→0 Vε = v in Lp+1
(
RN
)

2. limε→0 µ
ε
ε = 1

where µε, Vε, v are as above, and Vε is extended by 0 outside Bε.

Proof: We first remark that∫
Bε

|∇Vε|2dx = (µεε)
(N−2

2 )
2
∫
Bε

|∇uε|2dx

Let µ be the limit of a subsequence of the µεε’s. Then 0 ≤ µ ≤ 1, while∫
RN
|∇(Vε − v)|2dx =

∫
Bε

|∇Vε|2dx+

∫
Bε

|∇v|2dx− 2

∫
Bε

∇Vε∇vdx
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and ∫
Bε

∇Vε∇vdx =

∫
Bε

Vε∆vdx = N(N − 2)

∫
Bε

Vεv
pdx

where

∇Vε∇v =
N∑
i=1

∂Vε
∂xi

∂v

∂xi

Since 0 ≤ Vε ≤ 1, we have that 0 ≤ Vεv
p ≤ vp, and by Lebesgue’s dominated convergence

theorem ∫
Bε

∇Vε∇vdx→ N(N − 2)

∫
RN
vp+1dx =

∫
RN

∆v vdx =

∫
RN
|∇v|2 dx

As one easily checks,∫
RN
|∇v|2 dx = N(N − 2)

∫
RN
vp+1dx =

N(N − 2)ωN
2N

Independently,

lim
ε→0

∫
B

(
|∇uε|2 + auε

2
)
dx =

N(N − 2)ωN
2N

and since 2 < p+ 1, ∫
B

|∇uε|2dx→
N(N − 2)ωN

2N

Then, ∫
RN
|∇(Vε − v)|2dx→

(
µ(N−2

2 )
2

− 1
) N(N − 2)ωN

2N
≤ 0

so that µεε → 1 and ∫
RN
|∇(Vε − v)|2dx→ 0

The convergence of Vε to v in Lp+1(RN) follows from the standard Sobolev inequality(∫
RN
|Vε − v|p+1 dx

) 2
p+1

≤ K(N, 2)2

∫
RN
|∇(Vε − v)|2dx

This ends the proof of the lemma. �

3 An asymptotic estimate

As in section 2, we assume that the uε’s develop a concentration. Our main goal here is to
establish the following fondamental estimate:

Proposition 1 There exists γ = γ(N), γ > 0 depending only on N , such that if the negative
part a− of a is such that ||a−||

L
N
2 (B)

< γ, then for all x in B, and up to a subsequence,

uε(x) ≤ A

(
µε

µε2 + |x− xε|2

)N−2
2

(3)

where A > 0 is a constant independent of x and ε.
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Such an estimate was obtained by Han [Han] and Hebey [Heb1] when a ≡ 0. As already
mentioned, the linear part au, and more precisely the negative part a−u of au, makes that we
have to face a much more critical situation. Several steps that we detail in this section are
involved in the proof of this result.

3.1 A first estimate

As a first step in the proof of the proposition, we prove the following:

Lemma 3.1 Given (cε) a sequence of real numbers which has a limit as ε→ 0,

|x− xε|
N−2

2
+cεεuε(x) ≤ A (4)

for all ε > 0, and all x ∈ B, where A > 0 is a constant which does not depend on ε and x.

Proof: We use arguments that were developed by Druet [Dru]. For x ∈ B, we set

wε(x) = |x− xε|
N−2

2
+cεεuε(x)

and let yε be a point such that wε(yε) = ||wε||∞. We assume by contradiction that wε(yε)→∞.
Then yε → 0. We write

wε(yε) = |yε − xε|
N−2

2
+cεεuε(yε)

≤ |yε − xε|
N−2

2
+cεεuε(xε)

≤ |yε − xε|
N−2

2
+cεεµε

−(N−2
2

+cεε)µε
cεε

It follows that
|yε − xε|

µε
→ +∞

Let k′ε = uε(yε)
− 2
N−2

+ ε
2 . Since uε(yε)→ +∞, we get that k′ε → 0. For x ∈ B

(
− yε
k′ε
, 1
k′ε

)
, we set

uε(x) = uε(yε)
−1uε(yε + k′εx)

As one easily checks,

∆uε(x) + k′ε
2
a(yε + k′εx)uε(x) = N(N − 2)f(yε + k′εx)ūε(x)p−ε

for all x ∈ B
(
− yε
k′ε
, 1
k′ε

)
. For ε small, 1 ≤ uε(yε) ≤ µ

−N−2
2

ε , and then uε(yε)
ε → 1. Now, take

x ∈ B(0, 2). For ε sufficiently small, B(0, 2) ⊂ B
(
− yε
k′ε
, 1
k′ε

)
, and

|xε − yε − k′εx| ≥ |xε − yε| − |k′εx|

≥ |xε − yε|
(

1− 2
k′ε

|xε − yε|

)
≥ 1

2
|xε − yε|
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since k′ε
|xε−yε| → 0. Taking x ∈ B(0, 2),

uε(yε + k′εx) =
wε(yε + k′εx)

|xε − yε − k′εx|
N−2

2
+cεε

≤ 2
N−2

2
+cεε

wε(yε)

|xε − yε|
N−2

2
+cεε

= 2
N−2

2
+cεεuε(yε)

As a consequence, ūε(x) ≤ 2
N
2 for ε small and all x ∈ B(0, 2). Independently,∫

B(0,2)

ūp+1
ε dx = uε(yε)

−εN
2

∫
B(yε,2k′ε)

up+1
ε dx

while
B(yε, 2k

′
ε) ∩B(xε, Rµε) = ∅

for all R > 0, as soon as ε is small enough. From lemma 2.2, we easily get that∫
B(xε,Rµε)

c
up+1
ε dx→

∫
B(0,R)c

vp+1dx

It follows that for all R > 0,

lim sup

∫
B(0,2)

ūp+1
ε dx ≤

∫
B(0,R)c

vp+1dx

and then ∫
B(0,2)

ūp+1
ε dx→ 0

In other words, ūε → 0 in Lp+1 (B(0, 2)), and (ūε) is bounded. Coming back to the equa-
tion satisfied by ūε, and by standard elliptic theory, it follows that ūε → 0 in C0 (B(0, 1)), a
contradiction with the relation ūε(0) = 1. The lemma is proved. �

Note that one of the consequences of lemma 3.1 is that Vε(x) ≤ A|x|−N−2
2 for all x ∈ Bε\{0}.

3.2 An estimate for xε

We prove in this subsection the following result:

Lemma 3.2 |xε| = o(kε)

Proof: Since uε is radially symmetrical,
∫
B
xiuε

kdx = 0 for all i = 1, . . . , N and all k ∈ N.
Noting that ∫

B

xiuε
kdx =

kNε

µε
kN−2

2

∫
Bε

(xiε + kεz
i)V k

ε dz

this leads to
xiε
kε

∫
Bε

Vε
kdz +

∫
Bε

ziVε
kdz = 0

9



By lemma 3.1, Vε(x) ≤ A|x|−N−2
2 for all x ∈ Bε\{0}. Choosing k such that k > 2(N+1)

N−2
, and

since v is radially symmetrical, we get with Lebesgue’s dominated convergence theorem that∫
Bε

Vε
kdz →

∫
RN
vkdz > 0∫

Bε

ziVε
kdz →

∫
RN
zivkdz = 0

It follows that xiε = o(kε) for all i, a relation from which the lemma easily follows. �

3.3 A second estimate

We let vε be defined by

vε(x) = µ
N−2

2
ε uε(kεx)

Clearly, vε is radially symmetrical. A priori, and contrary to Vε, vε(0) does not equal 1. On the
other hand, writing vε(x) = Vε(x− xε

kε
), and according to lemma 3.2, we see that vε(0)→ 1. In

particular, this proves the third part of theorem 2:

Lemma 3.3 limε→0
uε(0)
||uε||∞

= 1.

More generally, vε → v in C2(K) for all compact K in RN , where vε is extended by 0 outside

B
(

0, 1
kε

)
. Moreover, vε satisfies in B

(
0, 1

kε

)
the equation

∆vε + k2
εa(kεx)vε = N(N − 2)f(kεx)vp−εε

As easily seen, Vε has the same properties than vε. In particular, vε(x) ≤ A|x|−N−2
2 for all x in

B
(

0, 1
kε

)
\{0}. We prove here the following result:

Lemma 3.4 Let ν > 0 be such that ν < N − 2. There exists a positive constant γ = γ(N, ν)
depending only on N and ν, and there exists a positive constant A which does not depend on
ε, such that if ||a−||

L
N
2 (B)

< γ, then

vε(x) ≤ A

|x|N−2−ν

for all x ∈ B
(

0, 1
kε

)
\{0}, and all ε > 0.

Proof: We let φ be the map

φ : RN\{0} → RN\{0}
x 7→ x

|x|2

and we let wε be the Kelvin transform of vε, given by

wε (x) =


1

|x|N−2vε

(
x
|x|2

)
if φ(x) ∈ B

(
0, 1

kε

)
0 otherwise

10



We set Cε = φ
(
B
(

0, 1
kε

))
= RN\B (0, kε). As one easily checks, wε satisfies in Cε the equation

∆wε (x) + Aε (x)wε (x) = fε (x)wε (x)p−ε (5)

where

Aε(x) =
k2
εa
(
kεx
|x|2

)
|x|4

and

fε (x) =
N(N − 2)

|x|(N−2)ε
f

(
kεx

|x|2

)
In particular, according to lemma 2.2, fε is uniformly bounded. We define Ω = B(0, δ), where
δ > 0 will be chosen later, and we extend wε by 0 in B(0, kε). For t ≥ 2,∫

Ω

∆wεwε
t−1dx+

∫
Ω

Aεwε
tdx =

∫
Ω

fεw
p+t−1−ε
ε dx

Since wε equals 0 on the boundary of Cε, an integration by parts gives∫
Ω

∆wεwε
t−1dx =

∫
Ω

∇wε∇wt−1
ε dx−

∫
∂B(0,δ)

∂wε
∂n

wt−1
ε dσ

The second term in the right-hand side of this relation is bounded for δ > 0 fixed. It follows
that

4(t− 1)

t2

∫
Ω

∣∣∣∇w t
2
ε

∣∣∣2dx+

∫
Ω

Aεw
t
εdx =

∫
Ω

fεw
p+t−1−ε
ε dx+O(1)

By the standard Sobolev inequality, see for instance [Heb3],(∫
Ω

w
p+1
2
t

ε dx

) 2
p+1

≤ A1

∫
Ω

∣∣∣∇w t
2
ε

∣∣∣2dx+ A2

∫
Ω

wtεdx

where A1 only depends on N and A2 = A2(δ) only depends on N and δ. Here, we just need
to take A1 > 22/NK(N, 2) in order to get the existence of A2. Independently, by Hölder’s
inequality,

−
∫

Ω

Aεw
t
εdx ≤ ||A−ε ||LN2 (Ω\B(0,kε))

||wε||t
Lt

p+1
2 (Ω)

where A−ε denotes the negative part of Aε. In the same way,∫
Ω

fεw
p+t−1−ε
ε dx ≤ ||fε||∞||wε||

p−1−ε
Lp+1(Ω)V ol(Ω)

ε
p+1 ||wε||t

Lt
p+1
2 (Ω)

while
1

A1

(∫
Ω

w
p+1
2
t

ε dx

) 2
p+1

− A2

A1

∫
Ω

wtεdx ≤
∫

Ω

∣∣∣∇w t
2
ε

∣∣∣2dx

11



Defining ϕ(t) = t2

4(t−1)
, it follows that[

1

A1

− ϕ(t)||A−ε ||LN2 (Ω−B(0,kε))

]
||wε||t

Lt
p+1
2 (Ω)

≤ A2

A1

∫
Ω

wε
tdx+ ϕ(t)||fε||∞||wε||

p−1−ε
Lp+1(Ω)V ol(Ω)

ε
p+1 ||wε||t

Lt
p+1
2 (Ω)

+O (ϕ(t))

As easily seen, ∫
Ω

wp+1
ε (x)dx ≤

∫
|x|≥ 1

δ

vp+1
ε (x)dx ≤

∫
|x|≥ 1

2δ

V p+1
ε (x)dx

Then, with lemma 2.2 we obtain that for all η > 0, there exists δ0 > 0 such that for all δ ∈]0, δ0[,
and all ε > 0, ||wε||Lp+1(Ω) < η. Now, let q > 2 be given. In what follows, we assume that

||A−ε ||LN2 (Ω\B(0,kε))
≤ 1

2A1ϕ(q)
(6)

and we choose δ > 0 sufficiently small such that

ϕ(q)||fε||∞||wε||
p−1−ε
Lp+1(Ω)V ol(Ω)

ε
p+1 ≤ 1

4A1

Since the map t 7→ ϕ(t) is increasing on [2,+∞[, there exists a constant K > 0 such that for
all 2 ≤ t ≤ q,

1

4A1

||wε||t
Lt

p+1
2 (Ω)

≤ A2

A1

||wε||tLt(Ω) +Kϕ(t)

Since ||wε||Lp+1(Ω) is bounded, it follows by induction that ||wε||Lq(Ω) = O(1), and ||wε||Lq(Ω) is
bounded. Actually, wε is even bounded in Lsk(Ω) where sk = (p+1)k+1/2k and k is the smallest
k for which sk ≥ q. We now borrow ideas from Zheng-Chao Han (personal communication).
We let D ⊂ B(0, δ) be an open subset of RN . Then∫

D

wqε (x)dx =

∫
φ(D)

|x|(N−2)q−2Nvqε (x)dx

We set D = φ (B(x, 1)) where x is such that |x| > 1 + 1
δ
. Clearly, D ⊂ B(0, δ), and∫

Ω

wqε (x)dx ≥
∫
D

wqε (y)dy

=

∫
B(x,1)

|y|(N−2)q−2Nvqε (y)dy

≥ (|x| − 1)(N−2)q−2N

∫
B(x,1)

vqε (y)dy

It follows that for x such that |x| > 1 + 1
δ
,

||vε||Lq(B(x,1)) ≤
A

|x|N−2− 2N
q

12



where A > 0 does not depend on ε. Let L be the operator

Lu = ∆u+ k2
εa(kεx)u−N(N − 2)f(kεx)vp−1−ε

ε u

Since Lvε = 0, we can apply the Harnack inequality to vε, as it is stated for example in [GT]
(theorem 8.20 and corollary 8.21). Since the coefficients of L are bounded, it follows that

vε(x) ≤ A

|x|N−2− 2N
q

for all x such that |x| > 1 + 1
δ
. Taking ν = 2N

q
, q � 1, and since vε is bounded, we get the

desired inequality, that of lemma 3.4. The proof then reduces to the proof of (6). To obtain
(6), we note that ∫

Ω\B(0,kε)

|A−ε (x)|
N
2 dx ≤

∫
φ(B(0, 1

kε
))
|A−ε (x)|

N
2 dx

= kNε

∫
B(0, 1

kε
)

|a−(kεx)|
N
2 dx

=

∫
B

|a−(x)|
N
2 dx

Then,
||A−ε ||LN2 (Ω\B(0,kε))

≤ ||a−||
L
N
2 (B)

and if

||a−||
L
N
2 (B)

<
(2N − ν)ν

2N2A1

where ν = 2N
q

, we get (6). This ends the proof of the lemma. �

Concerning lemma 3.4, note that if ν < 2
p
, then (p− ε)(N −2−ν) > N for ε� 1. It follows

that there exists γ = γ(N), γ > 0 depending only on N , such that if ||a−||
L
N
2 (B)

< γ, then

||vε||Lp−ε(RN ) ≤ A where A does not depend on ε.

3.4 Proof of proposition 1

We now prove proposition 1. As one may easily check, the estimate (3) is equivalent to the
existence of a constant A such that for all ε > 0 and all x ∈ B,

|x|N−2uε(xε)uε(x) ≤ A (7)

(Here, we use the fact that xε = o(kε)). Let yε ∈ B be a point where x 7→ |x|N−2uε(x) achieves
its maximum. In order to prove (7), we assume by contradiction that |x|N−2uε(xε)uε(x) is
unbounded. Up to a subsequence, we get that

|yε|N−2uε(xε)uε(yε)→ +∞ (8)

13



Without loss of generality, up to another subsequence, we can assume that yε → y0 in B. As a
first remark, we claim that |y0| < 1. For this purpose, let

zε(x) =
uε(x)

uε(yε)

The equation satisfied in B by zε is

∆zε + a(x)zε = N(N − 2)f(x)uε(yε)
p−1−εzp−εε

and zε is radially symmetrical. Since |x|N−2uε(x) achieves its maximum at x = yε, we get that

zε(x) ≤ |yε|
N−2

|x|N−2

and zε is bounded on any compact subset of B\{0}. By standard elliptic theory, see for
instance [GT], it follows that (zε) is actually C1,α-bounded in any compact subset of B\{0}.
In particular, if y0 ∈ ∂B, and since zε = 0 on ∂B,

|zε(yε)| = |zε(yε)− zε(y0)| ≤ A|yε − y0|

where A > 0 does not depend on ε. But zε(yε) = 1, and hence |y| < 1. This proves the above
claim.

Now we set yε = kεx̂ε. As another remark, we claim that |x̂ε| → +∞. If not, then, up to
another subsequence,

|yε|N−2uε(xε)uε(yε) = kN−2
ε |x̂ε|N−2µ

−N−2
2

ε uε(kεx̂ε)

≈ |x̂ε|N−2µ
N−2

2
ε uε(kεx̂ε)

= |x̂ε|N−2vε(x̂ε)

which is bounded since vε uniformly converges on any compact subset of RN . This proves the
claim.

Now, let G be the Green’s function for the operator ∆ + a, as defined in the introduction.
In addition to be radially symmetrical, one of its classical properties is that for all compact
subset K ⊂ B, there exists a constant A > 0 such that for all x ∈ K and all y ∈ B,

|y − x|N−2G(x, y) ≤ A

Then, we write

uε(yε) =

∫
B

G(yε, x̃) (∆uε(x̃) + a(x̃)uε(x̃)) dx̃

From the equation satisfied by uε, the equivalence of kε and µε, and the change of variable
x̃ = kεx, it follows that

uε(yε) ≈ N(N − 2)µ
N−2

2
ε

∫
B(0, 1

kε
)

f(kεx)vp−εε (x)G(yε, kεx)dx

14



and then that

uε(xε)uε(yε) ≤ A

∫
B(0, 1

kε
)

G(yε, kεx)vp−εε (x)dx

where A does not depend on ε. Let us now define

Ω1
ε =

{
x ∈ B

(
0,

1

kε

)
/ |yε − kεx| ≥

1

2
|yε|
}

and Ω2
ε =

{
x ∈ B

(
0,

1

kε

)
/ |yε − kεx| <

1

2
|yε|
}

We write∫
B(0, 1

kε
)

G(yε, kεx)vp−εε (x)dx =

∫
Ω1
ε

G(yε, kεx)vp−εε (x)dx+

∫
Ω2
ε

G(yε, kεx)vp−εε (x)dx

According to the above mentioned property of the Green’s function, and since |y0| < 1 so that
the yε’s are in a compact subset of B,∫

Ω1
ε

G(yε, kεx)vp−εε (x)dx ≤ A

∫
Ω1
ε

vp−εε (x)

|yε − kεx|N−2
dx

≤ 2N−2

|yε|N−2
A

∫
B(0, 1

kε
)

vp−εε (x)dx

Together with the remark we made at the end of subsection 3.3, and under the assumption
that ||a−||

L
N
2 (B)

< γ, where γ > 0 only depends on N and is as in this remark, we get that∫
Ω1
ε

G(yε, kεx)vp−εε (x)dx ≤ A

|yε|N−2

Similarly, ∫
Ω2
ε

G(yε, kεx)vp−εε (x)dx ≤ A

∫
Ω2
ε

vp−εε (x)

|yε − kεx|N−2
dx

and if Ωε =
{
x / |x| < 1

2
|yε|
}

, then, with the change of variable y = kεx− yε,∫
Ω2
ε

G(yε, kεx)vp−εε (x)dx ≤ A

kNε

∫
Ωε

1

|y|N−2
vp−εε

(
y + yε
kε

)
dy

Since |y+yε
kε
| ≥ 1

2
|x̂ε|, and by lemma 3.4,

1

kNε

∫
Ωε

1

|y|N−2
vp−εε

(
y + yε
kε

)
dy ≤ A

|x̂ε|(N−2−ν)(p−ε)kNε

∫
Ωε

1

|y|N−2
dy

≤ A

|x̂ε|(N−2−ν)(p−ε)kNε

∫ 1
2
|yε|

0

tdt

≤ A|yε|2

|x̂ε|(N−2−ν)(p−ε)kNε

Since kε ≤ |yε| ≤ 1, we get with lemma 2.2 that |yε|ε → 1. It follows that |x̂ε|ε → 1, and we can
write that

|yε|2

|x̂ε|(N−2−ν)(p−ε)kNε
≤ A

|x̂ε|2−pν |yε|N−2
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Choosing ν such that ν < 2
p
, this was done at the end of section 3.3, we obtain that∫

Ω2
ε

G(yε, kεx)vp−εε (x)dx ≤ o(1)

|yε|N−2

It follows that

|yε|N−2uε(xε)uε(yε) ≤ A|yε|N−2

∫
B(0, 1

kε
)

G(yε, kεx)vp−εε (x)dx

≤ A|yε|N−2

∫
Ω1
ε

G(yε, kεx)vp−εε (x)dx

+A|yε|N−2

∫
Ω2
ε

G(yε, kεx)vp−εε (x)dx

≤ A+ o(1)

which contradicts (8). It follows that (7) is true, and then (3) is also true. The proposition is
proved. �

Now that proposition 1 is proved, we go on with the study of the asymptotic behaviour
of the uε’s. This is the aim of the following section, where the first assertion in theorem 3 is
proved.

4 Convergence to the Green’s function

Here again, we assume that the uε’s develop a concentration. First, we recall a result obtained
by Brézis and Peletier [BrPe]:

Lemma 4.1 Let u be a C2 solution of{
∆u = f in B
u = 0 on ∂B

and let ω be a neighbourhood of ∂B. Then

||u||W 1,q(B) + ||∇u||C0,β(ω′) ≤ A
(
||f ||L1(B) + ||f ||L∞(ω)

)
for all q < N

N−1
, all 0 < β < 1, and all ω′ ⊂⊂ ω.

Note that it follows from this result that∫
∂B

|∇uε|2dσ = O(µε
N−2)

By lemma 4.1 we indeed just need to get estimates for the L1-norm in B and the L∞-norm in
a neighbourhood of ∂B, of the function gε given by

gε(x) = N(N − 2)f(x)uε(x)p−ε − a(x)uε(x)

As easily seen, these estimates follow from proposition 1.

Now we prove the first assertion in theorem 3. This is the aim of the following lemma where,
as in the introduction, G denotes the Green’s function of the operator ∆ + a.

16



Lemma 4.2 limε→0 uε(xε)uε(x) = (N − 2)ωN−1G(x, 0) in C2
loc(B\{0}).

Proof: Let K be a compact subset of B\{0}, and x ∈ K. It follows from the equation
satisfied by the uε’s that

uε(x) = N(N − 2)

∫
B

f(y)up−εε (y)G(x, y)dy

= N(N − 2)
kε
N

µε
(p−ε)N−2

2

∫
RN
gε(z)dz

where
gε(z) = f (kεz) vp−εε (z)G (x, kεz)

By classical properties of the Green’s function, there exists a constant A > 0 such that for all
x ∈ K, and all y ∈ B, G(x, y) ≤ A|x− y|−N+2. Dealing distinctly with the cases |x− kεz| ≤ δ
and |x−kεz| > δ, where δ > 0 is such that for all x ∈ K, |x| ≥ 2δ, and, according to proposition
1, we see that

lim
ε→0

∫
RN
gε(z)dz = f(0)G(x, 0)

∫
RN
vp(z)dz

where the limit is uniform with respect to x ∈ K. As easily checked,∫
RN
vp(z)dz =

ωN−1

N

and
lim
ε→0

uε(xε)uε(x) = (N − 2)ωN−1G(x, 0)

in C0
loc(B\{0}). The convergence in C0

loc(B\{0}) then follows from lemma 4.1 and the equation
satisfied by wε = uε(xε)uε, that is

∆wε + a(x)wε = N(N − 2)f(x)µ
N−2

2
( 4
N−2

−ε)
ε wp−εε

The convergence in C2
loc(B\{0}) is easily obtained by classical results of elliptic theory, see for

instance [GT]. The lemma is proved. �

5 Convergence to a solution

In this section, we consider a sequence of functions (ũε) such that
∆ũε + aũε = N(N − 2)λεf(x)ũε

p−ε in B

ũε > 0 in B and ũε = 0 on ∂B

N(N − 2)
∫
B
f(x)ũε

p+1−εdx = 1

where

λε = inf
v∈D(B)R\{0}

∫
B

(|∇v|2 + av2) dx(
N(N − 2)

∫
B
f |v|p+1−εdx

) 2
p+1−ε

17



We set

λ = inf
v∈D(B)R\{0}

∫
B

(|∇v|2 + av2) dx(
N(N − 2)

∫
B
f |v|p+1dx

) 2
p+1

The following results are by now classical. We therefore restrict ourselves to brief comments
on their proofs. For details, see for instance [Heb1].

Lemma 5.1 limε→0 λε = λ .

Proof: Let u ∈ D(B)R\{0}. By Hölder’s inequality,(
N(N − 2)

∫
B

f |u|p+1−εdx

) 2
p+1−ε

≤ V ol(B)
2ε

(p+1)(p+1−ε)

(
N(N − 2)

∫
B

f |u|p+1dx

) 2
p+1

It follows that λ ≤ lim infε→0 λε. Conversely, let α > 0 be any positive real number, and let
u ∈ D(B)R\{0} be such that ∫

B
(|∇u|2 + au2) dx(

N(N − 2)
∫
B
f |u|p+1dx

) 2
p+1

< λ+ α

Clearly, when ε→ 0,∫
B

(|∇u|2 + au2) dx(
N(N − 2)

∫
B
f |u|p+1−εdx

) 2
p+1−ε

−→
∫
B

(|∇u|2 + au2) dx(
N(N − 2)

∫
B
f |u|p+1dx

) 2
p+1

We then obtain that lim supε→0 λε ≤ λ+ α. Since α > 0 is arbitrary, the result follows. �

We now state the following result.

Lemma 5.2 : Assume that a subsequence of (ũε) converges almost everywhere to a function
ũ 6= 0. Then:

1. ũ is a MRS solution of the problem

(?)

{
∆u+ a(x)u = N(N − 2)λf(x)up in B
u > 0 in B , and u = 0 on ∂B

2. limε→0 ũε = ũ in C2(B).

Proof: Point 1 easily follows from classical arguments of variational theory, like the ones
developed, for example, in the study of the Yamabe problem. We first prove that ũ is a solution
of (?), and then that ũ is minimizing. Point 2 follows from classical arguments of elliptic theory.
�

At last, we state the following result.

Lemma 5.3 We always have λ ≤ 1
4

(N(N − 2)ωN)
2
N , and if this inequality is strict, then, up

to a subsequence, ũε converges almost everywhere to a function ũ 6= 0. Together with lemma
5.2, the convergence is then C2, and ũ is a MRS solution of problem (?).
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Proof: Here again, the result follows from classical variational arguments. We obtain the
first assertion with the function zε given by

zε(x) =
φ(|x|)(

ε2 + |x|2
)N−2

2

where φ is a cut-off function that equals 1 around 0. As ε→ 0, we get indeed that∫
B

(|∇zε|2 + az2
ε ) dx(

N(N − 2)
∫
B
f |zε|p+1dx

) 2
p+1

−→ (N(N − 2)ωN)
2
N

4

For the second assertion, the energy associated to the problem goes under the critical energy.
The fact that the ũε’s do not develop a concentration under such an assumption is by now
classical. �

6 Proof of the theorems

Theorem 2 immediately follows from what we said in section 2, and from lemma 3.3. The first
assertion of theorem 3 was proved in section 4. Only theorem 1 and points 1, 2 and 3 of theorem
3 remain to be proved. Everything here comes from the estimate obtained in proposition 1,
and from the Pohozaev identity [Poh]. When applied to the functions uε, this identity gives

N(N − 2)2ε

2(p+ 1− ε)

∫
B

f(|x|)up+1−ε
ε dx︸ ︷︷ ︸

Iε

+
N(N − 2)

p+ 1− ε

∫
B

|x|f ′(|x|)up+1−ε
ε dx︸ ︷︷ ︸

IIε

−
∫
B

(
a(|x|) +

1

2
|x|a′(|x|)

)
uε

2dx︸ ︷︷ ︸
IIIε

=
1

2

∫
∂B

|∇uε|2dσ︸ ︷︷ ︸
IVε

In what follows, we assume that the uε’s develop a concentration. With the notations of section

5, this gives that λ = 1
4

(N(N − 2)ωN)
2
N . In particular, we recover the results of sections 2, 3,

and 4. We estimate in what follows the terms Iε, IIε, IIIε, and IVε of the Pohozaev identity.

The terms Iε and IVε are the easiest to estimate. We straightforwardly obtain that

Iε =
(N − 2)3ωN

2N+2
(1 + o(1)) ε

and it follows from lemma 4.2 that

IVε =
1

2
(N − 2)2ω3

N−1g
′(1)2µN−2

ε + o
(
µN−2
ε

)
where g is as in the introduction.

Concerning the term IIε, we write that

f ′(r) =
f (kf )(0)

(kf − 1)!
rkf−1 +O(rkf )
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Then, ∫
B

|x|f ′(|x|)up+1−ε
ε dx =

f (kf )(0)

(kf − 1)!

∫
B

|x|kfup+1−ε
ε dx+O

(∫
B

|x|kf+1up+1−ε
ε dx

)
=

f (kf )(0)

(kf − 1)!
(1 + o(1))µ

kf
ε

∫
B(0, 1

kε
)

|x|kfvp+1−ε
ε dx︸ ︷︷ ︸

II1ε

+O

(
µ
kf+1
ε

∫
B(0, 1

kε
)

|x|kf+1vp+1−ε
ε dx︸ ︷︷ ︸

II2ε

)

If kf < N , and together with proposition 1, II1
ε converges by the dominated convergence

theorem. This holds also for II2
ε if kf +1 < N . When kf = N −1, II2

ε diverges, but is bounded
by | ln kε|. This leads to∫

B

|x|f ′(|x|)up+1−ε
ε dx ≈ f (kf )(0)

(kf − 1)!
µ
kf
ε

∫
RN
|x|kfvp+1dx

as soon as kf < N . In the same way,∫
B

|x|f ′(|x|)up+1−ε
ε dx = O

(
µNε | lnµε|

)
if kf = N , and ∫

B

|x|f ′(|x|)up+1−ε
ε dx = O

(
µNε
)

if kf > N . Then,

IIε =
(N − 2)2

2

f (kf )(0)

(kf − 1)!
µ
kf
ε

∫
RN
|x|kfvp+1dx+ o

(
µ
kf
ε

)
if kf ≤ N − 2, while IIε = o

(
µN−2
ε

)
if kf > N − 2.

We are finally concerned with the term IIIε. The study there is more intricate, and we
separate the cases ka < N − 4, ka > N − 4, and ka = N − 4. We first write that

a(r) =
a(ka)(0)

ka!
rka +O

(
rka+1

)
a′(r) =

a(ka)(0)

(ka − 1)!
rka−1 +O

(
rka
)

If ka < N − 4, we obtain with the same kind of arguments than the ones used above that

IIIε =
a(ka)(0)

ka!

(
1 +

ka
2

)
µka+2
ε

∫
RN
|x|kav2dx+ o

(
µka+2
ε

)
Since

µ−1
ε = (1 + o(1))uε(0)

2
N−2
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we get point 1 of theorem 3 with what has been said before. If, for example, ka < N − 4 and

kf < ka + 2, multiplying the Pohozaev identity by µ
−kf
ε , we obtain that

(N − 2)ωN
2N+1

(
εµ
−kf
ε

)
+

f (kf )(0)

(kf − 1)!
(1 + o(1))

∫
RN
|x|kfvp+1dx = 0

which straightforwardly leads to point 1(a) of theorem 3. The same arguments are valid for
the points 1(b) and 1(c) of theorem 3.

We now assume that ka > N − 4 and we let h be the function

h(x) = a(|x|) +
1

2
|x|a′(|x|)

There exists a constant C > 0 such that |h(x)| ≤ C|x|ka . Let δ > 0. We write that∣∣∣∣∫
B(0,δ)

h(x)u2
ε(xε)u

2
ε(x)dx

∣∣∣∣ ≤ A

∫
B(0,δ)

|x|ka

(µ2
ε + |x|2)N−2

dx

≤ A

∫ δ

0

rka+N−1

(µ2
ε + r2)N−2

dr

≤ Aµka−(N−4)
ε

∫ δ
µε

0

ska+N−1

(1 + s2)N−2
ds

≤ Aµka−(N−4)
ε

(
O(1) +

∫ δ
µε

1

ska−(N−4)−1ds

)
≤ A

(
δka−(N−4) + µka−(N−4)

ε

)
where A does not depend on ε and δ. Independently, |x|N−2|G(x, 0)| ≤ A. It follows that for
ka > N − 4, |x|kaG(x, 0)2 is integrable. We let

Hδ(ε) =

∣∣∣∣∫
B\B(0,δ)

h(x)u2
ε(xε)u

2
ε(x)dx−

∫
B\B(0,δ)

h(x) ((N − 2)ωN−1G(x, 0))2 dx

∣∣∣∣
By lemma 4.2, Hδ = o(1). We then write that∣∣∣∣∫

B

h(x)u2
ε(xε)u

2
ε(x)dx−

∫
B

h(x) ((N − 2)ωN−1G(x, 0))2 dx

∣∣∣∣
≤
∣∣∣∣∫
B(0,δ)

h(x)u2
ε(xε)u

2
ε(x)dx

∣∣∣∣+

∣∣∣∣∫
B(0,δ)

h(x) ((N − 2)ωN−1G(x, 0))2 dx

∣∣∣∣+Hδ(ε)

≤ A

∣∣∣∣∫
B(0,δ)

|x|kau2
ε(xε)u

2
ε(x)dx

∣∣∣∣+ A

∣∣∣∣∫
B(0,δ)

|x|ka ((N − 2)ωN−1G(x, 0))2 dx

∣∣∣∣+Hδ(ε)

≤ Aδka−(N−4) + o(1)

Since δ > 0 is arbitrary, it follows that

1

µN−2
ε

∫
B

(
a(|x|) +

1

2
|x|a′(|x|)

)
u2
ε(x)dx

= (N − 2)2ω2
N−1

∫
B

(
a(|x|) +

1

2
|x|a′(|x|)

)
G(x, 0)2dx+ o(1)

21



and then that
IIIε = (N − 2)2ω3

N−1Φ(a)µN−2
ε + o

(
µN−2
ε

)
Multipying the Pohozaev identity by µ

−kf
ε , we then obtain the points 3(a) and 3(b) of theorem

3. Point 3(c) is obtained similarly, multiplying now the Pohozaev identity by µ
−(N−2)
ε .

At last, we assume that ka = N − 4. By proposition 1, we easily obtain that∫
B

(
a(|x|) +

1

2
|x|a′(|x|)

)
u2
εdx =

a(ka)(0)

ka!

(
1 +

ka
2

)
µka+2
ε

∫
RN
|x|kav2

εdx+O
(
µka+2
ε

)
=

(N − 2)a(N−4)(0)

2(N − 4)!
µN−2
ε

∫
RN
|x|N−4v2

εdx+O
(
µN−2
ε

)
and we now left with getting an estimate for the term

III1
ε =

∫
RN
|x|N−4v2

εdx

Let us consider δ ∈]0, 1[ to be chosen later. By proposition 1,

III1
ε =

∫
B(0, δ

kε
)

|x|N−4v2
εdx+O (1)

Let (x̂ε) be a sequence of points such that |x̂ε| ≤ δ
kε

. We set

Rε =
vε(x̂ε)

v(x̂ε)

If |x̂ε| is bounded, then Rε → 1 since vε → v uniformly on every compact subset of RN .
Otherwise, |x̂ε| → +∞, and, up to a subsequence, two cases occur: Either there exists δ0 > 0
such that kε|x̂ε| → δ0, or kε|x̂ε| → 0. In the first case, we set yε = kεx̂ε. Then |yε| ≤ δ and

Rε ≈ |yε|N−2uε(xε)uε(yε)

It follows from lemma 4.2 that

Rε → (N − 2)ωN−1δ
N−2
0 g(δ0)

In the second case, where |x̂ε| → +∞ and kε|x̂ε| → 0, we use the Green’s formula. Setting
yε = kεx̂ε,

Rε ≈ N(N − 2)|yε|N−2µ
−N−2

2
ε

∫
B(0,1)

f(x)up−εε (x)G(yε, x)dx

≈ N(N − 2)|yε|N−2

∫
B(0, 1

kε
)
f(kεx)vp−εε (x)G(yε, kεx)dx

22



We let δε = C|yε| where C ∈]0, 1[, and we write that

|yε|N−2

∫
B(0, 1

kε
)
f(kεx)vε(x)p−εG(yε, kεx)dx = |yε|N−2

∫
Ω1
ε

f(kεx)vp−εε (x)G(yε, kεx)dx︸ ︷︷ ︸
III2ε

+ |yε|N−2

∫
Ω2
ε

f(kεx)vp−εε (x)G(yε, kεx)dx︸ ︷︷ ︸
III3ε

where

Ω1
ε =

{
x ∈ B

(
0,

1

kε

)
/ |yε − kεx| > δε

}
and Ω2

ε =

{
x ∈ B

(
0,

1

kε

)
/ |yε − kεx| ≤ δε

}
We then study III2

ε and III3
ε separately. Concerning III2

ε ,

|G(yε, kεx)| ≤ A

|yε − kεx|N−2
≤ A

δN−2
ε

As a consequence, if x ∈ Ω1
ε ,

∣∣|yε|N−2f(kεx)vp−εε (x)G(yε, kεx)
∣∣ ≤ A

(
|yε|
δε

)N−2

vp−ε(x) ≤ Avp−ε0(x)

CN−2

for ε ≤ ε0, ε0 > 0 small. In particular,

hε(x) = |yε|N−21Ω1
ε
(x)f(kεx)vp−εε (x)G(yε, kεx)

is bounded from above by an integrable function, where 1Ω1
ε

denotes the characteristic function
of Ω1

ε . Clearly,

|yε − kεx|
δε

=
|yε − |yε||x̂ε|x|
C|yε|

=
1

C

∣∣∣∣ yε|yε| − x

|x̂ε|

∣∣∣∣→ 1

C

which is greater than 1. Moreover,

G(yε, kεx) ≈ 1

(N − 2)ωN−1|yε − kεx|N−2

so that

|yε|N−2G(yε, kεx)→ 1

(N − 2)ωN−1

Then, and since f(0) = 1, hε converges almost everywhere to the function vp

(N−2)ωN−1
. By the

dominated convergence theorem,

III2
ε →

1

(N − 2)ωN−1

∫
RN
vpdx =

1

N(N − 2)
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Concerning the term III3
ε , a rough estimate is that∣∣III3

ε

∣∣ ≤ A|yε|N−2

∫
Ω2
ε

vp(x)G(yε, kεx)dx

≤ A|yε|N−2

∫
Ω2
ε

vp(x)

|yε − kεx|N−2
dx

Together with the change of variable kεx = y + yε, we obtain∣∣III3
ε

∣∣ ≤ A
|yε|N−2

kNε

∫
|y|≤δε

1

|y|N−2
vp
(
y + yε
kε

)
dy

Clearly, if |y| ≤ δε,∣∣∣∣y + yε
kε

∣∣∣∣ ≥ |yε| − |y|kε
≥ |yε| − δε

kε
= (1− C)

|yε|
kε

= (1− C)|x̂ε|

while v(x) ≤ A|x|−N+2. As a consequence,∣∣III3
ε

∣∣ ≤ A|yε|N−2ωN−1

(1− C)N+2|x̂ε|N+2kNε

∫ δε

0

tdt =
AC2ωN−1

2(1− C)N+2|x̂ε|2

and III3
ε → 0. In particular, Rε ≈ N(N−2)III2

ε , and Rε → 1. Summarizing: either kε|x̂ε| → 0,
and then Rε → 1, or kε|x̂ε| → δ0, where δ0 > 0, and then Rε → (N − 2)ωN−1δ

N−2
0 g(δ0). Let

α ∈]0, 1[ be given. We note that

lim
δ0→0+

(N − 2)ωN−1δ
N−2
0 g(δ0) = 1

and we choose δ > 0 such that for all δ0 ∈]0, δ[,

1− α ≤ (N − 2)ωN−1δ
N−2
0 g(δ0) ≤ 1 + α

Then,
1− α ≤ Rε ≤ 1 + α

We now set

mε = min
0≤|x|≤ δ

kε

vε(x)

v(x)
and Mε = max

0≤|x|≤ δ
kε

vε(x)

v(x)

According to what we just said,

1− α ≤ mε ≤Mε ≤ 1 + α

and then

(1− α)

∫
B(0, δ

kε
)
|x|N−4v2dx ≤

∫
B(0, δ

kε
)
|x|N−4v2

εdx ≤ (1 + α)

∫
B(0, δ

kε
)
|x|N−4v2dx

Therefore, as easily checked,

1

| ln kε|

∫
B(0, δ

kε
)
|x|N−4v2dx→ ωN−1
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Since α ∈]0, 1[ is arbitrary,
1

| ln kε|
III1

ε → ωN−1

and we thus proved that

IIIε =
(N − 2)ωN−1a

(N−4)(0)

2(N − 4)!
µN−2
ε | lnµε|+ o

(
µN−2
ε | ln kε|

)
Multiplying the Pohozaev identity by µ

−kf
ε , and according to the preceeding estimates, we

obtain point 2(a) of theorem 3. Similarly, multiplying the Pohozaev identity by µ−N+2
ε | lnµε|−1,

we obtain point 2(b) of theorem 3. In particular, theorem 3 is proved. �

We are now left with the proof of theorem 1. According to the results of section 5, it suffices
to show that, under the assumptions of this theorem, at least one subsequence of (uε) converges
almost everywhere to a nonzero function. If not, the uε’s develop a concentration and we are
back to one of the situations described in theorem 3. Noting the assumptions of theorem 1 are
those that make the limits of the different points of theorem 3 negative, theorem 1 is proved.�
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