Asymptotic behaviour of a nonlinear elliptic equation with critical Sobolev exponent The radial case

by

Frédéric ROBERT

Université de Cergy-Pontoise
Département de Mathématiques - Site Saint-Martin
2, Avenue Adolphe Chauvin - F 95302 Cergy-Pontoise Cedex, France

1 Introduction and statement of the results

Let B be the unit ball in $\mathbb{R}^{N}, N \geq 3$, and $a, f: \mathbb{R} \rightarrow \mathbb{R}$ two smooth functions. We regard $x \mapsto a(|x|)$ and $x \mapsto f(|x|)$ as functions of the variable $x \in \mathbb{R}^{N}$. As easily seen, these functions are locally Lipschitz. In particular, they are locally in $C^{0, \alpha}$ for all $\left.\alpha \in\right] 0,1[$. In order to fix ideas, we suppose that $f>0$ and that $f(0)=1$. Then we consider the following problem:

$$
(I)\left\{\begin{array}{l}
\Delta u+a(|x|) u=N(N-2) f(|x|) u^{p} \text { in } B \\
u>0 \text { in } B, u=0 \text { on } \partial B
\end{array}\right.
$$

where $\Delta=-\sum \frac{\partial^{2}}{\partial x_{i}^{2}}$ is the Laplacian with the minus sign convention, and $p=\frac{N+2}{N-2}$ is critical from the view point of Sobolev embeddings. We let $H_{0}^{1}(B)$ be the standard Sobolev space, defined as the completion of $\mathcal{D}(B)$, the set of smooth functions with compact support in B, with respect to the norm

$$
\|u\|=\sqrt{\int_{B}|\nabla u|^{2} d x}
$$

In the sequel, we suppose that the operator $u \mapsto \Delta u+a(|x|)$ is coercive on $H_{0}^{1}(B)$. This is the case when $a>-\lambda_{1}$, where λ_{1} is the first eigenvalue of Δ for the Dirichlet problem.

Situations where (I) does not have a solution are in Pohozaev [Poh]. In particular, (I) does not possess a solution if $a \equiv 0$ and $f \equiv 1$. However, as it is subcritical from the view point of Sobolev embeddings, the problem

$$
\left(I_{\epsilon}\right)\left\{\begin{array}{l}
\Delta u_{\epsilon}+a(|x|) u_{\epsilon}=N(N-2) f(|x|) u_{\epsilon}^{p-\epsilon} \text { in } B \\
u_{\epsilon}>0 \text { in } B, u_{\epsilon}=0 \text { on } \partial B
\end{array}\right.
$$

has a solution $u_{\epsilon} \in C^{2}(\bar{B})$ for all $\left.\epsilon \in\right] 0, p-1[$. This solution can be assumed to be minimizing and radially symmetrical (MRS), where u_{ϵ} is said to be MRS if u_{ϵ} is radially symmetrical and

$$
\frac{\int_{B}\left(\left|\nabla u_{\epsilon}\right|^{2}+a(|x|) u_{\epsilon}^{2}\right) d x}{\left(\int_{B} f(|x|) u_{\epsilon}^{p-\epsilon+1} d x\right)^{\frac{2}{p-\epsilon+1}}}=\inf _{v \in \mathcal{D}(B)_{R} \backslash\{0\}} \frac{\int_{B}\left(|\nabla v|^{2}+a(|x|) v^{2}\right) d x}{\left(\int_{B} f(|x|)|v|^{p-\epsilon+1} d x\right)^{\frac{2}{p-\epsilon+1}}}
$$

where $\mathcal{D}(B)_{R}$ denotes the set of smooth radially symmetrical functions with compact support in B. The arguments required for the proof of this result are by now classical.

On the one hand, we are concerned in this article with the existence of conditions on a and f for (I) to have a solution. On the other hand, we are concerned with the asymptotic behaviour of u_{ϵ} as $\epsilon \rightarrow 0$ when (I) does not have a solution. The existence of solutions for (I) has been studied by various authors. In particular, when $f \equiv 1$ and $a \equiv \lambda, \lambda \in \mathbb{R}$, Brézis and Nirenberg [BrNi] got that (I) has a solution if and only if $\lambda \in] 0, \lambda_{1}[$ when $N \geq 4$, and $\lambda \in] \frac{1}{4} \lambda_{1}, \lambda_{1}$ [when $N=3$. Independently, asymptotic type studies were first developed by Atkinson and Peletier [AtPe]. With arguments from ODE's theory, and assuming that $a \equiv 0$ and $f \equiv 1$, they got that

$$
\lim _{\epsilon \rightarrow 0} \epsilon u_{\epsilon}^{2}(0)=\frac{4 \Gamma(N)}{(N-2) \Gamma\left(\frac{N}{2}\right)^{2}},
$$

and that, for all $x \in B \backslash\{0\}$,

$$
\lim _{\epsilon \rightarrow 0} \epsilon^{-1 / 2} u_{\epsilon}(x)=\frac{\sqrt{N-2} \Gamma\left(\frac{N}{2}\right)}{2 \sqrt{\Gamma(N)}}\left(\frac{1}{|x|^{N-2}}-1\right)
$$

Brézis and Peletier [BrPe] returned to this problem, but with arguments from PDE's theory, and they conjectured that a similar behaviour should occur in the non radial case. This was proved to be the true independently by Han [Han] and Rey [Rey]. When $a \equiv 0$ and f is nonconstant, our problem was studied by Hebey [Heb1],[Heb4]. Existence results for (I) and the asymptotic behaviour of the u_{ϵ} 's were given in these articles. An approach to the case where the Laplacian is the p-Laplace operator is in Garcìa Azorero and Peral Alonso [GP]. We generalize in the present work what was done in [Heb1]. In particular, we do not assume anymore that $a \equiv 0$. As one may easily check, the linear term $a u$, and more precisely its negative part $a_{-} u$, leads to serious difficulties. We overcome these difficulties by assuming that a_{-}is small in a sense to be precised below.

In what follows, we set

$$
\begin{aligned}
& k_{a} \stackrel{\text { def }}{=} \inf \left\{l \geq 0 / a^{(l)}(0) \neq 0\right\} \\
& k_{f} \stackrel{\text { def }}{=} \inf \left\{l \geq 1 / f^{(l)}(0) \neq 0\right\}
\end{aligned}
$$

with the convention that $k_{a}=\infty$ (respectively $\left.k_{f}=\infty\right)$ if $a^{(l)}(0)=0$ for all $l \geq 0$ (respectively $f^{(l)}(0)=0$ for all $l \geq 1$). We denote by G the Green's function of the operator $\Delta+a$, so that G is such that

$$
\Delta_{y} G(x, y)+a(|y|) G(x, y)=\delta_{x}
$$

on $B \times B$ minus its diagonal, and $G(x, y)=0$ for $y \in \partial B$ and $x \in B$. (As already mentioned, $\Delta+a$ is supposed to be coercive). If $y \notin \partial B, G(x, y)>0$, while $(x, y) \mapsto G(x, y)$ is symmetrical in (x, y). Moreover, $G(x, 0)$ is radially symmetrical. We let $g(r)=G(x, 0)$ where $r=|x|$. This function is defined on $] 0,1]$. If $a \equiv 0$,

$$
g(r)=\frac{1}{(N-2) \omega_{N-1}}\left(\frac{1}{r^{N-2}}-1\right)
$$

where ω_{N-1} denotes the volume of the standard sphere of \mathbb{R}^{N}. For $k \in \mathbb{N}$ and $q>0$, we let

$$
I_{k, q}=\int_{0}^{\infty} \frac{r^{k}}{\left(1+r^{2}\right)^{\frac{(N-2) q}{2}}} d r
$$

when this integral makes sense, and we let ω_{k} be the volume of the standard sphere of \mathbb{R}^{k+1}. We also let

$$
\alpha_{k}(N)=\frac{(k+1)(k+2) I_{k+N-1,2}}{(N-2)^{2} I_{k+N+1, p+1}} \quad, \quad \alpha(N)=\frac{I_{2 N-3, p+1}}{(N-3)!\omega_{N-1}^{2}}
$$

and

$$
\Phi(a)=\int_{0}^{1}\left(a(r)+\frac{1}{2} r a^{\prime}(r)\right) g(r)^{2} r^{N-1} d r
$$

As easily checked, Φ is defined as soon as $k_{a}>N-4$. Our first result is concerned with the existence of solutions to (I). This result generalizes previous results obtained by Demengel and Hebey [DeHe] with another method.
 and if we are in one of the following cases:

1. $k_{a}<N-4$,
(a) $k_{f}<k_{a}+2$, and $f^{\left(k_{f}\right)}(0)>0$
(b) $k_{f}=k_{a}+2$, and $\alpha_{k_{a}}(N) a^{\left(k_{a}\right)}(0)<f^{\left(k_{a}+2\right)}(0)$
(c) $k_{f}>k_{a}+2$, and $a^{\left(k_{a}\right)}(0)<0$
2. $k_{a}=N-4$,
(a) $k_{f}<N-2$, and $f^{\left(k_{f}\right)}(0)>0$
(b) $k_{f} \geq N-2$, and $a^{\left(k_{a}\right)}(0)<0$
3. $k_{a}>N-4$,
(a) $k_{f}<N-2$, and $f^{\left(k_{f}\right)}(0)>0$
(b) $k_{f} \geq N-2$, and $g^{\prime}(1)^{2}+2 \Phi(a)<\alpha(N) f^{(N-2)}(0)$
then (I) possesses a MRS solution, obtained as the limit of a subsequence of u_{ϵ} in $C^{2}(\bar{B})$.
As already mentioned, there are situations in which the u_{ϵ} 's do not converge, but develop a concentration. The concentration is characterized by one of the following properties: a subsequence of $\left(u_{\epsilon}\right)$ which converges almost everywhere converges to 0 , or $u_{\epsilon} \rightarrow 0$ in $L^{q}(B)$ as soon as $q<p+1$. Such a situation occurs when $a \equiv 0$ and $f \equiv 1$. This follows from Hopf's maximum principle and the Pohozaev identity applied to (I),

$$
\frac{(N-2)^{2}}{2} \int_{B}|x| f^{\prime}(|x|) u^{p+1} d x-\int_{B}\left(a(|x|)+\frac{1}{2}|x| a^{\prime}(|x|)\right) u^{2} d x=\frac{1}{2} \int_{\partial B}|\nabla u|^{2} d \sigma
$$

Still according to this identity, the u_{ϵ} 's also develop a concentration when f is decreasing and $a+\frac{1}{2} r a^{\prime} \geq 0$. As a first step, the concentration is ruled by the following classical result:

Theorem 2 If the u_{ϵ} 's develop a concentration, then

1. $\lim _{\epsilon \rightarrow 0} u_{\epsilon}=0$ in $C_{l o c}^{2}(\bar{B} \backslash\{0\})$ and $\lim _{\epsilon \rightarrow 0}\left\|u_{\epsilon}\right\|_{\infty}=+\infty$
2. $\lim _{\epsilon \rightarrow 0} u_{\epsilon}^{p+1-\epsilon}=\frac{\omega_{N}}{2^{N}} \delta_{0}$ in the sense of distributions
3. $\lim _{\epsilon \rightarrow 0} \frac{u_{\epsilon}(0)}{\left\|u_{\epsilon}\right\|_{\infty}}=1$
where $\left\|u_{\epsilon}\right\|_{\infty}$ is the L^{∞}-norm of u_{ϵ}.
Given $k \in \mathbb{N}$, we now set

$$
\alpha_{k, N}^{(1)}=\frac{2^{N+1}(k+2) \omega_{N-1} I_{k+N-1,2}}{(N-2)^{3} k!\omega_{N}}, \quad \alpha_{k, N}^{(2)}=\frac{2^{N+1} \omega_{N-1} I_{k+N-1, p+1}}{(N-2)(k-1)!\omega_{N}}
$$

and

$$
\alpha_{N}^{(1)}=\frac{2^{N+2} \omega_{N-1}}{(N-4)!(N-2)^{3} \omega_{N}} \quad, \quad \alpha_{N}^{(2)}=\frac{2^{N+1} \omega_{N-1}^{3}}{(N-2) \omega_{N}}
$$

Generalizing the results of [AtPe], $[\mathrm{BrPe}]$, and [Heb1], the asymptotic behaviour of the u_{ϵ} 's is ruled by the following result:

Theorem 3 There exists $\gamma=\gamma(N), \gamma>0$ depending only on N, such that if $\left\|a_{-}\right\|_{L^{\frac{N}{2}}{ }_{(B)}}<\gamma$, and if the u_{ϵ} 's develop a concentration, then

$$
\lim _{\epsilon \rightarrow 0} u_{\epsilon}(0) u_{\epsilon}(x)=(N-2) \omega_{N-1} G(x, 0)
$$

in $C_{\text {loc }}^{2}(\bar{B} \backslash\{0\})$, and:

1. If $k_{a}<N-4$ and
(a) $k_{f}<k_{a}+2$, then $\epsilon u_{\epsilon}(0)^{\frac{2 k_{f}}{N-2}} \rightarrow-\alpha_{k_{f}, N}^{(2)} f^{\left(k_{f}\right)}(0)$
(b) $k_{f}=k_{a}+2$, then $\epsilon u_{\epsilon}(0)^{\frac{2 k_{f}}{N-2}} \rightarrow \alpha_{k_{a}, N}^{(1)} a^{\left(k_{a}\right)}(0)-\alpha_{k_{a}+2, N}^{(2)} f^{\left(k_{a}+2\right)}(0)$
(c) $k_{f}>k_{a}+2$, then $\epsilon u_{\epsilon}(0)^{\frac{2\left(k_{a}+2\right)}{N-2}} \rightarrow \alpha_{k_{a}, N}^{(1)} a^{\left(k_{a}\right)}(0)$
2. If $k_{a}=N-4$ and
(a) $k_{f}<N-2$, then $\epsilon u_{\epsilon}(0)^{\frac{2 k_{f}}{N-2}} \rightarrow-\alpha_{k_{f}, N}^{(2)} f^{\left(k_{f}\right)}(0)$
(b) $k_{f} \geq N-2$, then $\epsilon \frac{u_{\epsilon}(0)^{2}}{\ln u_{\epsilon}(0)} \rightarrow \alpha_{N}^{(1)} a^{\left(k_{a}\right)}(0)$
3. If $k_{a}>N-4$ and
(a) $k_{f}<N-2$, then $\epsilon u_{\epsilon}(0)^{\frac{2 k_{f}}{N-2}} \rightarrow-\alpha_{k_{f}, N}^{(2)} f^{\left(k_{f}\right)}(0)$
(b) $k_{f}=N-2$, then $\epsilon u_{\epsilon}(0)^{2} \rightarrow-\alpha_{N-2, N}^{(2)} f^{(N-2)}(0)+\alpha_{N}^{(2)} g^{\prime}(1)^{2}+2 \alpha_{N}^{(2)} \Phi(a)$
(c) $k_{f}>N-2$, then $\epsilon u_{\epsilon}(0)^{2} \rightarrow \alpha_{N}^{(2)} g^{\prime}(1)^{2}+2 \alpha_{N}^{(2)} \Phi(a)$
where $\alpha_{k, N}^{(1)}, \alpha_{k, N}^{(2)}, \alpha_{N}^{(1)}, \alpha_{N}^{(2)}$, and $\Phi(a)$ are as above.
The following sections are devoted to the proofs of these three theorems.

2 Elements from concentration theory

We let $\left(u_{\epsilon}\right)$ be a sequence of MRS solutions to $\left(I_{\epsilon}\right)$. In what follows, we suppose that

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0} \frac{\int_{B}\left(\left|\nabla u_{\epsilon}\right|^{2}+a u_{\epsilon}^{2}\right) d x}{\left(\int_{B} f u_{\epsilon}^{p+1-\epsilon} d x\right)^{\frac{2}{p+1-\epsilon}}}=\frac{N(N-2) \omega_{N}^{\frac{2}{N}}}{4} \tag{1}
\end{equation*}
$$

Note that the right hand side in this relation is the inverse of the square of the best constant $K(N, 2)$ for the Sobolev inequality corresponding to the embedding of $H^{1}\left(\mathbb{R}^{N}\right)$ in $L^{p+1}\left(\mathbb{R}^{N}\right)$. We say that $x_{0} \in \bar{B}$ is a concentration point of the u_{ϵ} 's if for all $\delta>0$,

$$
\limsup _{\epsilon \rightarrow 0} \int_{B \cap B\left(x_{0}, \delta\right)} f(|x|) u_{\epsilon}^{p+1-\epsilon} d x>0
$$

We suppose here that any subsequence of $\left(u_{\epsilon}\right)$ which converges almost everywhere converges to 0 . Then, the u_{ϵ} 's develop a concentration. Multiplying $\left(I_{\epsilon}\right)$ by u_{ϵ} and integrating by parts, we get that

$$
\lim _{\epsilon \rightarrow 0} \int_{B}\left(\left|\nabla u_{\epsilon}\right|^{2}+a u_{\epsilon}{ }^{2}\right) d x=\frac{N(N-2) \omega_{N}}{2^{N}}
$$

and

$$
\lim _{\epsilon \rightarrow 0} \int_{B} f u_{\epsilon}^{p+1-\epsilon} d x=\frac{\omega_{N}}{2^{N}}
$$

Since the operator $\Delta+a$ is coercive, the sequence $\left(u_{\epsilon}\right)$ is bounded in $H^{1}(B)$.
Given $x_{0} \in \bar{B}$ and $\delta>0$, we let $\eta \in C^{\infty}\left(\mathbb{R}^{N}\right)$ be a cut-off function such that $0 \leq \eta \leq 1$, $\eta=1$ in $B\left(x_{0}, \delta / 2\right)$, and $\eta=0$ in $\mathbb{R}^{N} \backslash B\left(x_{0}, \delta\right)$. Multiplying $\left(I_{\epsilon}\right)$ by $\eta^{2} u_{\epsilon}{ }^{k}$, where $k \geq 1$, we easily obtain that

$$
\begin{aligned}
& \frac{4 k}{(k+1)^{2}} \int_{B}\left|\nabla\left(\eta u_{\epsilon}^{\frac{k+1}{2}}\right)\right|^{2} d x-\frac{2(k-1)}{(k+1)^{2}} \int_{B} \eta(\Delta \eta) u_{\epsilon}^{k+1} d x \\
& -\frac{2}{k+1} \int_{B}|\nabla \eta|^{2} u_{\epsilon}^{k+1} d x+\int_{B} a \eta^{2} u_{\epsilon}^{k+1} d x=N(N-2) \int_{B} f(|x|) \eta^{2} u_{\epsilon}^{k+p-\epsilon} d x
\end{aligned}
$$

The following result follows from this relation and our original assumption. It is by now classical, and we refer to [Heb1] or [Heb2] for its proof.

Lemma 2.1 The following properties hold:

1. $u_{\epsilon} \rightarrow 0$ in $L^{q}(B)$ for all $1<q<p+1$, in particular for $q=2$
2. If $x_{0} \in \bar{B}$ is a concentration point, then for all $\delta>0$,

$$
f\left(x_{0}\right)^{1-\frac{2}{N}}\left(\limsup _{\epsilon \rightarrow 0} \int_{B \cap B\left(x_{0}, \delta\right)} f(|x|) u_{\epsilon}^{p+1-\epsilon} d x\right)^{\frac{2}{N}} \geq \frac{\omega_{N} \frac{2}{N}}{4}
$$

3. $\left(u_{\epsilon}\right)$ possesses one and only one concentration point, the point $x_{0}=0$
4. $\lim _{\epsilon \rightarrow 0}\left\|u_{\epsilon}\right\|_{L^{\infty}(B)}=+\infty$
5. $\lim _{\epsilon \rightarrow 0} u_{\epsilon}=0$ in $C_{l o c}^{2}(\bar{B} \backslash\{0\})$
6. $\lim _{\epsilon \rightarrow 0} u_{\epsilon}{ }^{p+1-\epsilon}=\frac{\omega_{N}}{2^{N}} \delta_{0}$ in the sense of distributions

In particular, if $x_{\epsilon} \in B$ is such that $u_{\epsilon}\left(x_{\epsilon}\right)=\left\|u_{\epsilon}\right\|_{L^{\infty}(B)}$, then $\lim _{\epsilon \rightarrow 0} x_{\epsilon}=0$.
Now we let $\mu_{\epsilon}^{-\frac{N-2}{2}}=\left\|u_{\epsilon}\right\|_{L^{\infty}(B)}$, and, for $x \in B_{\epsilon}$, we set

$$
V_{\epsilon}(x)=\mu_{\epsilon}^{\frac{N-2}{2}} u_{\epsilon}\left(x_{\epsilon}+k_{\epsilon} x\right)
$$

where $k_{\epsilon}=\mu_{\epsilon}^{1-\frac{N-2}{4} \epsilon}$ and $B_{\epsilon}=B\left(\frac{-x_{\epsilon}}{k_{\epsilon}}, \frac{1}{k_{\epsilon}}\right)$. Clearly, $0 \leq V_{\epsilon} \leq 1, V_{\epsilon}(0)=1$ and $\cup B_{\epsilon}=\mathbb{R}^{N}$. Moreover, V_{ϵ} is such that

$$
\begin{equation*}
\Delta V_{\epsilon}(x)+k_{\epsilon}^{2} a\left(x_{\epsilon}+k_{\epsilon} x\right) V_{\epsilon}(x)=N(N-2) f\left(x_{\epsilon}+k_{\epsilon} x\right) V_{\epsilon}(x)^{p-\epsilon} \tag{2}
\end{equation*}
$$

where $x \in B_{\epsilon}$ and $a(x)=a(|x|), f(x)=f(|x|)$. By standard elliptic theory, see [GT], theorem $3.9, \nabla V_{\epsilon}$ is uniformly bounded on any compact subset of \mathbb{R}^{N}. Together with Ascoli's theorem, it follows that the V_{ϵ} 's converge in C^{0} to a function v on any compact subset. From standard elliptic theory, see for instance [GT], the convergence is C^{2} (on every compact subset), and

$$
\left\{\begin{array}{l}
\Delta v=N(N-2) v^{p} \text { in } \mathbb{R}^{N} \\
0 \leq v \leq 1, \quad v(0)=1
\end{array}\right.
$$

By Caffarelli, Gidas and Spruck [CGS], it follows that

$$
v(x)=\left(\frac{1}{1+|x|^{2}}\right)^{\frac{N-2}{2}}
$$

Then we have the following result:
Lemma 2.2 The two following properties hold:

1. $\lim _{\epsilon \rightarrow 0} V_{\epsilon}=v$ in $L^{p+1}\left(\mathbb{R}^{N}\right)$
2. $\lim _{\epsilon \rightarrow 0} \mu_{\epsilon}^{\epsilon}=1$
where $\mu_{\epsilon}, V_{\epsilon}, v$ are as above, and V_{ϵ} is extended by 0 outside B_{ϵ}.
Proof: We first remark that

$$
\int_{B_{\epsilon}}\left|\nabla V_{\epsilon}\right|^{2} d x=\left(\mu_{\epsilon}^{\epsilon}\right)^{\left(\frac{N-2}{2}\right)^{2}} \int_{B_{\epsilon}}\left|\nabla u_{\epsilon}\right|^{2} d x
$$

Let μ be the limit of a subsequence of the $\mu_{\epsilon}^{\epsilon}$ s. Then $0 \leq \mu \leq 1$, while

$$
\int_{\mathbb{R}^{N}}\left|\nabla\left(V_{\epsilon}-v\right)\right|^{2} d x=\int_{B_{\epsilon}}\left|\nabla V_{\epsilon}\right|^{2} d x+\int_{B_{\epsilon}}|\nabla v|^{2} d x-2 \int_{B_{\epsilon}} \nabla V_{\epsilon} \nabla v d x
$$

and

$$
\int_{B_{\epsilon}} \nabla V_{\epsilon} \nabla v d x=\int_{B_{\epsilon}} V_{\epsilon} \Delta v d x=N(N-2) \int_{B_{\epsilon}} V_{\epsilon} v^{p} d x
$$

where

$$
\nabla V_{\epsilon} \nabla v=\sum_{i=1}^{N} \frac{\partial V_{\epsilon}}{\partial x_{i}} \frac{\partial v}{\partial x_{i}}
$$

Since $0 \leq V_{\epsilon} \leq 1$, we have that $0 \leq V_{\epsilon} v^{p} \leq v^{p}$, and by Lebesgue's dominated convergence theorem

$$
\int_{B_{\epsilon}} \nabla V_{\epsilon} \nabla v d x \rightarrow N(N-2) \int_{\mathbb{R}^{N}} v^{p+1} d x=\int_{\mathbb{R}^{N}} \Delta v v d x=\int_{\mathbb{R}^{N}}|\nabla v|^{2} d x
$$

As one easily checks,

$$
\int_{\mathbb{R}^{N}}|\nabla v|^{2} d x=N(N-2) \int_{\mathbb{R}^{N}} v^{p+1} d x=\frac{N(N-2) \omega_{N}}{2^{N}}
$$

Independently,

$$
\lim _{\epsilon \rightarrow 0} \int_{B}\left(\left|\nabla u_{\epsilon}\right|^{2}+a u_{\epsilon}{ }^{2}\right) d x=\frac{N(N-2) \omega_{N}}{2^{N}}
$$

and since $2<p+1$,

$$
\int_{B}\left|\nabla u_{\epsilon}\right|^{2} d x \rightarrow \frac{N(N-2) \omega_{N}}{2^{N}}
$$

Then,

$$
\int_{\mathbb{R}^{N}}\left|\nabla\left(V_{\epsilon}-v\right)\right|^{2} d x \rightarrow\left(\mu^{\left(\frac{N-2}{2}\right)^{2}}-1\right) \frac{N(N-2) \omega_{N}}{2^{N}} \leq 0
$$

so that $\mu_{\epsilon}^{\epsilon} \rightarrow 1$ and

$$
\int_{\mathbb{R}^{N}}\left|\nabla\left(V_{\epsilon}-v\right)\right|^{2} d x \rightarrow 0
$$

The convergence of V_{ϵ} to v in $L^{p+1}\left(\mathbb{R}^{N}\right)$ follows from the standard Sobolev inequality

$$
\left(\int_{\mathbb{R}^{N}}\left|V_{\epsilon}-v\right|^{p+1} d x\right)^{\frac{2}{p+1}} \leq K(N, 2)^{2} \int_{\mathbb{R}^{N}}\left|\nabla\left(V_{\epsilon}-v\right)\right|^{2} d x
$$

This ends the proof of the lemma.

3 An asymptotic estimate

As in section 2, we assume that the u_{ϵ} 's develop a concentration. Our main goal here is to establish the following fondamental estimate:

Proposition 1 There exists $\gamma=\gamma(N), \gamma>0$ depending only on N, such that if the negative part a_{-}of a is such that $\left\|a_{-}\right\|_{L^{\frac{N}{2}}(B)}<\gamma$, then for all x in B, and up to a subsequence,

$$
\begin{equation*}
u_{\epsilon}(x) \leq A\left(\frac{\mu_{\epsilon}}{\mu_{\epsilon}{ }^{2}+\left|x-x_{\epsilon}\right|^{2}}\right)^{\frac{N-2}{2}} \tag{3}
\end{equation*}
$$

where $A>0$ is a constant independent of x and ϵ.

Such an estimate was obtained by Han [Han] and Hebey [Heb1] when $a \equiv 0$. As already mentioned, the linear part $a u$, and more precisely the negative part $a_{-} u$ of $a u$, makes that we have to face a much more critical situation. Several steps that we detail in this section are involved in the proof of this result.

3.1 A first estimate

As a first step in the proof of the proposition, we prove the following:
Lemma 3.1 Given $\left(c_{\epsilon}\right)$ a sequence of real numbers which has a limit as $\epsilon \rightarrow 0$,

$$
\begin{equation*}
\left|x-x_{\epsilon}\right|^{\frac{N-2}{2}+c_{\epsilon} \epsilon} u_{\epsilon}(x) \leq A \tag{4}
\end{equation*}
$$

for all $\epsilon>0$, and all $x \in B$, where $A>0$ is a constant which does not depend on ϵ and x.
Proof: We use arguments that were developed by Druet [Dru]. For $x \in B$, we set

$$
w_{\epsilon}(x)=\left|x-x_{\epsilon}\right|^{\frac{N-2}{2}+c_{\epsilon} \epsilon} u_{\epsilon}(x)
$$

and let y_{ϵ} be a point such that $w_{\epsilon}\left(y_{\epsilon}\right)=\left\|w_{\epsilon}\right\|_{\infty}$. We assume by contradiction that $w_{\epsilon}\left(y_{\epsilon}\right) \rightarrow \infty$. Then $y_{\epsilon} \rightarrow 0$. We write

$$
\begin{aligned}
& w_{\epsilon}\left(y_{\epsilon}\right)=\left|y_{\epsilon}-x_{\epsilon}\right|^{\frac{N-2}{2}+c_{\epsilon} \epsilon} u_{\epsilon}\left(y_{\epsilon}\right) \\
& \leq\left|y_{\epsilon}-x_{\epsilon}\right|^{\frac{N-2}{2}+c_{\epsilon} \epsilon} u_{\epsilon}\left(x_{\epsilon}\right) \\
& \leq\left|y_{\epsilon}-x_{\epsilon}\right|^{\frac{N-2}{2}+c_{\epsilon} \epsilon} \mu_{\epsilon}-\left(\frac{N-2}{2}+c_{\epsilon} \epsilon\right) \\
& \mu_{\epsilon} c_{\epsilon}
\end{aligned}
$$

It follows that

$$
\frac{\left|y_{\epsilon}-x_{\epsilon}\right|}{\mu_{\epsilon}} \rightarrow+\infty
$$

Let $k_{\epsilon}^{\prime}=u_{\epsilon}\left(y_{\epsilon}\right)^{-\frac{2}{N-2}+\frac{\epsilon}{2}}$. Since $u_{\epsilon}\left(y_{\epsilon}\right) \rightarrow+\infty$, we get that $k_{\epsilon}^{\prime} \rightarrow 0$. For $x \in B\left(-\frac{y_{\epsilon}}{k_{\epsilon}^{\prime}}, \frac{1}{k_{\epsilon}^{\prime}}\right)$, we set

$$
\bar{u}_{\epsilon}(x)=u_{\epsilon}\left(y_{\epsilon}\right)^{-1} u_{\epsilon}\left(y_{\epsilon}+k_{\epsilon}^{\prime} x\right)
$$

As one easily checks,

$$
\Delta \bar{u}_{\epsilon}(x)+k_{\epsilon}^{\prime 2} a\left(y_{\epsilon}+k_{\epsilon}^{\prime} x\right) \bar{u}_{\epsilon}(x)=N(N-2) f\left(y_{\epsilon}+k_{\epsilon}^{\prime} x\right) \bar{u}_{\epsilon}(x)^{p-\epsilon}
$$

for all $x \in B\left(-\frac{y_{\epsilon}}{k_{\epsilon}^{\prime}}, \frac{1}{k_{\epsilon}^{\prime}}\right)$. For ϵ small, $1 \leq u_{\epsilon}\left(y_{\epsilon}\right) \leq \mu_{\epsilon}^{-\frac{N-2}{2}}$, and then $u_{\epsilon}\left(y_{\epsilon}\right)^{\epsilon} \rightarrow 1$. Now, take $x \in B(0,2)$. For ϵ sufficiently small, $B(0,2) \subset B\left(-\frac{y_{\epsilon}}{k_{\epsilon}^{\prime}}, \frac{1}{k_{\epsilon}^{\prime}}\right)$, and

$$
\begin{aligned}
\left|x_{\epsilon}-y_{\epsilon}-k_{\epsilon}^{\prime} x\right| & \geq\left|x_{\epsilon}-y_{\epsilon}\right|-\left|k_{\epsilon}^{\prime} x\right| \\
& \geq\left|x_{\epsilon}-y_{\epsilon}\right|\left(1-2 \frac{k_{\epsilon}^{\prime}}{\left|x_{\epsilon}-y_{\epsilon}\right|}\right) \geq \frac{1}{2}\left|x_{\epsilon}-y_{\epsilon}\right|
\end{aligned}
$$

since $\frac{k_{\epsilon}^{\prime}}{\left|x_{\epsilon}-y_{\epsilon}\right|} \rightarrow 0$. Taking $x \in B(0,2)$,

$$
\begin{aligned}
u_{\epsilon}\left(y_{\epsilon}+k_{\epsilon}^{\prime} x\right) & =\frac{w_{\epsilon}\left(y_{\epsilon}+k_{\epsilon}^{\prime} x\right)}{\left|x_{\epsilon}-y_{\epsilon}-k_{\epsilon}^{\prime} x\right|^{\frac{N-2}{2}+c_{\epsilon} \epsilon}} \\
& \leq 2^{\frac{N-2}{2}+c_{\epsilon} \epsilon} \frac{w_{\epsilon}\left(y_{\epsilon}\right)}{\left|x_{\epsilon}-y_{\epsilon}\right|^{N-2}+c_{\epsilon} \epsilon} \\
& =2^{\frac{N-2}{2}+c_{\epsilon} \epsilon} u_{\epsilon}\left(y_{\epsilon}\right)
\end{aligned}
$$

As a consequence, $\bar{u}_{\epsilon}(x) \leq 2^{\frac{N}{2}}$ for ϵ small and all $x \in B(0,2)$. Independently,

$$
\int_{B(0,2)} \bar{u}_{\epsilon}^{p+1} d x=u_{\epsilon}\left(y_{\epsilon}\right)^{-\epsilon \frac{N}{2}} \int_{B\left(y_{\epsilon}, 2 k_{\epsilon}^{\prime}\right)} u_{\epsilon}^{p+1} d x
$$

while

$$
B\left(y_{\epsilon}, 2 k_{\epsilon}^{\prime}\right) \cap B\left(x_{\epsilon}, R \mu_{\epsilon}\right)=\emptyset
$$

for all $R>0$, as soon as ϵ is small enough. From lemma 2.2, we easily get that

$$
\int_{B\left(x_{\epsilon}, R \mu_{\epsilon}\right)^{c}} u_{\epsilon}^{p+1} d x \rightarrow \int_{B(0, R)^{c}} v^{p+1} d x
$$

It follows that for all $R>0$,

$$
\lim \sup \int_{B(0,2)} \bar{u}_{\epsilon}^{p+1} d x \leq \int_{B(0, R)^{c}} v^{p+1} d x
$$

and then

$$
\int_{B(0,2)} \bar{u}_{\epsilon}^{p+1} d x \rightarrow 0
$$

In other words, $\bar{u}_{\epsilon} \rightarrow 0$ in $L^{p+1}(B(0,2))$, and $\left(\bar{u}_{\epsilon}\right)$ is bounded. Coming back to the equation satisfied by \bar{u}_{ϵ}, and by standard elliptic theory, it follows that $\bar{u}_{\epsilon} \rightarrow 0$ in $C^{0}(B(0,1))$, a contradiction with the relation $\bar{u}_{\epsilon}(0)=1$. The lemma is proved.

Note that one of the consequences of lemma 3.1 is that $V_{\epsilon}(x) \leq A|x|^{-\frac{N-2}{2}}$ for all $x \in B_{\epsilon} \backslash\{0\}$.

3.2 An estimate for x_{ϵ}

We prove in this subsection the following result:
Lemma 3.2 $\left|x_{\epsilon}\right|=o\left(k_{\epsilon}\right)$
Proof: Since u_{ϵ} is radially symmetrical, $\int_{B} x^{i} u_{\epsilon}{ }^{k} d x=0$ for all $i=1, \ldots, N$ and all $k \in \mathbb{N}$. Noting that

$$
\int_{B} x^{i} u_{\epsilon}^{k} d x=\frac{k_{\epsilon}^{N}}{\mu_{\epsilon}{ }^{k \frac{N-2}{2}}} \int_{B_{\epsilon}}\left(x_{\epsilon}^{i}+k_{\epsilon} z^{i}\right) V_{\epsilon}^{k} d z
$$

this leads to

$$
\frac{x_{\epsilon}^{i}}{k_{\epsilon}} \int_{B_{\epsilon}} V_{\epsilon}^{k} d z+\int_{B_{\epsilon}} z^{i} V_{\epsilon}^{k} d z=0
$$

By lemma 3.1, $V_{\epsilon}(x) \leq A|x|^{-\frac{N-2}{2}}$ for all $x \in B_{\epsilon} \backslash\{0\}$. Choosing k such that $k>\frac{2(N+1)}{N-2}$, and since v is radially symmetrical, we get with Lebesgue's dominated convergence theorem that

$$
\begin{aligned}
\int_{B_{\epsilon}} V_{\epsilon}^{k} d z & \rightarrow \int_{\mathbb{R}^{N}} v^{k} d z>0 \\
\int_{B_{\epsilon}} z^{i} V_{\epsilon}^{k} d z & \rightarrow \int_{\mathbb{R}^{N}} z^{i} v^{k} d z=0
\end{aligned}
$$

It follows that $x_{\epsilon}^{i}=o\left(k_{\epsilon}\right)$ for all i, a relation from which the lemma easily follows.

3.3 A second estimate

We let v_{ϵ} be defined by

$$
v_{\epsilon}(x)=\mu_{\epsilon}^{\frac{N-2}{2}} u_{\epsilon}\left(k_{\epsilon} x\right)
$$

Clearly, v_{ϵ} is radially symmetrical. A priori, and contrary to $V_{\epsilon}, v_{\epsilon}(0)$ does not equal 1 . On the other hand, writing $v_{\epsilon}(x)=V_{\epsilon}\left(x-\frac{x_{\epsilon}}{k_{\epsilon}}\right)$, and according to lemma 3.2, we see that $v_{\epsilon}(0) \rightarrow 1$. In particular, this proves the third part of theorem 2:
Lemma $3.3 \lim _{\epsilon \rightarrow 0} \frac{u_{\epsilon}(0)}{\left\|u_{\epsilon}\right\|_{\infty}}=1$.
More generally, $v_{\epsilon} \rightarrow v$ in $C^{2}(K)$ for all compact K in \mathbb{R}^{N}, where v_{ϵ} is extended by 0 outside $B\left(0, \frac{1}{k_{\epsilon}}\right)$. Moreover, v_{ϵ} satisfies in $B\left(0, \frac{1}{k_{\epsilon}}\right)$ the equation

$$
\Delta v_{\epsilon}+k_{\epsilon}^{2} a\left(k_{\epsilon} x\right) v_{\epsilon}=N(N-2) f\left(k_{\epsilon} x\right) v_{\epsilon}^{p-\epsilon}
$$

As easily seen, V_{ϵ} has the same properties than v_{ϵ}. In particular, $v_{\epsilon}(x) \leq A|x|^{-\frac{N-2}{2}}$ for all x in $B\left(0, \frac{1}{k_{\epsilon}}\right) \backslash\{0\}$. We prove here the following result:

Lemma 3.4 Let $\nu>0$ be such that $\nu<N-2$. There exists a positive constant $\gamma=\gamma(N, \nu)$ depending only on N and ν, and there exists a positive constant A which does not depend on ϵ, such that if $\left\|a_{-}\right\|_{L^{\frac{N}{2}}(B)}<\gamma$, then

$$
v_{\epsilon}(x) \leq \frac{A}{|x|^{N-2-\nu}}
$$

for all $x \in B\left(0, \frac{1}{k_{\epsilon}}\right) \backslash\{0\}$, and all $\epsilon>0$.
Proof: We let ϕ be the map

$$
\begin{aligned}
& \phi: \mathbb{R}^{N} \backslash\{0\} \rightarrow \mathbb{R}^{N} \backslash\{0\} \\
& x \mapsto \\
& \frac{x}{|x|^{2}}
\end{aligned}
$$

and we let w_{ϵ} be the Kelvin transform of v_{ϵ}, given by

$$
w_{\epsilon}(x)= \begin{cases}\frac{1}{|x|^{N-2}} v_{\epsilon}\left(\frac{x}{|x|^{2}}\right) & \text { if } \phi(x) \in B\left(0, \frac{1}{k_{\epsilon}}\right) \\ 0 & \text { otherwise }\end{cases}
$$

We set $C_{\epsilon}=\phi\left(B\left(0, \frac{1}{k_{\epsilon}}\right)\right)=\mathbb{R}^{N} \backslash \bar{B}\left(0, k_{\epsilon}\right)$. As one easily checks, w_{ϵ} satisfies in C_{ϵ} the equation

$$
\begin{equation*}
\Delta w_{\epsilon}(x)+A_{\epsilon}(x) w_{\epsilon}(x)=f_{\epsilon}(x) w_{\epsilon}(x)^{p-\epsilon} \tag{5}
\end{equation*}
$$

where

$$
A_{\epsilon}(x)=\frac{k_{\epsilon}^{2} a\left(\frac{k_{\epsilon} x}{\mid x x^{2}}\right)}{|x|^{4}}
$$

and

$$
f_{\epsilon}(x)=\frac{N(N-2)}{|x|^{(N-2) \epsilon}} f\left(\frac{k_{\epsilon} x}{|x|^{2}}\right)
$$

In particular, according to lemma $2.2, f_{\epsilon}$ is uniformly bounded. We define $\Omega=B(0, \delta)$, where $\delta>0$ will be chosen later, and we extend w_{ϵ} by 0 in $B\left(0, k_{\epsilon}\right)$. For $t \geq 2$,

$$
\int_{\Omega} \Delta w_{\epsilon} w_{\epsilon}^{t-1} d x+\int_{\Omega} A_{\epsilon} w_{\epsilon}^{t} d x=\int_{\Omega} f_{\epsilon} w_{\epsilon}^{p+t-1-\epsilon} d x
$$

Since w_{ϵ} equals 0 on the boundary of C_{ϵ}, an integration by parts gives

$$
\int_{\Omega} \Delta w_{\epsilon} w_{\epsilon}^{t-1} d x=\int_{\Omega} \nabla w_{\epsilon} \nabla w_{\epsilon}^{t-1} d x-\int_{\partial B(0, \delta)} \frac{\partial w_{\epsilon}}{\partial n} w_{\epsilon}^{t-1} d \sigma
$$

The second term in the right-hand side of this relation is bounded for $\delta>0$ fixed. It follows that

$$
\frac{4(t-1)}{t^{2}} \int_{\Omega}\left|\nabla w_{\epsilon}^{\frac{t}{2}}\right|^{2} d x+\int_{\Omega} A_{\epsilon} w_{\epsilon}^{t} d x=\int_{\Omega} f_{\epsilon} w_{\epsilon}^{p+t-1-\epsilon} d x+O(1)
$$

By the standard Sobolev inequality, see for instance [Heb3],

$$
\left(\int_{\Omega} w_{\epsilon}^{\frac{p+1}{2} t} d x\right)^{\frac{2}{p+1}} \leq A_{1} \int_{\Omega}\left|\nabla w_{\epsilon}^{\frac{t}{2}}\right|^{2} d x+A_{2} \int_{\Omega} w_{\epsilon}^{t} d x
$$

where A_{1} only depends on N and $A_{2}=A_{2}(\delta)$ only depends on N and δ. Here, we just need to take $A_{1}>2^{2 / N} K(N, 2)$ in order to get the existence of A_{2}. Independently, by Hölder's inequality,

$$
-\int_{\Omega} A_{\epsilon} w_{\epsilon}^{t} d x \leq\left\|A_{\epsilon}^{-}\right\|_{L^{\frac{N}{2}}\left(\Omega \backslash B\left(0, k_{\epsilon}\right)\right)}\left\|w_{\epsilon}\right\|_{L^{t^{\frac{p+1}{2}}}(\Omega)}^{t}
$$

where A_{ϵ}^{-}denotes the negative part of A_{ϵ}. In the same way,

$$
\int_{\Omega} f_{\epsilon} w_{\epsilon}^{p+t-1-\epsilon} d x \leq\left\|f_{\epsilon}\right\|_{\infty}\left\|w_{\epsilon}\right\|_{L^{p+1}(\Omega)}^{p-1-\epsilon} \operatorname{Vol}(\Omega)^{\frac{\epsilon}{p+1}}\left\|w_{\epsilon}\right\|_{L^{t \frac{p+1}{2}}(\Omega)}^{t}
$$

while

$$
\frac{1}{A_{1}}\left(\int_{\Omega} w_{\epsilon}^{\frac{p+1}{2} t} d x\right)^{\frac{2}{p+1}}-\frac{A_{2}}{A_{1}} \int_{\Omega} w_{\epsilon}^{t} d x \leq \int_{\Omega}\left|\nabla w_{\epsilon}^{\frac{t}{2}}\right|^{2} d x
$$

Defining $\varphi(t)=\frac{t^{2}}{4(t-1)}$, it follows that

$$
\begin{aligned}
& {\left[\frac{1}{A_{1}}-\varphi(t)\left\|A_{\epsilon}^{-}\right\|_{L^{\frac{N}{2}}\left(\Omega-B\left(0, k_{\epsilon}\right)\right)}\right]\left\|w_{\epsilon}\right\|_{L^{t^{\frac{p+1}{2}}(\Omega)}}^{t}} \\
& \leq \frac{A_{2}}{A_{1}} \int_{\Omega} w_{\epsilon}^{t} d x+\varphi(t)\left\|f_{\epsilon}\right\|_{\infty}\left\|w_{\epsilon}\right\|_{L^{p+1}(\Omega)}^{p-1-\epsilon} \operatorname{Vol}(\Omega)^{\frac{\epsilon}{p+1}}\left\|w_{\epsilon}\right\|_{L^{\frac{t+1}{2}}(\Omega)}^{t}+O(\varphi(t))
\end{aligned}
$$

As easily seen,

$$
\int_{\Omega} w_{\epsilon}^{p+1}(x) d x \leq \int_{|x| \geq \frac{1}{\delta}} v_{\epsilon}^{p+1}(x) d x \leq \int_{|x| \geq \frac{1}{2 \delta}} V_{\epsilon}^{p+1}(x) d x
$$

Then, with lemma 2.2 we obtain that for all $\eta>0$, there exists $\delta_{0}>0$ such that for all $\left.\delta \in\right] 0, \delta_{0}[$, and all $\epsilon>0,\left\|w_{\epsilon}\right\|_{L^{p+1}(\Omega)}<\eta$. Now, let $q>2$ be given. In what follows, we assume that

$$
\begin{equation*}
\left\|A_{\epsilon}^{-}\right\|_{L^{\frac{N}{2}}\left(\Omega \backslash B\left(0, k_{\epsilon}\right)\right)} \leq \frac{1}{2 A_{1} \varphi(q)} \tag{6}
\end{equation*}
$$

and we choose $\delta>0$ sufficiently small such that

$$
\varphi(q)\left\|f_{\epsilon}\right\|_{\infty}\left\|w_{\epsilon}\right\|_{L^{p+1}(\Omega)}^{p-1-\epsilon} \operatorname{Vol}(\Omega)^{\frac{\epsilon}{p+1}} \leq \frac{1}{4 A_{1}}
$$

Since the map $t \mapsto \varphi(t)$ is increasing on $[2,+\infty[$, there exists a constant $K>0$ such that for all $2 \leq t \leq q$,

$$
\frac{1}{4 A_{1}}\left\|w_{\epsilon}\right\|_{L^{t \frac{p+1}{2}}(\Omega)}^{t} \leq \frac{A_{2}}{A_{1}}\left\|w_{\epsilon}\right\|_{L^{t}(\Omega)}^{t}+K \varphi(t)
$$

Since $\left\|w_{\epsilon}\right\|_{L^{p+1}(\Omega)}$ is bounded, it follows by induction that $\left\|w_{\epsilon}\right\|_{L^{q}(\Omega)}=O(1)$, and $\left\|w_{\epsilon}\right\|_{L^{q}(\Omega)}$ is bounded. Actually, w_{ϵ} is even bounded in $L^{s_{k}}(\Omega)$ where $s_{k}=(p+1)^{k+1} / 2^{k}$ and k is the smallest k for which $s_{k} \geq q$. We now borrow ideas from Zheng-Chao Han (personal communication). We let $D \subset B(0, \delta)$ be an open subset of \mathbb{R}^{N}. Then

$$
\int_{D} w_{\epsilon}^{q}(x) d x=\int_{\phi(D)}|x|^{(N-2) q-2 N} v_{\epsilon}^{q}(x) d x
$$

We set $D=\phi(B(x, 1))$ where x is such that $|x|>1+\frac{1}{\delta}$. Clearly, $D \subset B(0, \delta)$, and

$$
\begin{aligned}
\int_{\Omega} w_{\epsilon}^{q}(x) d x & \geq \int_{D} w_{\epsilon}^{q}(y) d y \\
& =\int_{B(x, 1)}|y|^{(N-2) q-2 N} v_{\epsilon}^{q}(y) d y \\
& \geq(|x|-1)^{(N-2) q-2 N} \int_{B(x, 1)} v_{\epsilon}^{q}(y) d y
\end{aligned}
$$

It follows that for x such that $|x|>1+\frac{1}{\delta}$,

$$
\left\|v_{\epsilon}\right\|_{L^{q}(B(x, 1))} \leq \frac{A}{|x|^{N-2-\frac{2 N}{q}}}
$$

where $A>0$ does not depend on ϵ. Let L be the operator

$$
L u=\Delta u+k_{\epsilon}^{2} a\left(k_{\epsilon} x\right) u-N(N-2) f\left(k_{\epsilon} x\right) v_{\epsilon}^{p-1-\epsilon} u
$$

Since $L v_{\epsilon}=0$, we can apply the Harnack inequality to v_{ϵ}, as it is stated for example in [GT] (theorem 8.20 and corollary 8.21). Since the coefficients of L are bounded, it follows that

$$
v_{\epsilon}(x) \leq \frac{A}{|x|^{N-2-\frac{2 N}{q}}}
$$

for all x such that $|x|>1+\frac{1}{\delta}$. Taking $\nu=\frac{2 N}{q}, q \gg 1$, and since v_{ϵ} is bounded, we get the desired inequality, that of lemma 3.4. The proof then reduces to the proof of (6). To obtain (6), we note that

$$
\begin{aligned}
\int_{\Omega \backslash B\left(0, k_{\epsilon}\right)}\left|A_{\epsilon}^{-}(x)\right|^{\frac{N}{2}} d x & \leq \int_{\phi\left(B\left(0, \frac{1}{k_{\epsilon}}\right)\right)}\left|A_{\epsilon}^{-}(x)\right|^{\frac{N}{2}} d x \\
& =k_{\epsilon}^{N} \int_{B\left(0, \frac{1}{k_{\epsilon}}\right)}\left|a_{-}\left(k_{\epsilon} x\right)\right|^{\frac{N}{2}} d x \\
& =\int_{B}\left|a_{-}(x)\right|^{\frac{N}{2}} d x
\end{aligned}
$$

Then,

$$
\left\|A_{\epsilon}^{-}\right\|_{L^{\frac{N}{2}}\left(\Omega \backslash B\left(0, k_{\epsilon}\right)\right)} \leq\left\|a_{-}\right\|_{L^{\frac{N}{2}}(B)}
$$

and if

$$
\left\|a_{-}\right\|_{L^{\frac{N}{2}}(B)}<\frac{(2 N-\nu) \nu}{2 N^{2} A_{1}}
$$

where $\nu=\frac{2 N}{q}$, we get (6). This ends the proof of the lemma.
Concerning lemma 3.4, note that if $\nu<\frac{2}{p}$, then $(p-\epsilon)(N-2-\nu)>N$ for $\epsilon \ll 1$. It follows
 $\left\|v_{\epsilon}\right\|_{L^{p-\epsilon}\left(\mathbb{R}^{N}\right)} \leq A$ where A does not depend on ϵ.

3.4 Proof of proposition 1

We now prove proposition 1. As one may easily check, the estimate (3) is equivalent to the existence of a constant A such that for all $\epsilon>0$ and all $x \in B$,

$$
\begin{equation*}
|x|^{N-2} u_{\epsilon}\left(x_{\epsilon}\right) u_{\epsilon}(x) \leq A \tag{7}
\end{equation*}
$$

(Here, we use the fact that $x_{\epsilon}=o\left(k_{\epsilon}\right)$). Let $y_{\epsilon} \in B$ be a point where $x \mapsto|x|^{N-2} u_{\epsilon}(x)$ achieves its maximum. In order to prove (7), we assume by contradiction that $|x|^{N-2} u_{\epsilon}\left(x_{\epsilon}\right) u_{\epsilon}(x)$ is unbounded. Up to a subsequence, we get that

$$
\begin{equation*}
\left|y_{\epsilon}\right|^{N-2} u_{\epsilon}\left(x_{\epsilon}\right) u_{\epsilon}\left(y_{\epsilon}\right) \rightarrow+\infty \tag{8}
\end{equation*}
$$

Without loss of generality, up to another subsequence, we can assume that $y_{\epsilon} \rightarrow y_{0}$ in \bar{B}. As a first remark, we claim that $\left|y_{0}\right|<1$. For this purpose, let

$$
z_{\epsilon}(x)=\frac{u_{\epsilon}(x)}{u_{\epsilon}\left(y_{\epsilon}\right)}
$$

The equation satisfied in B by z_{ϵ} is

$$
\Delta z_{\epsilon}+a(x) z_{\epsilon}=N(N-2) f(x) u_{\epsilon}\left(y_{\epsilon}\right)^{p-1-\epsilon} z_{\epsilon}^{p-\epsilon}
$$

and z_{ϵ} is radially symmetrical. Since $|x|^{N-2} u_{\epsilon}(x)$ achieves its maximum at $x=y_{\epsilon}$, we get that

$$
z_{\epsilon}(x) \leq \frac{\left|y_{\epsilon}\right|^{N-2}}{|x|^{N-2}}
$$

and z_{ϵ} is bounded on any compact subset of $\bar{B} \backslash\{0\}$. By standard elliptic theory, see for instance [GT], it follows that $\left(z_{\epsilon}\right)$ is actually $C^{1, \alpha}$-bounded in any compact subset of $\bar{B} \backslash\{0\}$. In particular, if $y_{0} \in \partial B$, and since $z_{\epsilon}=0$ on ∂B,

$$
\left|z_{\epsilon}\left(y_{\epsilon}\right)\right|=\left|z_{\epsilon}\left(y_{\epsilon}\right)-z_{\epsilon}\left(y_{0}\right)\right| \leq A\left|y_{\epsilon}-y_{0}\right|
$$

where $A>0$ does not depend on ϵ. But $z_{\epsilon}\left(y_{\epsilon}\right)=1$, and hence $|y|<1$. This proves the above claim.

Now we set $y_{\epsilon}=k_{\epsilon} \hat{x}_{\epsilon}$. As another remark, we claim that $\left|\hat{x}_{\epsilon}\right| \rightarrow+\infty$. If not, then, up to another subsequence,

$$
\begin{aligned}
\left|y_{\epsilon}\right|^{N-2} u_{\epsilon}\left(x_{\epsilon}\right) u_{\epsilon}\left(y_{\epsilon}\right) & =k_{\epsilon}^{N-2}\left|\hat{x}_{\epsilon}\right|^{N-2} \mu_{\epsilon}^{-\frac{N-2}{2}} u_{\epsilon}\left(k_{\epsilon} \hat{x}_{\epsilon}\right) \\
& \approx\left|\hat{x}_{\epsilon}\right|^{N-2} \mu_{\epsilon}^{\frac{N-2}{2}} u_{\epsilon}\left(k_{\epsilon} \hat{x}_{\epsilon}\right) \\
& =\left|\hat{x}_{\epsilon}\right|^{N-2} v_{\epsilon}\left(\hat{x}_{\epsilon}\right)
\end{aligned}
$$

which is bounded since v_{ϵ} uniformly converges on any compact subset of \mathbb{R}^{N}. This proves the claim.

Now, let G be the Green's function for the operator $\Delta+a$, as defined in the introduction. In addition to be radially symmetrical, one of its classical properties is that for all compact subset $K \subset B$, there exists a constant $A>0$ such that for all $x \in K$ and all $y \in B$,

$$
|y-x|^{N-2} G(x, y) \leq A
$$

Then, we write

$$
u_{\epsilon}\left(y_{\epsilon}\right)=\int_{B} G\left(y_{\epsilon}, \tilde{x}\right)\left(\Delta u_{\epsilon}(\tilde{x})+a(\tilde{x}) u_{\epsilon}(\tilde{x})\right) d \tilde{x}
$$

From the equation satisfied by u_{ϵ}, the equivalence of k_{ϵ} and μ_{ϵ}, and the change of variable $\tilde{x}=k_{\epsilon} x$, it follows that

$$
u_{\epsilon}\left(y_{\epsilon}\right) \approx N(N-2) \mu_{\epsilon}^{\frac{N-2}{2}} \int_{B\left(0, \frac{1}{k_{\epsilon}}\right)} f\left(k_{\epsilon} x\right) v_{\epsilon}^{p-\epsilon}(x) G\left(y_{\epsilon}, k_{\epsilon} x\right) d x
$$

and then that

$$
u_{\epsilon}\left(x_{\epsilon}\right) u_{\epsilon}\left(y_{\epsilon}\right) \leq A \int_{B\left(0, \frac{1}{k}\right)} G\left(y_{\epsilon}, k_{\epsilon} x\right) v_{\epsilon}^{p-\epsilon}(x) d x
$$

where A does not depend on ϵ. Let us now define
$\Omega_{\epsilon}^{1}=\left\{x \in B\left(0, \frac{1}{k_{\epsilon}}\right) /\left|y_{\epsilon}-k_{\epsilon} x\right| \geq \frac{1}{2}\left|y_{\epsilon}\right|\right\}$ and $\Omega_{\epsilon}^{2}=\left\{x \in B\left(0, \frac{1}{k_{\epsilon}}\right) /\left|y_{\epsilon}-k_{\epsilon} x\right|<\frac{1}{2}\left|y_{\epsilon}\right|\right\}$
We write

$$
\int_{B\left(0, \frac{1}{k_{\epsilon}}\right)} G\left(y_{\epsilon}, k_{\epsilon} x\right) v_{\epsilon}^{p-\epsilon}(x) d x=\int_{\Omega_{\epsilon}^{1}} G\left(y_{\epsilon}, k_{\epsilon} x\right) v_{\epsilon}^{p-\epsilon}(x) d x+\int_{\Omega_{\epsilon}^{2}} G\left(y_{\epsilon}, k_{\epsilon} x\right) v_{\epsilon}^{p-\epsilon}(x) d x
$$

According to the above mentioned property of the Green's function, and since $\left|y_{0}\right|<1$ so that the y_{ϵ} 's are in a compact subset of B,

$$
\begin{aligned}
\int_{\Omega_{\epsilon}^{1}} G\left(y_{\epsilon}, k_{\epsilon} x\right) v_{\epsilon}^{p-\epsilon}(x) d x & \leq A \int_{\Omega_{\epsilon}^{1}} \frac{v_{\epsilon}^{p-\epsilon}(x)}{\left|y_{\epsilon}-k_{\epsilon} x\right|^{N-2}} d x \\
& \leq \frac{2^{N-2}}{\left|y_{\epsilon}\right|^{N-2}} A \int_{B\left(0, \frac{1}{k_{\epsilon}}\right)} v_{\epsilon}^{p-\epsilon}(x) d x
\end{aligned}
$$

Together with the remark we made at the end of subsection 3.3, and under the assumption that $\left\|a_{-}\right\|_{L^{\frac{N}{2}}(B)}<\gamma$, where $\gamma>0$ only depends on N and is as in this remark, we get that

$$
\int_{\Omega_{\epsilon}^{1}} G\left(y_{\epsilon}, k_{\epsilon} x\right) v_{\epsilon}^{p-\epsilon}(x) d x \leq \frac{A}{\left|y_{\epsilon}\right|^{N-2}}
$$

Similarly,

$$
\int_{\Omega_{\epsilon}^{2}} G\left(y_{\epsilon}, k_{\epsilon} x\right) v_{\epsilon}^{p-\epsilon}(x) d x \leq A \int_{\Omega_{\epsilon}^{2}} \frac{v_{\epsilon}^{p-\epsilon}(x)}{\left|y_{\epsilon}-k_{\epsilon} x\right|^{N-2}} d x
$$

and if $\Omega_{\epsilon}=\left\{x /|x|<\frac{1}{2}\left|y_{\epsilon}\right|\right\}$, then, with the change of variable $y=k_{\epsilon} x-y_{\epsilon}$,

$$
\int_{\Omega_{\epsilon}^{2}} G\left(y_{\epsilon}, k_{\epsilon} x\right) v_{\epsilon}^{p-\epsilon}(x) d x \leq \frac{A}{k_{\epsilon}^{N}} \int_{\Omega_{\epsilon}} \frac{1}{|y|^{N-2}} v_{\epsilon}^{p-\epsilon}\left(\frac{y+y_{\epsilon}}{k_{\epsilon}}\right) d y
$$

Since $\left|\frac{y+y_{\epsilon}}{k_{\epsilon}}\right| \geq \frac{1}{2}\left|\hat{x}_{\epsilon}\right|$, and by lemma 3.4,

$$
\begin{aligned}
\frac{1}{k_{\epsilon}^{N}} \int_{\Omega_{\epsilon}} \frac{1}{|y|^{N-2}} v_{\epsilon}^{p-\epsilon}\left(\frac{y+y_{\epsilon}}{k_{\epsilon}}\right) d y & \leq \frac{A}{\left|\hat{x}_{\epsilon}\right|^{(N-2-\nu)(p-\epsilon)} k_{\epsilon}^{N}} \int_{\Omega_{\epsilon}} \frac{1}{|y|^{N-2}} d y \\
& \leq \frac{A}{\left|\hat{x}_{\epsilon}\right|^{(N-2-\nu)(p-\epsilon)} k_{\epsilon}^{N}} \int_{0}^{\frac{1}{2}\left|y_{\epsilon}\right|} t d t \\
& \leq \frac{A\left|y_{\epsilon}\right|^{2}}{\left|\hat{x}_{\epsilon}\right|^{(N-2-\nu)(p-\epsilon)} k_{\epsilon}^{N}}
\end{aligned}
$$

Since $k_{\epsilon} \leq\left|y_{\epsilon}\right| \leq 1$, we get with lemma 2.2 that $\left|y_{\epsilon}\right|^{\epsilon} \rightarrow 1$. It follows that $\left|\hat{x}_{\epsilon}\right|^{\epsilon} \rightarrow 1$, and we can write that

$$
\frac{\left|y_{\epsilon}\right|^{2}}{\left|\hat{x}_{\epsilon}\right|^{(N-2-\nu)(p-\epsilon)} k_{\epsilon}^{N}} \leq \frac{A}{\left|\hat{x}_{\epsilon}\right|^{2-p \nu}\left|y_{\epsilon}\right|^{N-2}}
$$

Choosing ν such that $\nu<\frac{2}{p}$, this was done at the end of section 3.3, we obtain that

$$
\int_{\Omega_{\epsilon}^{2}} G\left(y_{\epsilon}, k_{\epsilon} x\right) v_{\epsilon}^{p-\epsilon}(x) d x \leq \frac{o(1)}{\left|y_{\epsilon}\right|^{N-2}}
$$

It follows that

$$
\begin{aligned}
\left|y_{\epsilon}\right|^{N-2} u_{\epsilon}\left(x_{\epsilon}\right) u_{\epsilon}\left(y_{\epsilon}\right) \leq & A\left|y_{\epsilon}\right|^{N-2} \int_{B\left(0, \frac{1}{k_{\epsilon}}\right)} G\left(y_{\epsilon}, k_{\epsilon} x\right) v_{\epsilon}^{p-\epsilon}(x) d x \\
\leq & A\left|y_{\epsilon}\right|^{N-2} \int_{\Omega_{\epsilon}^{1}} G\left(y_{\epsilon}, k_{\epsilon} x\right) v_{\epsilon}^{p-\epsilon}(x) d x \\
& \quad+A\left|y_{\epsilon}\right|^{N-2} \int_{\Omega_{\epsilon}^{2}} G\left(y_{\epsilon}, k_{\epsilon} x\right) v_{\epsilon}^{p-\epsilon}(x) d x \\
\leq & A+o(1)
\end{aligned}
$$

which contradicts (8). It follows that (7) is true, and then (3) is also true. The proposition is proved.

Now that proposition 1 is proved, we go on with the study of the asymptotic behaviour of the u_{ϵ} 's. This is the aim of the following section, where the first assertion in theorem 3 is proved.

4 Convergence to the Green's function

Here again, we assume that the u_{ϵ} 's develop a concentration. First, we recall a result obtained by Brézis and Peletier [BrPe]:

Lemma 4.1 Let u be a C^{2} solution of

$$
\begin{cases}\Delta u=f & \text { in } B \\ u=0 & \text { on } \partial B\end{cases}
$$

and let ω be a neighbourhood of ∂B. Then

$$
\|u\|_{W^{1, q}(B)}+\|\nabla u\|_{C^{0, \beta}\left(\omega^{\prime}\right)} \leq A\left(\|f\|_{L^{1}(B)}+\|f\|_{L^{\infty}(\omega)}\right)
$$

for all $q<\frac{N}{N-1}$, all $0<\beta<1$, and all $\omega^{\prime} \subset \subset \omega$.
Note that it follows from this result that

$$
\int_{\partial B}\left|\nabla u_{\epsilon}\right|^{2} d \sigma=O\left(\mu_{\epsilon}^{N-2}\right)
$$

By lemma 4.1 we indeed just need to get estimates for the L^{1}-norm in B and the L^{∞}-norm in a neighbourhood of ∂B, of the function g_{ϵ} given by

$$
g_{\epsilon}(x)=N(N-2) f(x) u_{\epsilon}(x)^{p-\epsilon}-a(x) u_{\epsilon}(x)
$$

As easily seen, these estimates follow from proposition 1.
Now we prove the first assertion in theorem 3. This is the aim of the following lemma where, as in the introduction, G denotes the Green's function of the operator $\Delta+a$.

Lemma $4.2 \lim _{\epsilon \rightarrow 0} u_{\epsilon}\left(x_{\epsilon}\right) u_{\epsilon}(x)=(N-2) \omega_{N-1} G(x, 0)$ in $C_{\text {loc }}^{2}(\bar{B} \backslash\{0\})$.
Proof: Let K be a compact subset of $B \backslash\{0\}$, and $x \in K$. It follows from the equation satisfied by the u_{ϵ} 's that

$$
\begin{aligned}
u_{\epsilon}(x) & =N(N-2) \int_{B} f(y) u_{\epsilon}^{p-\epsilon}(y) G(x, y) d y \\
& =N(N-2) \frac{k_{\epsilon}^{N}}{\mu_{\epsilon}^{(p-\epsilon) \frac{N-2}{2}}} \int_{\mathbb{R}^{N}} g_{\epsilon}(z) d z
\end{aligned}
$$

where

$$
g_{\epsilon}(z)=f\left(k_{\epsilon} z\right) v_{\epsilon}^{p-\epsilon}(z) G\left(x, k_{\epsilon} z\right)
$$

By classical properties of the Green's function, there exists a constant $A>0$ such that for all $x \in K$, and all $y \in B, G(x, y) \leq A|x-y|^{-N+2}$. Dealing distinctly with the cases $\left|x-k_{\epsilon} z\right| \leq \delta$ and $\left|x-k_{\epsilon} z\right|>\delta$, where $\delta>0$ is such that for all $x \in K,|x| \geq 2 \delta$, and, according to proposition 1 , we see that

$$
\lim _{\epsilon \rightarrow 0} \int_{\mathbb{R}^{N}} g_{\epsilon}(z) d z=f(0) G(x, 0) \int_{\mathbb{R}^{N}} v^{p}(z) d z
$$

where the limit is uniform with respect to $x \in K$. As easily checked,

$$
\int_{\mathbb{R}^{N}} v^{p}(z) d z=\frac{\omega_{N-1}}{N}
$$

and

$$
\lim _{\epsilon \rightarrow 0} u_{\epsilon}\left(x_{\epsilon}\right) u_{\epsilon}(x)=(N-2) \omega_{N-1} G(x, 0)
$$

in $C_{l o c}^{0}(B \backslash\{0\})$. The convergence in $C_{l o c}^{0}(\bar{B} \backslash\{0\})$ then follows from lemma 4.1 and the equation satisfied by $w_{\epsilon}=u_{\epsilon}\left(x_{\epsilon}\right) u_{\epsilon}$, that is

$$
\Delta w_{\epsilon}+a(x) w_{\epsilon}=N(N-2) f(x) \mu_{\epsilon}^{\frac{N-2}{2}\left(\frac{4}{N-2}-\epsilon\right)} w_{\epsilon}^{p-\epsilon}
$$

The convergence in $C_{l o c}^{2}(\bar{B} \backslash\{0\})$ is easily obtained by classical results of elliptic theory, see for instance [GT]. The lemma is proved.

5 Convergence to a solution

In this section, we consider a sequence of functions $\left(\tilde{u}_{\epsilon}\right)$ such that

$$
\left\{\begin{array}{l}
\Delta \tilde{u}_{\epsilon}+a \tilde{u}_{\epsilon}=N(N-2) \lambda_{\epsilon} f(x) \tilde{u}_{\epsilon}^{p-\epsilon} \text { in } B \\
\tilde{u}_{\epsilon}>0 \text { in } B \text { and } \tilde{u}_{\epsilon}=0 \text { on } \partial B \\
N(N-2) \int_{B} f(x) \tilde{u}_{\epsilon}^{p+1-\epsilon} d x=1
\end{array}\right.
$$

where

$$
\lambda_{\epsilon}=\inf _{v \in \mathcal{D}(B)_{R} \backslash\{0\}} \frac{\int_{B}\left(|\nabla v|^{2}+a v^{2}\right) d x}{\left(N(N-2) \int_{B} f|v|^{p+1-\epsilon} d x\right)^{\frac{2}{p+1-\epsilon}}}
$$

We set

$$
\lambda=\inf _{v \in \mathcal{D}(B)_{R} \backslash\{0\}} \frac{\int_{B}\left(|\nabla v|^{2}+a v^{2}\right) d x}{\left(N(N-2) \int_{B} f|v|^{p+1} d x\right)^{\frac{2}{p+1}}}
$$

The following results are by now classical. We therefore restrict ourselves to brief comments on their proofs. For details, see for instance [Heb1].

Lemma $5.1 \lim _{\epsilon \rightarrow 0} \lambda_{\epsilon}=\lambda$.
Proof: Let $u \in \mathcal{D}(B)_{R} \backslash\{0\}$. By Hölder's inequality,

$$
\left(N(N-2) \int_{B} f|u|^{p+1-\epsilon} d x\right)^{\frac{2}{p+1-\epsilon}} \leq \operatorname{Vol}(B)^{\frac{2 \epsilon}{(p+1)(p+1-\epsilon)}}\left(N(N-2) \int_{B} f|u|^{p+1} d x\right)^{\frac{2}{p+1}}
$$

It follows that $\lambda \leq \liminf _{\epsilon \rightarrow 0} \lambda_{\epsilon}$. Conversely, let $\alpha>0$ be any positive real number, and let $u \in \mathcal{D}(B)_{R} \backslash\{0\}$ be such that

$$
\frac{\int_{B}\left(|\nabla u|^{2}+a u^{2}\right) d x}{\left(N(N-2) \int_{B} f|u|^{p+1} d x\right)^{\frac{2}{p+1}}}<\lambda+\alpha
$$

Clearly, when $\epsilon \rightarrow 0$,

$$
\frac{\int_{B}\left(|\nabla u|^{2}+a u^{2}\right) d x}{\left(N(N-2) \int_{B} f|u|^{p+1-\epsilon} d x\right)^{\frac{2}{p+1-\epsilon}}} \longrightarrow \frac{\int_{B}\left(|\nabla u|^{2}+a u^{2}\right) d x}{\left(N(N-2) \int_{B} f|u|^{p+1} d x\right)^{\frac{2}{p+1}}}
$$

We then obtain that $\lim \sup _{\epsilon \rightarrow 0} \lambda_{\epsilon} \leq \lambda+\alpha$. Since $\alpha>0$ is arbitrary, the result follows.
We now state the following result.
Lemma 5.2 : Assume that a subsequence of $\left(\tilde{u}_{\epsilon}\right)$ converges almost everywhere to a function $\tilde{u} \neq 0$. Then:

1. \tilde{u} is a MRS solution of the problem

$$
(\star)\left\{\begin{array}{l}
\Delta u+a(x) u=N(N-2) \lambda f(x) u^{p} \text { in } B \\
u>0 \text { in } B, \quad \text { and } u=0 \text { on } \partial B
\end{array}\right.
$$

2. $\lim _{\epsilon \rightarrow 0} \tilde{u}_{\epsilon}=\tilde{u}$ in $C^{2}(\bar{B})$.

Proof: Point 1 easily follows from classical arguments of variational theory, like the ones developed, for example, in the study of the Yamabe problem. We first prove that \tilde{u} is a solution of (\star), and then that \tilde{u} is minimizing. Point 2 follows from classical arguments of elliptic theory.

At last, we state the following result.
Lemma 5.3 We always have $\lambda \leq \frac{1}{4}\left(N(N-2) \omega_{N}\right)^{\frac{2}{N}}$, and if this inequality is strict, then, up to a subsequence, \tilde{u}_{ϵ} converges almost everywhere to a function $\tilde{u} \neq 0$. Together with lemma 5.2, the convergence is then C^{2}, and \tilde{u} is a MRS solution of problem (\star).

Proof: Here again, the result follows from classical variational arguments. We obtain the first assertion with the function z_{ϵ} given by

$$
z_{\epsilon}(x)=\frac{\phi(|x|)}{\left(\epsilon^{2}+|x|^{2}\right)^{\frac{N-2}{2}}}
$$

where ϕ is a cut-off function that equals 1 around 0 . As $\epsilon \rightarrow 0$, we get indeed that

$$
\frac{\int_{B}\left(\left|\nabla z_{\epsilon}\right|^{2}+a z_{\epsilon}^{2}\right) d x}{\left(N(N-2) \int_{B} f\left|z_{\epsilon}\right|^{p+1} d x\right)^{\frac{2}{p+1}}} \longrightarrow \frac{\left(N(N-2) \omega_{N}\right)^{\frac{2}{N}}}{4}
$$

For the second assertion, the energy associated to the problem goes under the critical energy. The fact that the $\tilde{u_{\epsilon}}$'s do not develop a concentration under such an assumption is by now classical.

6 Proof of the theorems

Theorem 2 immediately follows from what we said in section 2 , and from lemma 3.3. The first assertion of theorem 3 was proved in section 4. Only theorem 1 and points 1,2 and 3 of theorem 3 remain to be proved. Everything here comes from the estimate obtained in proposition 1, and from the Pohozaev identity [Poh]. When applied to the functions u_{ϵ}, this identity gives

$$
\begin{aligned}
& \underbrace{\frac{N(N-2)^{2} \epsilon}{2(p+1-\epsilon)} \int_{B} f(|x|) u_{\epsilon}^{p+1-\epsilon} d x}_{I_{\epsilon}}+\underbrace{\frac{N(N-2)}{p+1-\epsilon} \int_{B}|x| f^{\prime}(|x|) u_{\epsilon}^{p+1-\epsilon} d x}_{I I_{\epsilon}} \\
& -\underbrace{\int_{B}\left(a(|x|)+\frac{1}{2}|x| a^{\prime}(|x|)\right) u_{\epsilon}^{2} d x}_{I I I_{\epsilon}}=\underbrace{\frac{1}{2} \int_{\partial B}\left|\nabla u_{\epsilon}\right|^{2} d \sigma}_{I V_{\epsilon}}
\end{aligned}
$$

In what follows, we assume that the u_{ϵ} 's develop a concentration. With the notations of section 5 , this gives that $\lambda=\frac{1}{4}\left(N(N-2) \omega_{N}\right)^{\frac{2}{N}}$. In particular, we recover the results of sections 2,3 , and 4. We estimate in what follows the terms $I_{\epsilon}, I I_{\epsilon}, I I I_{\epsilon}$, and $I V_{\epsilon}$ of the Pohozaev identity.

The terms I_{ϵ} and $I V_{\epsilon}$ are the easiest to estimate. We straightforwardly obtain that

$$
I_{\epsilon}=\frac{(N-2)^{3} \omega_{N}}{2^{N+2}}(1+o(1)) \epsilon
$$

and it follows from lemma 4.2 that

$$
I V_{\epsilon}=\frac{1}{2}(N-2)^{2} \omega_{N-1}^{3} g^{\prime}(1)^{2} \mu_{\epsilon}^{N-2}+o\left(\mu_{\epsilon}^{N-2}\right)
$$

where g is as in the introduction.
Concerning the term $I I_{\epsilon}$, we write that

$$
f^{\prime}(r)=\frac{f^{\left(k_{f}\right)}(0)}{\left(k_{f}-1\right)!} r^{k_{f}-1}+O\left(r^{k_{f}}\right)
$$

Then,

$$
\begin{aligned}
& \int_{B}|x| f^{\prime}(|x|) u_{\epsilon}^{p+1-\epsilon} d x=\frac{f^{\left(k_{f}\right)}(0)}{\left(k_{f}-1\right)!} \int_{B}|x|^{k_{f}} u_{\epsilon}^{p+1-\epsilon} d x+O\left(\int_{B}|x|^{k_{f}+1} u_{\epsilon}^{p+1-\epsilon} d x\right) \\
& =\frac{f^{\left(k_{f}\right)}(0)}{\left(k_{f}-1\right)!}(1+o(1)) \mu_{\epsilon}^{k_{f}} \underbrace{\int_{B\left(0, \frac{1}{k_{\epsilon}}\right)}|x|^{k_{f}} v_{\epsilon}^{p+1-\epsilon} d x}_{I I_{\epsilon}^{1}}+O(\mu_{\epsilon}^{k_{f}+1} \underbrace{\int_{B\left(0, \frac{1}{k_{\epsilon}}\right)}|x|^{k_{f}+1} v_{\epsilon}^{p+1-\epsilon} d x}_{I I_{\epsilon}^{2}})
\end{aligned}
$$

If $k_{f}<N$, and together with proposition $1, I I_{\epsilon}^{1}$ converges by the dominated convergence theorem. This holds also for $I I_{\epsilon}^{2}$ if $k_{f}+1<N$. When $k_{f}=N-1, I I_{\epsilon}^{2}$ diverges, but is bounded by $\left|\ln k_{\epsilon}\right|$. This leads to

$$
\int_{B}|x| f^{\prime}(|x|) u_{\epsilon}^{p+1-\epsilon} d x \approx \frac{f^{\left(k_{f}\right)}(0)}{\left(k_{f}-1\right)!} \mu_{\epsilon}^{k_{f}} \int_{\mathbb{R}^{N}}|x|^{k_{f}} v^{p+1} d x
$$

as soon as $k_{f}<N$. In the same way,

$$
\int_{B}|x| f^{\prime}(|x|) u_{\epsilon}^{p+1-\epsilon} d x=O\left(\mu_{\epsilon}^{N}\left|\ln \mu_{\epsilon}\right|\right)
$$

if $k_{f}=N$, and

$$
\int_{B}|x| f^{\prime}(|x|) u_{\epsilon}^{p+1-\epsilon} d x=O\left(\mu_{\epsilon}^{N}\right)
$$

if $k_{f}>N$. Then,

$$
I I_{\epsilon}=\frac{(N-2)^{2}}{2} \frac{f^{\left(k_{f}\right)}(0)}{\left(k_{f}-1\right)!} \mu_{\epsilon}^{k_{f}} \int_{\mathbb{R}^{N}}|x|^{k_{f}} v^{p+1} d x+o\left(\mu_{\epsilon}^{k_{f}}\right)
$$

if $k_{f} \leq N-2$, while $I I_{\epsilon}=o\left(\mu_{\epsilon}^{N-2}\right)$ if $k_{f}>N-2$.
We are finally concerned with the term $I I I_{\epsilon}$. The study there is more intricate, and we separate the cases $k_{a}<N-4, k_{a}>N-4$, and $k_{a}=N-4$. We first write that

$$
\begin{aligned}
a(r) & =\frac{a^{\left(k_{a}\right)}(0)}{k_{a}!} r^{k_{a}}+O\left(r^{k_{a}+1}\right) \\
a^{\prime}(r) & =\frac{a^{\left(k_{a}\right)}(0)}{\left(k_{a}-1\right)!} r^{k_{a}-1}+O\left(r^{k_{a}}\right)
\end{aligned}
$$

If $k_{a}<N-4$, we obtain with the same kind of arguments than the ones used above that

$$
I I I_{\epsilon}=\frac{a^{\left(k_{a}\right)}(0)}{k_{a}!}\left(1+\frac{k_{a}}{2}\right) \mu_{\epsilon}^{k_{a}+2} \int_{\mathbb{R}^{N}}|x|^{k_{a}} v^{2} d x+o\left(\mu_{\epsilon}^{k_{a}+2}\right)
$$

Since

$$
\mu_{\epsilon}^{-1}=(1+o(1)) u_{\epsilon}(0)^{\frac{2}{N-2}}
$$

we get point 1 of theorem 3 with what has been said before. If, for example, $k_{a}<N-4$ and $k_{f}<k_{a}+2$, multiplying the Pohozaev identity by $\mu_{\epsilon}^{-k_{f}}$, we obtain that

$$
\frac{(N-2) \omega_{N}}{2^{N+1}}\left(\epsilon \mu_{\epsilon}^{-k_{f}}\right)+\frac{f^{\left(k_{f}\right)}(0)}{\left(k_{f}-1\right)!}(1+o(1)) \int_{\mathbb{R}^{N}}|x|^{k_{f}} v^{p+1} d x=0
$$

which straightforwardly leads to point $1(a)$ of theorem 3 . The same arguments are valid for the points $1(b)$ and $1(c)$ of theorem 3.

We now assume that $k_{a}>N-4$ and we let h be the function

$$
h(x)=a(|x|)+\frac{1}{2}|x| a^{\prime}(|x|)
$$

There exists a constant $C>0$ such that $|h(x)| \leq C|x|^{k_{a}}$. Let $\delta>0$. We write that

$$
\begin{aligned}
\left|\int_{B(0, \delta)} h(x) u_{\epsilon}^{2}\left(x_{\epsilon}\right) u_{\epsilon}^{2}(x) d x\right| & \leq A \int_{B(0, \delta)} \frac{|x|^{k_{a}}}{\left(\mu_{\epsilon}^{2}+|x|^{2}\right)^{N-2}} d x \\
& \leq A \int_{0}^{\delta} \frac{r^{k_{a}+N-1}}{\left(\mu_{\epsilon}^{2}+r^{2}\right)^{N-2}} d r \\
& \leq A \mu_{\epsilon}^{k_{a}-(N-4)} \int_{0}^{\frac{\delta}{\mu_{\epsilon}}} \frac{s^{k_{a}+N-1}}{\left(1+s^{2}\right)^{N-2}} d s \\
& \leq A \mu_{\epsilon}^{k_{a}-(N-4)}\left(O(1)+\int_{1}^{\frac{\delta}{\mu_{\epsilon}}} s^{k_{a}-(N-4)-1} d s\right) \\
& \leq A\left(\delta^{k_{a}-(N-4)}+\mu_{\epsilon}^{k_{a}-(N-4)}\right)
\end{aligned}
$$

where A does not depend on ϵ and δ. Independently, $|x|^{N-2}|G(x, 0)| \leq A$. It follows that for $k_{a}>N-4,|x|^{k_{a}} G(x, 0)^{2}$ is integrable. We let

$$
H_{\delta}(\epsilon)=\left|\int_{B \backslash B(0, \delta)} h(x) u_{\epsilon}^{2}\left(x_{\epsilon}\right) u_{\epsilon}^{2}(x) d x-\int_{B \backslash B(0, \delta)} h(x)\left((N-2) \omega_{N-1} G(x, 0)\right)^{2} d x\right|
$$

By lemma 4.2, $H_{\delta}=o(1)$. We then write that

$$
\begin{aligned}
& \left|\int_{B} h(x) u_{\epsilon}^{2}\left(x_{\epsilon}\right) u_{\epsilon}^{2}(x) d x-\int_{B} h(x)\left((N-2) \omega_{N-1} G(x, 0)\right)^{2} d x\right| \\
& \leq\left|\int_{B(0, \delta)} h(x) u_{\epsilon}^{2}\left(x_{\epsilon}\right) u_{\epsilon}^{2}(x) d x\right|+\left|\int_{B(0, \delta)} h(x)\left((N-2) \omega_{N-1} G(x, 0)\right)^{2} d x\right|+H_{\delta}(\epsilon) \\
& \leq\left. A\left|\int_{B(0, \delta)}\right| x\right|^{k_{a}} u_{\epsilon}^{2}\left(x_{\epsilon}\right) u_{\epsilon}^{2}(x) d x|+A| \int_{B(0, \delta)}|x|^{k_{a}}\left((N-2) \omega_{N-1} G(x, 0)\right)^{2} d x \mid+H_{\delta}(\epsilon) \\
& \leq A \delta^{k_{a}-(N-4)}+o(1)
\end{aligned}
$$

Since $\delta>0$ is arbitrary, it follows that

$$
\begin{aligned}
& \frac{1}{\mu_{\epsilon}^{N-2}} \int_{B}\left(a(|x|)+\frac{1}{2}|x| a^{\prime}(|x|)\right) u_{\epsilon}^{2}(x) d x \\
& \quad=(N-2)^{2} \omega_{N-1}^{2} \int_{B}\left(a(|x|)+\frac{1}{2}|x| a^{\prime}(|x|)\right) G(x, 0)^{2} d x+o(1)
\end{aligned}
$$

and then that

$$
I I I_{\epsilon}=(N-2)^{2} \omega_{N-1}^{3} \Phi(a) \mu_{\epsilon}^{N-2}+o\left(\mu_{\epsilon}^{N-2}\right)
$$

Multipying the Pohozaev identity by $\mu_{\epsilon}^{-k_{f}}$, we then obtain the points $3(a)$ and $3(b)$ of theorem 3. Point $3(c)$ is obtained similarly, multiplying now the Pohozaev identity by $\mu_{\epsilon}^{-(N-2)}$.

At last, we assume that $k_{a}=N-4$. By proposition 1 , we easily obtain that

$$
\begin{aligned}
\int_{B}\left(a(|x|)+\frac{1}{2}|x| a^{\prime}(|x|)\right) u_{\epsilon}^{2} d x & =\frac{a^{\left(k_{a}\right)}(0)}{k_{a}!}\left(1+\frac{k_{a}}{2}\right) \mu_{\epsilon}^{k_{a}+2} \int_{\mathbb{R}^{N}}|x|^{k_{a}} v_{\epsilon}^{2} d x+O\left(\mu_{\epsilon}^{k_{a}+2}\right) \\
& =\frac{(N-2) a^{(N-4)}(0)}{2(N-4)!} \mu_{\epsilon}^{N-2} \int_{\mathbb{R}^{N}}|x|^{N-4} v_{\epsilon}^{2} d x+O\left(\mu_{\epsilon}^{N-2}\right)
\end{aligned}
$$

and we now left with getting an estimate for the term

$$
I I I_{\epsilon}^{1}=\int_{\mathbb{R}^{N}}|x|^{N-4} v_{\epsilon}^{2} d x
$$

Let us consider $\delta \in] 0,1[$ to be chosen later. By proposition 1 ,

$$
I I I_{\epsilon}^{1}=\int_{B\left(0, \frac{\delta}{k_{\epsilon}}\right)}|x|^{N-4} v_{\epsilon}^{2} d x+O(1)
$$

Let $\left(\hat{x}_{\epsilon}\right)$ be a sequence of points such that $\left|\hat{x}_{\epsilon}\right| \leq \frac{\delta}{k_{\epsilon}}$. We set

$$
R_{\epsilon}=\frac{v_{\epsilon}\left(\hat{x}_{\epsilon}\right)}{v\left(\hat{x}_{\epsilon}\right)}
$$

If $\left|\hat{x}_{\epsilon}\right|$ is bounded, then $R_{\epsilon} \rightarrow 1$ since $v_{\epsilon} \rightarrow v$ uniformly on every compact subset of \mathbb{R}^{N}. Otherwise, $\left|\hat{x}_{\epsilon}\right| \rightarrow+\infty$, and, up to a subsequence, two cases occur: Either there exists $\delta_{0}>0$ such that $k_{\epsilon}\left|\hat{x}_{\epsilon}\right| \rightarrow \delta_{0}$, or $k_{\epsilon}\left|\hat{x}_{\epsilon}\right| \rightarrow 0$. In the first case, we set $y_{\epsilon}=k_{\epsilon} \hat{x}_{\epsilon}$. Then $\left|y_{\epsilon}\right| \leq \delta$ and

$$
R_{\epsilon} \approx\left|y_{\epsilon}\right|^{N-2} u_{\epsilon}\left(x_{\epsilon}\right) u_{\epsilon}\left(y_{\epsilon}\right)
$$

It follows from lemma 4.2 that

$$
R_{\epsilon} \rightarrow(N-2) \omega_{N-1} \delta_{0}^{N-2} g\left(\delta_{0}\right)
$$

In the second case, where $\left|\hat{x}_{\epsilon}\right| \rightarrow+\infty$ and $k_{\epsilon}\left|\hat{x}_{\epsilon}\right| \rightarrow 0$, we use the Green's formula. Setting $y_{\epsilon}=k_{\epsilon} \hat{x}_{\epsilon}$,

$$
\begin{aligned}
R_{\epsilon} & \approx N(N-2)\left|y_{\epsilon}\right|^{N-2} \mu_{\epsilon}^{-\frac{N-2}{2}} \int_{B(0,1)} f(x) u_{\epsilon}^{p-\epsilon}(x) G\left(y_{\epsilon}, x\right) d x \\
& \approx N(N-2)\left|y_{\epsilon}\right|^{N-2} \int_{B\left(0, \frac{1}{k_{\epsilon}}\right)} f\left(k_{\epsilon} x\right) v_{\epsilon}^{p-\epsilon}(x) G\left(y_{\epsilon}, k_{\epsilon} x\right) d x
\end{aligned}
$$

We let $\delta_{\epsilon}=C\left|y_{\epsilon}\right|$ where $\left.C \in\right] 0,1[$, and we write that

$$
\begin{aligned}
\left|y_{\epsilon}\right|^{N-2} \int_{B\left(0, \frac{1}{k_{\epsilon}}\right)} f\left(k_{\epsilon} x\right) v_{\epsilon}(x)^{p-\epsilon} G\left(y_{\epsilon}, k_{\epsilon} x\right) d x= & \underbrace{\left|y_{\epsilon}\right|^{N-2} \int_{\Omega_{\epsilon}^{1}} f\left(k_{\epsilon} x\right) v_{\epsilon}^{p-\epsilon}(x) G\left(y_{\epsilon}, k_{\epsilon} x\right) d x}_{I I I_{\epsilon}^{2}} \\
& +\underbrace{\left|y_{\epsilon}\right|^{N-2} \int_{\Omega_{\epsilon}^{2}} f\left(k_{\epsilon} x\right) v_{\epsilon}^{p-\epsilon}(x) G\left(y_{\epsilon}, k_{\epsilon} x\right) d x}_{I I I_{\epsilon}^{3}}
\end{aligned}
$$

where

$$
\Omega_{\epsilon}^{1}=\left\{x \in B\left(0, \frac{1}{k_{\epsilon}}\right) /\left|y_{\epsilon}-k_{\epsilon} x\right|>\delta_{\epsilon}\right\} \quad \text { and } \Omega_{\epsilon}^{2}=\left\{x \in B\left(0, \frac{1}{k_{\epsilon}}\right) /\left|y_{\epsilon}-k_{\epsilon} x\right| \leq \delta_{\epsilon}\right\}
$$

We then study $I I I_{\epsilon}^{2}$ and $I I I_{\epsilon}^{3}$ separately. Concerning $I I I_{\epsilon}^{2}$,

$$
\left|G\left(y_{\epsilon}, k_{\epsilon} x\right)\right| \leq \frac{A}{\left|y_{\epsilon}-k_{\epsilon} x\right|^{N-2}} \leq \frac{A}{\delta_{\epsilon}^{N-2}}
$$

As a consequence, if $x \in \Omega_{\epsilon}^{1}$,

$$
\left|\left|y_{\epsilon}\right|^{N-2} f\left(k_{\epsilon} x\right) v_{\epsilon}^{p-\epsilon}(x) G\left(y_{\epsilon}, k_{\epsilon} x\right)\right| \leq A\left(\frac{\left|y_{\epsilon}\right|}{\delta_{\epsilon}}\right)^{N-2} v^{p-\epsilon}(x) \leq \frac{A v^{p-\epsilon_{0}}(x)}{C^{N-2}}
$$

for $\epsilon \leq \epsilon_{0}, \epsilon_{0}>0$ small. In particular,

$$
h_{\epsilon}(x)=\left|y_{\epsilon}\right|^{N-2} 1_{\Omega_{\epsilon}^{1}}(x) f\left(k_{\epsilon} x\right) v_{\epsilon}^{p-\epsilon}(x) G\left(y_{\epsilon}, k_{\epsilon} x\right)
$$

is bounded from above by an integrable function, where $1_{\Omega_{\epsilon}^{1}}$ denotes the characteristic function of Ω_{ϵ}^{1}. Clearly,

$$
\frac{\left|y_{\epsilon}-k_{\epsilon} x\right|}{\delta_{\epsilon}}=\frac{\left|y_{\epsilon}-\frac{\left|y_{\epsilon}\right|}{\hat{x}_{\epsilon} \mid} x\right|}{C\left|y_{\epsilon}\right|}=\frac{1}{C}\left|\frac{y_{\epsilon}}{\left|y_{\epsilon}\right|}-\frac{x}{\left|\hat{x}_{\epsilon}\right|}\right| \rightarrow \frac{1}{C}
$$

which is greater than 1 . Moreover,

$$
G\left(y_{\epsilon}, k_{\epsilon} x\right) \approx \frac{1}{(N-2) \omega_{N-1}\left|y_{\epsilon}-k_{\epsilon} x\right|^{N-2}}
$$

so that

$$
\left|y_{\epsilon}\right|^{N-2} G\left(y_{\epsilon}, k_{\epsilon} x\right) \rightarrow \frac{1}{(N-2) \omega_{N-1}}
$$

Then, and since $f(0)=1, h_{\epsilon}$ converges almost everywhere to the function $\frac{v^{p}}{(N-2) \omega_{N-1}}$. By the dominated convergence theorem,

$$
I I I_{\epsilon}^{2} \rightarrow \frac{1}{(N-2) \omega_{N-1}} \int_{\mathbb{R}^{N}} v^{p} d x=\frac{1}{N(N-2)}
$$

Concerning the term $I I I_{\epsilon}^{3}$, a rough estimate is that

$$
\begin{aligned}
\left|I I I_{\epsilon}^{3}\right| & \leq A\left|y_{\epsilon}\right|^{N-2} \int_{\Omega_{\epsilon}^{2}} v^{p}(x) G\left(y_{\epsilon}, k_{\epsilon} x\right) d x \\
& \leq A\left|y_{\epsilon}\right|^{N-2} \int_{\Omega_{\epsilon}^{2}} \frac{v^{p}(x)}{\left|y_{\epsilon}-k_{\epsilon} x\right|^{N-2}} d x
\end{aligned}
$$

Together with the change of variable $k_{\epsilon} x=y+y_{\epsilon}$, we obtain

$$
\left|I I I_{\epsilon}^{3}\right| \leq A \frac{\left|y_{\epsilon}\right|^{N-2}}{k_{\epsilon}^{N}} \int_{|y| \leq \delta_{\epsilon}} \frac{1}{|y|^{N-2}} v^{p}\left(\frac{y+y_{\epsilon}}{k_{\epsilon}}\right) d y
$$

Clearly, if $|y| \leq \delta_{\epsilon}$,

$$
\left|\frac{y+y_{\epsilon}}{k_{\epsilon}}\right| \geq \frac{\left|y_{\epsilon}\right|-|y|}{k_{\epsilon}} \geq \frac{\left|y_{\epsilon}\right|-\delta_{\epsilon}}{k_{\epsilon}}=(1-C) \frac{\left|y_{\epsilon}\right|}{k_{\epsilon}}=(1-C)\left|\hat{x}_{\epsilon}\right|
$$

while $v(x) \leq A|x|^{-N+2}$. As a consequence,

$$
\left|I I I_{\epsilon}^{3}\right| \leq \frac{A\left|y_{\epsilon}\right|^{N-2} \omega_{N-1}}{(1-C)^{N+2}\left|\hat{x}_{\epsilon}\right|^{N+2} k_{\epsilon}^{N}} \int_{0}^{\delta_{\epsilon}} t d t=\frac{A C^{2} \omega_{N-1}}{2(1-C)^{N+2}\left|\hat{x}_{\epsilon}\right|^{2}}
$$

and $I I I_{\epsilon}^{3} \rightarrow 0$. In particular, $R_{\epsilon} \approx N(N-2) I I I_{\epsilon}^{2}$, and $R_{\epsilon} \rightarrow 1$. Summarizing: either $k_{\epsilon}\left|\hat{x}_{\epsilon}\right| \rightarrow 0$, and then $R_{\epsilon} \rightarrow 1$, or $k_{\epsilon}\left|\hat{x}_{\epsilon}\right| \rightarrow \delta_{0}$, where $\delta_{0}>0$, and then $R_{\epsilon} \rightarrow(N-2) \omega_{N-1} \delta_{0}^{N-2} g\left(\delta_{0}\right)$. Let $\alpha \in] 0,1[$ be given. We note that

$$
\lim _{\delta_{0} \rightarrow 0^{+}}(N-2) \omega_{N-1} \delta_{0}^{N-2} g\left(\delta_{0}\right)=1
$$

and we choose $\delta>0$ such that for all $\left.\delta_{0} \in\right] 0, \delta[$,

$$
1-\alpha \leq(N-2) \omega_{N-1} \delta_{0}^{N-2} g\left(\delta_{0}\right) \leq 1+\alpha
$$

Then,

$$
1-\alpha \leq R_{\epsilon} \leq 1+\alpha
$$

We now set

$$
m_{\epsilon}=\min _{0 \leq|x| \leq \frac{\delta}{k_{\epsilon}}} \frac{v_{\epsilon}(x)}{v(x)} \quad \text { and } \quad M_{\epsilon}=\max _{0 \leq|x| \leq \frac{\delta}{k_{\epsilon}}} \frac{v_{\epsilon}(x)}{v(x)}
$$

According to what we just said,

$$
1-\alpha \leq m_{\epsilon} \leq M_{\epsilon} \leq 1+\alpha
$$

and then

$$
(1-\alpha) \int_{B\left(0, \frac{\delta}{k_{\epsilon}}\right)}|x|^{N-4} v^{2} d x \leq \int_{B\left(0, \frac{\delta}{k_{\epsilon}}\right)}|x|^{N-4} v_{\epsilon}^{2} d x \leq(1+\alpha) \int_{B\left(0, \frac{\delta}{k_{\epsilon}}\right)}|x|^{N-4} v^{2} d x
$$

Therefore, as easily checked,

$$
\frac{1}{\left|\ln k_{\epsilon}\right|} \int_{B\left(0, \frac{\delta}{k_{\epsilon}}\right)}|x|^{N-4} v^{2} d x \rightarrow \omega_{N-1}
$$

Since $\alpha \in] 0,1[$ is arbitrary,

$$
\frac{1}{\left|\ln k_{\epsilon}\right|} I I I_{\epsilon}^{1} \rightarrow \omega_{N-1}
$$

and we thus proved that

$$
I I I_{\epsilon}=\frac{(N-2) \omega_{N-1} a^{(N-4)}(0)}{2(N-4)!} \mu_{\epsilon}^{N-2}\left|\ln \mu_{\epsilon}\right|+o\left(\mu_{\epsilon}^{N-2}\left|\ln k_{\epsilon}\right|\right)
$$

Multiplying the Pohozaev identity by $\mu_{\epsilon}^{-k_{f}}$, and according to the preceeding estimates, we obtain point $2(a)$ of theorem 3. Similarly, multiplying the Pohozaev identity by $\mu_{\epsilon}^{-N+2}\left|\ln \mu_{\epsilon}\right|^{-1}$, we obtain point $2(b)$ of theorem 3 . In particular, theorem 3 is proved.

We are now left with the proof of theorem 1. According to the results of section 5 , it suffices to show that, under the assumptions of this theorem, at least one subsequence of (u_{ϵ}) converges almost everywhere to a nonzero function. If not, the u_{ϵ} 's develop a concentration and we are back to one of the situations described in theorem 3. Noting the assumptions of theorem 1 are those that make the limits of the different points of theorem 3 negative, theorem 1 is proved. \square

Acknowledgement: The author whishes to express his gratitude to Emmanuel Hebey for his help during the preparation of the manuscript.

References

[AtPe] Atkinson, F.V.; Peletier, L.A. Elliptic equations with nearly critical growth. J. Differ. Equations 1987, 70, 349-365.
[BrNi] Brézis,H.; Nirenberg, L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure and Appl. Math. 1986, 39, 17-39.
[BrPe] Brézis, H.; Peletier, L.A. Asymptotics for elliptic equations involving cri-tical Sobolev exponents. In Partial differential equations and the calculus of variations; Colombini, F., Marino, A., Modica, L., Spagnolo, S., Eds.; Birkhäuser: Basel, 1989; 149-192.
[CGS] Caffarelli, L.A.; Gidas B.; Spruck, J. Asymptotic symmetry and local behavior of semilinear elliptic equations with Sobolev growth. Commun. Pure Appl. Math. 1989, 42, 271297.
[DeHe] Demengel, F.; Hebey, E. On some nonlinear equations involving the p-laplacian with critical Sobolev growth. Adv. Differ. Equ. 1998, 3, 533-574.
[Dru] Druet, O. The best constants problem in Sobolev inequalities. Math. Ann. 1999, 314, 327-346.
[GP] Garcìa Azorero, J.; Peral Alonso, I. On limits of solutions of elliptic problems with nearly critical exponent. Commun. Partial Differ. Equations 1992, 17 (11-12), 2113-2126.
[GT] Gilbarg, D.; Trudinger, N.S. Elliptic Partial Differential Equations of Second Order, 2nd Ed.; Grundlehren der Mathematischen Wissenschaften; Springer-Verlag: Berlin, 1983; Vol. 224, 513 pp.
[Han] Han, Z.C. Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent. Ann. Inst. Henri Poincaré, Analyse Non Linéaire 1991, 8, 159-174.
[Heb1] Hebey, E. Asymptotics for some quasilinear elliptic equations. Differ. Integral Equ. 1996, 9, 71-88.
[Heb2] Hebey, E. Introduction à l'analyse non-linéaire sur les variétés; Fondations; Diderot Editeur: Paris, 1997; 406 pp.
[Heb3] Hebey, E. Nonlinear analysis on manifolds: Sobolev spaces and inequalities; CIMS Lecture Notes; Courant Institute of Mathematical Sciences: New-York, 1999; Vol. 5, 309 pp.
[Heb4] Hebey, E. Asymptotic behavior of positive solutions of quasilinear elliptic equations with critical Sobolev growth. Differ. Integral Equ. 2000, 13 (7-9), 1073-1080.
[Poh] Pohozaev, S.I. Eigenfunctions of the equations $\Delta u+\lambda f(u)=0$. Soviet. Math. Dokl. 1965, 6, 1408-1411.
[Rey] Rey, O. Proof of two conjectures of H.Brézis and L.A.Peletier. Manuscr. Math. 1989, 65, 19-37.

