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1 Introduction and statement of the results

Let B be the unit ball in RY, N > 3, and a, f : R — R two smooth functions. We regard
x> a(|z|) and z — f(|x]) as functions of the variable z € RY. As easily seen, these functions
are locally Lipschitz. In particular, they are locally in C%“ for all a €]0,1[. In order to fix
ideas, we suppose that f > 0 and that f(0) = 1. Then we consider the following problem:

Au+a(|z))u = N(N = 2)f(Jz|)u? in B

(1)
u>0inB, u=00n0B

where A = Z e is the Laplacian with the minus sign convention, and p = N—fg is critical

from the view pomt of Sobolev embeddings. We let H}(B) be the standard Sobolev space,
defined as the completion of D(B), the set of smooth functions with compact support in B,

with respect to the norm
Jull =/ [ 1Vulds
B

In the sequel, we suppose that the operator u — Au + a(|z]) is coercive on Hj(B). This is the
case when a > —\;, where )\ is the first eigenvalue of A for the Dirichlet problem.

Situations where (I) does not have a solution are in Pohozaev [Poh|. In particular, (1) does
not possess a solution if @ = 0 and f = 1. However, as it is subcritical from the view point of
Sobolev embeddings, the problem

Aue + a(|z])ue = N(N = 2) f(|z|)uP~¢ in B

(L)
ue >0in B, u, =00n 0B

has a solution u, € C?(B) for all € €]0,p — 1[. This solution can be assumed to be minimizing
and radially symmetrical (MRS), where u, is said to be MRS if u, is radially symmetrical and

Jp (Vul? +a(zudyde o [5 (IVoP + allz)v?) de
(fy Sl ) 7= wEPEROY (] o= =51




where D(B)g denotes the set of smooth radially symmetrical functions with compact support
in B. The arguments required for the proof of this result are by now classical.

On the one hand, we are concerned in this article with the existence of conditions on a and f
for (1) to have a solution. On the other hand, we are concerned with the asymptotic behaviour
of ue as € — 0 when (/) does not have a solution. The existence of solutions for (I) has been
studied by various authors. In particular, when f =1 and a = A\, A € R, Brézis and Nirenberg
[BrNi] got that () has a solution if and only if A €]0,A\;[ when N > 4, and A €]3A;, A[ when
N = 3. Independently, asymptotic type studies were first developed by Atkinson and Peletier
[AtPe]. With arguments from ODE’s theory, and assuming that a« = 0 and f = 1, they got
that

. 2 .
e = o me

and that, for all x € B\{0},

o VN —2I'(Y) 1
ime Y2 (x) = 2 _
1_)0 () 9 /—F(N) <|x|N—2 1)

Brézis and Peletier [BrPe] returned to this problem, but with arguments from PDE’s theory,
and they conjectured that a similar behaviour should occur in the non radial case. This was
proved to be the true independently by Han [Han] and Rey [Rey]. When a = 0 and f is non-
constant, our problem was studied by Hebey [Hebl],[Heb4]. Existence results for (I) and the
asymptotic behaviour of the u,’s were given in these articles. An approach to the case where the
Laplacian is the p—Laplace operator is in Garcia Azorero and Peral Alonso [GP]. We generalize
in the present work what was done in [Hebl]. In particular, we do not assume anymore that
a = 0. As one may easily check, the linear term au, and more precisely its negative part a_u,
leads to serious difficulties. We overcome these difficulties by assuming that a_ is small in a
sense to be precised below.

In what follows, we set
ke = inf{l > 0/aY(0) # 0}

kr 2 inf{l > 1/70(0) # 0}

with the convention that k, = oo (respectively k; = oo) if a(0) = 0 for all [ > 0 (respectively
f®(0) =0 for all I > 1). We denote by G the Green’s function of the operator A 4 a, so that
G is such that

AyG(z,y) +ally))G(z,y) = 0,

on B x B minus its diagonal, and G(x,y) = 0 for y € OB and x € B. (As already mentioned,
A+ a is supposed to be coercive). If y & 0B, G(x,y) > 0, while (z,y) — G(z,y) is symmetrical
in (x,y). Moreover, G(z,0) is radially symmetrical. We let g(r) = G(z,0) where r = |z|. This
function is defined on |0, 1]. If a = 0,

glr) = (N — ;)le (7”]\}_2 N 1)




where wy_; denotes the volume of the standard sphere of RY. For k € N and ¢ > 0, we let

[ee) ’I"k
]k,q:/ wdr
0 (1472 >

when this integral makes sense, and we let wy, be the volume of the standard sphere of R*+.
We also let

(k+1)(k+2)ryn-12

12N—3 p+1
alN) = :
(1“ 2) lk+N+1,p+1 ’ ( )

() = N—3)d

and o) = [ () + ) ) gt

As easily checked, ® is defined as soon as k, > N — 4. Our first result is concerned with the
existence of solutions to (I). This result generalizes previous results obtained by Demengel and
Hebey [DeHe| with another method.

Theorem 1 There exists v = v(N), v > 0 depending only on N, such that if Ha,HL%(B) <7,
and if we are in one of the following cases:
1. k, < N —4,
(a) ki < ko +2, and f*9(0) > 0
(b) ky =k +2, and ay,(N)a*) (0) < fk+2)(0)
(¢) ky > ko +2, and a*)(0) < 0
2k, = N — 4,
(a) kf < N —2, and f*7)(0) > 0
(b) ky > N —2, and a*)(0) < 0
3. kg > N —4,
(a) ky < N —2, and f*9(0) > 0
(b) ky > N =2, and ¢'(1)? + 2®(a) < a(N)f¥=2(0)
then (I) possesses a MRS solution, obtained as the limit of a subsequence of u. in C*(B).

As already mentioned, there are situations in which the u.’s do not converge, but develop
a concentration. The concentration is characterized by one of the following properties: a
subsequence of (u.) which converges almost everywhere converges to 0, or u, — 0 in L4(B) as
soon as ¢ < p+ 1. Such a situation occurs when a = 0 and f = 1. This follows from Hopf’s
maximum principle and the Pohozaev identity applied to (7),

C22E ety apursias - [ (alel) + glota e ) s = [ (9uas

Still according to this identity, the u.’s also develop a concentration when f is decreasing and
a+ %m’ > 0. As a first step, the concentration is ruled by the following classical result:



Theorem 2 If the u.’s develop a concentration, then

1. lime,ou, = 0 in C2 (B\{0}) and lim._ ||u||,, = +o0

loc

2. lim,_,oulrt ¢ = 500 in the sense of distributions

3. lim._,g |u€(|(|)) =1

where ||u||, is the L>-norm of u..

Given k € N, we now set

N - 2Nk + 2)wn—1Tesno12 a® 2N N 1 Ty N1 pi1
kN (N — 2)3klwy RN (N = 2)(k = 1)lwy
and e
oV = 2" oy o — 27wy
YN -N —2Pwy T Y (N = 2wy

Generalizing the results of [AtPe|, [BrPe], and [Hebl], the asymptotic behaviour of the u.’s is
ruled by the following result:

Theorem 3 There exists v = v(N), v > 0 depending only on N, such that if ||a,||L%(B) <7,
and if the u.’s develop a concentration, then

li_r)% ue(0)ue(z) = (N — 2)wn_1G(x,0)

in C2_(B\{0}), and:
1. If k, < N —4 and

(b) kg = ka2, then cuc(0)72 = ay a2 (0) = iy o [52(0)

2. If ko =N —4 and
(a) ky < N —2, then eue(O)fo N _a](Cz)Nf(kf)(O)

u(0)* (1) (ka)
(b) kf > N —2, then e I, (0) — apn’a'"(0)

3. Ifky, >N —4 and

(a) ky < N —2, then eu(0

()~
(b) ky =N —2, then eu (0)* = —alyy x fA2(0) + alPg'(1)* + 205 ®(a)
(c) ky > N —2, then eu(0)* — aﬁ)g'(l) + 2045\,)(1)(@)

where 04,(:])\,, 041(923w o&), aﬁ), and ®(a) are as above.

The following sections are devoted to the proofs of these three theorems.



2 Elements from concentration theory
(1)

We let (u.) be a sequence of MRS solutions to (/). In what follows, we suppose that
[ (IVu* + au?) dx _ N(N - 2)%%
B 4

lim 5
e—0 (fB fuf+1_€dx) pFi—c

Note that the right hand side in this relation is the inverse of the square of the best constant
K(N,2) for the Sobolev inequality corresponding to the embedding of H LRY) in LPHL(RY).

We say that x¢ € B is a concentration point of the u.’s if for all 6 > 0,

limsup/ f(|z|)uPdz > 0
e—0 BNB(z0,0)
We suppose here that any subsequence of (u.) which converges almost everywhere converges to
0. Then, the u.’s develop a concentration. Multiplying (I.) by u. and integrating by parts, we
get that
. N(N — 2)(,0]\[
2 2 _
lim ; (IVuel” + auc®) da = ——
and
; pti—e .. _ YN
ll_r)% /B ful™ " dx N
Since the operator A + a is coercive, the sequence (u.) is bounded in H'(B).
Given 29 € B and 6§ > 0, we let n € C®(RY) be a cut-off function such that 0 < n < 1,
n = 1in B(xy,6/2), and n = 0 in RY\ B(z,d). Multiplying (I.) by n*ur, where k > 1, we

easily obtain that
2(k —1
k-1) / n(An)utde
B

4k k41 2
—2/ IV(nue® )| dr — ————
2
_—/ |V77|2u’:+1dx—|—/ an’uf*tdez = N(N — 2)/ Flz)nPukr<dz
k+1 )5 5 ;
The following result follows from this relation and our original assumption. It is by now classical,

and we refer to [Heb1] or [Heb2] for its proof.

Lemma 2.1 The following properties hold:
1. ue = 0 in LYB) for all1 < q < p+ 1, in particular for ¢ = 2
2 2
N WNN

>
- 4

2. If vy € B is a concentration point, then for all § > 0,

lim sup/ f(|x|)uf+16dx>
BNB(zo,0)

Flao)' ¥ (
e—0

3. (ue) possesses one and only one concentration point, the point xo =0



4. lime%o ‘|u€|’Loo(B) — +OO

5. lime,ou, =0 in C? (B\{0})

ptl—e _

6. lim._,o U, 5800 in the sense of distributions

In particular, if x. € B is such that u.(x.) = ||u€||L°°(B)’ then lim,_,o x. = 0.

Now we let y; > = |[te|[ oo (5> and, for z € B, we set

N—-2

Ve(z) = pe * ue(ze + ko)

N—-2

4 €

where k. = ,ui_

and B, = B (;f,}) Clearly, 0 < V. < 1, V,(0) = 1 and UB, = RV,

Moreover, V, is such that
AK(I‘) + k?a(a + k€$)‘/;(x) = N(N — 2)f($e + kex)v;(x)pfe (2)

where x € B, and a(x) = a(|z|), f(x) = f(]z|). By standard elliptic theory, see [GT], theorem
3.9, VV, is uniformly bounded on any compact subset of RY. Together with Ascoli’s theorem,
it follows that the V.’s converge in C° to a function v on any compact subset. From standard
elliptic theory, see for instance [GT], the convergence is C? (on every compact subset), and

Av = N(N —2)vP in RV

0<wv<1, v(0)=1

By Caffarelli, Gidas and Spruck [CGS], it follows that

N—-2

v(z) = <1+1|x‘2)2

Then we have the following result:

Lemma 2.2 The two following properties hold:
1. lime,o V. = v in LPH! (]RN)
2. limeopi =1
where pie, Ve, v are as above, and V. is extended by 0 outside B..

Proof: We first remark that

/ YV Pde = (1) 7 / Y de

€

Let 1 be the limit of a subsequence of the u¢’s. Then 0 <y < 1, while

/ |V(V;—v)|2dx:/ |v14|2dx+/ \Vol?dz —2 | VV.Vvdz
RN Be B.

Be



and
/ VV.Vvudx :/ ViAvdr = N(N — 2)/ VooPdx
B. B.

Be
where

N
oV, v

Since 0 < V. < 1, we have that 0 < V.oP < 9P, and by Lebesgue’s dominated convergence

theorem
/ VV.Vudx — N(N — 2)/ vy = / Avvdr = / Vol dz
e RN RN RN

As one easily checks,

N(N —2
/ IVu|* de = N(N — 2)/ vy = w
RN RN 2
Independently,
. N(N — 2)UJN
2 2 _
lg% ; (|Vuel? + auc’) do = — oy
and since 2 < p+ 1,
N(N — 2)&)]\[

2
| “d
/B\Vu| r — SN

9= opds - (45

so that pf — 1 and

Then,

/ IV(V. —v)]*dz — 0
RN

The convergence of V, to v in LPT1(RY) follows from the standard Sobolev inequality

2
PHL
( / |m—v|p+1dx) <KW, [ 90— o)
RN RN

This ends the proof of the lemma. U

3 An asymptotic estimate

As in section 2, we assume that the u/’s develop a concentration. Our main goal here is to
establish the following fondamental estimate:

Proposition 1 There exists v = v(N), v > 0 depending only on N, such that if the negative

part a_ of a is such that ||a_||L%(B) < 7, then for all x in B, and up to a subsequence,

N-2

ud(z) < A( Fe |2) N (3)

M62+ ‘:E—il?g

where A > 0 is a constant independent of x and e.



Such an estimate was obtained by Han [Han] and Hebey [Hebl] when a = 0. As already
mentioned, the linear part au, and more precisely the negative part a_u of au, makes that we
have to face a much more critical situation. Several steps that we detail in this section are
involved in the proof of this result.

3.1 A first estimate

As a first step in the proof of the proposition, we prove the following:
Lemma 3.1 Given (c.) a sequence of real numbers which has a limit as € — 0,
M—l—c €

=2 T (2) < A (4)

for all e > 0, and all x € B, where A > 0 is a constant which does not depend on € and x.
Proof: We use arguments that were developed by Druet [Dru]. For = € B, we set
M—l—c €
we(z) =z — x| T " uc(w)

and let y. be a point such that w.(y.) = ||w.||,,. We assume by contradiction that w.(y.) — oo.
Then y. — 0. We write

N-2

wE(ZJE) = |ye - 376| 2 +C€€u6<3/6)

S |ye - .T€| N;2+666ue<xe
S |y6 o $e| N;2+056M6—(N;2+056)M6656

It follows that
|ye B x€|
y — +00
€

2

Let & = uc(y) 27

N

. Since u(y.) = 400, we get that k. — 0. For x € B (—%, k—1,>, we set

Ue(x) = u6<ye)_1u6(ye + kéx)
As one easily checks,

AT () 4+ KPalye + Ka)u.(z) = N(N = 2)f(ye + k'a)ac(z)"

_N-2
for all z € B <—%,%> For € small, 1 < u.(y.) < pe 2 , and then u.(y.)* — 1. Now, take
x € B(0,2). For e sufficiently small, B(0,2) C B <—Z—f, %), and

‘l’e_ye_kéﬂ > ‘xe_ye‘_’kéx‘

k! 1
> |*T€ - y€| (1 - 2—6) > 5’375 - yél

|xe - ye|



since —f<— — 0. Taking z € B(0,2),

‘xe_yel

We(Ye + klx)
|$e —Ye — kéx|¥+cee

< 2N;2+cge wﬁ(y€>

ue(ye + klx) =

‘336 - ye‘¥+666

= 9273 +c€eu6(y6)

As a consequence, @ (x) < 2% for e small and all x € B (0,2). Independently,

T I —e +1
aldr = ue(ye) 2/ ul"dx

B(0,2) B(ye,2k()

while
B(y., 2ké) N B(xe, Rite) = 0

for all R > 0, as soon as € is small enough. From lemma 2.2, we easily get that

/ uPtdr — / v
B(ze,Rpie)® B(0,R)*

It follows that for all R > 0,

limsup/ uPtdx §/ P dx
B(0,2) B(0,R)°

/ ' dr — 0
B(0,2)

In other words, 4, — 0 in LP*'(B(0,2)), and (a.) is bounded. Coming back to the equa-
tion satisfied by ., and by standard elliptic theory, it follows that @, — 0 in C°(B(0,1)), a
contradiction with the relation @.(0) = 1. The lemma is proved. O

and then

—2

Note that one of the consequences of lemma 3.1 is that V,(z) < Alz|~"= for all 2 € B.\{0}.

3.2 An estimate for z,

We prove in this subsection the following result:
Lemma 3.2 |z = o(k.)

Proof: Since u, is radially symmetrical, fB ruldr =0foralli=1,...,N and all k € N.
Noting that

et

%/ Vekdqu/ 2Vkdz =0

. kN . .
/ ruldr = i / (z! + k2 )VFdz
B Be

this leads to



2(N+1)
By lemma 3.1, V,(z) < Alz|~"= for all € B\{0}. Choosing k such that k > 5> and

since v is radially symmetrlcal, we get with Lebesgue’s dominated convergence theorem that
/ VFkd: — v*dz >0
e RN
/ VRl — Zokdz =0
Be RN
It follows that ! = o(k.) for all 7, a relation from which the lemma easily follows. O

3.3 A second estimate

We let v, be defined by
ve(z) = ,Ue us(k z)

Clearly, v, is radially symmetrical. A priori, and contrary to V, v.(0) does not equal 1. On the

other hand, writing v.(z) = V(2 — ), and according to lemma 3.2, we see that v.(0) — 1. In

particular, this proves the third part of theorem 2:

Lemma 3.3 lim._,o — I (H) 1.

More generally, v, — v in C?(K) for all compact K in R, where v, is extended by 0 outside
B <0, ki) Moreover, v, satisfies in B (O, ki) the equation
Av, + K2 a(kex)ve = N(N — 2) f(kex)vP—*

As easily seen, V, has the same properties than v.. In particular, v.(z) < Alz|~ 2 for all z in
B <0, k%) \{0}. We prove here the following result:

Lemma 3.4 Let v > 0 be such that v < N — 2. There exists a positive constant v = y(N,v)
depending only on N and v, and there exists a positive constant A which does not depend on
¢, such that if [|a_||  y < then

A

ve(z) < P

for allz € B (0, + 0}, and all e > 0.
ke

Proof: We let ¢ be the map
¢ : RM\{0} — IR<N\{0}

Tr T

and we let w, be the Kelvin transform of v, given by
v () if () € B(0.4)

0 otherwise

we (r) =

10



Weset C. =¢ (B (0,L)) =RN\B(0, k). As one easily checks, w, satisfies in C, the equation
ke

Awe () + A (7) we () = fe () we (2)"° (5)
where
k2a %
and

N(N - 2) (kx)

fe(r) = 2|V -2 EE

In particular, according to lemma 2.2, f, is uniformly bounded. We define Q2 = B(0,6), where
d > 0 will be chosen later, and we extend w, by 0 in B(0, k). For ¢ > 2,

/Awﬁwetﬂdx—i—/Aewetdx:/few§+t—1_edm

Since w, equals 0 on the boundary of (., an integration by parts gives

0
/Awgwet_lda::/VwEVwi_ldx—/ We t Ydo
Q Q 9B(0,8) 8”

The second term in the right-hand side of this relation is bounded for § > 0 fixed. It follows
that

2
da:—l—/Aewzd:r;—/waf*t16dw+0(1)
Q Q

By the standard Sobolev inequality, see for instance [Heb3],

L‘Ht % )2
(/ We 2 dx) < Al/ ‘wa dx + A, / wida:
Q Q Q

where A; only depends on N and Ay = As(d) only depends on N and §. Here, we just need
to take A; > 2¥NK(N,2) in order to get the existence of Ay. Independently, by Holder’s
inequality,

t
L% (Q\B(0,k ))HwEHL“[%1

/Awtdx < ||A7||.
()

where A- denotes the negative part of A.. In the same way,

Afewf+t‘1_€dw < (el loollwel 77530y Vol 7 el [} o

2
1 ptly P+l A2 /
— we? dx w tde < ‘Vw6
Ay (/Q > A

(@)

while
2

dx

11



Defining ¢(t) = ( , it follows that

1 — t
[A— — GO, 3 | I s

2 —1—¢ _e
<= /Qwetdx + PO fel o el 70y VOl Q)7 [we [ 2 + O (0(1))

()

As easily seen,

Jortwaes [ wt@des [ vt
@ >3 || 5

Then, with lemma 2.2 we obtain that for all n > 0, there exists dy > 0 such that for all 6 €]0, dg|,
and all € > 0, ||we||p+1(q) < 1. Now, let ¢ > 2 be given. In what follows, we assume that

1

|As HLQ (\B(0,ke)) — m

(6)

and we choose § > 0 sufficiently small such that

1
< —
T 44

P fel ol [wel 37 Vol ()71

Since the map t — (t) is increasing on [2, +ocl, there exists a constant K > 0 such that for

all 2 <t <gq,
1

4A,

Since ||we||r+1(q) is bounded, it follows by induction that ||we||r«q) = O(1), and ||we||La(q) is
bounded. Actually, w, is even bounded in L**(Q) where s;, = (p+1)¥1/2% and k is the smallest
k for which s > q. We now borrow ideas from Zheng-Chao Han (personal communication).
We let D C B(0,0) be an open subset of RY. Then

/wg(x)dx:/ || N =22 4 (1) d:
D »(D)

We set D = ¢ (B(z,1)) where z is such that |z| > 1+ 3. Clearly, D C B(0,4), and
[wi@is = [ witg)dy
Q D
= / ly 212Nl (y) dy
B(z,1)

> (o] — 1)®-Da-2N / Ly

Ay ¢
Tl ) < Gl + Ke®)

It follows that for x such that |z| > 1+ 3,

HU€| |Lq(B(a:,l)) < |$‘N_2_ 2N

12



where A > 0 does not depend on €. Let L be the operator
Lu = Au+ Ka(kx)u — N(N — 2) f (k)P " u

Since Lv. = 0, we can apply the Harnack inequality to v, as it is stated for example in [GT]
(theorem 8.20 and corollary 8.21). Since the coefficients of L are bounded, it follows that

A

ve(e) S —5—
|| a
for all z such that |z| > 1+ %. Taking v = %, g > 1, and since v, is bounded, we get the

desired inequality, that of lemma 3.4. The proof then reduces to the proof of (6). To obtain
(6), we note that

IN

[ m@ie < [ @)
O\B(0,ke) #(BO,L))

1
) ke

= k:év/ |a_(kem)|%d:p
B(0, ;)

= | la(2)|>dx
B
Then,
and if
o] - (2N —v)v
¥ S Tonza,
where v = %, we get (6). This ends the proof of the lemma. O

Concerning lemma 3.4, note that if v < }%, then (p—€)(N—2—v) > N for e < 1. It follows

that there exists v = v(N), v > 0 depending only on N, such that if Ha_HL% ) < 7, then

(B
|[Ve| | Lr—e(rry < A where A does not depend on e.

3.4 Proof of proposition 1

We now prove proposition 1. As one may easily check, the estimate (3) is equivalent to the
existence of a constant A such that for all ¢ > 0 and all x € B,

|x|N_2uE(:L‘E)ue(x) <A (7)

(Here, we use the fact that z. = o(k.)). Let y. € B be a point where x — |z|Y~2u(z) achieves
its maximum. In order to prove (7), we assume by contradiction that |z|¥2u.(x )uc(z) is
unbounded. Up to a subsequence, we get that

’yeyN_QUE(xf)ue(ye) — +00 (8)

13



Without loss of generality, up to another subsequence, we can assume that y. — 9 in B. As a
first remark, we claim that |yo| < 1. For this purpose, let

The equation satisfied in B by z is
Aze+a(z)ze = N(N — 2) f(2)uc(ye )P 2P

and 2 is radially symmetrical. Since |z|Y~2u(z) achieves its maximum at = = y., we get that

and z. is bounded on any compact subset of B\{0}. By standard elliptic theory, see for
instance [GT], it follows that (z.) is actually C**-bounded in any compact subset of B\{0}.
In particular, if yy € 0B, and since z. = 0 on 0B,

|Ze(ye)| = |25<y5) - Zs(y0>| < Alye - y0|

where A > 0 does not depend on e. But z.(y.) = 1, and hence |y| < 1. This proves the above
claim.

Now we set y. = k. As another remark, we claim that |Z.] — +oo. If not, then, up to
another subsequence,

_N-2
|y6|N_2ue(xe)ue(ye) = kév_2|j6|N_2:u€ * uc(kete)
N-2
~ |:%6|N_21u€ : ue(kei‘e)
= |2V (@)
which is bounded since v, uniformly converges on any compact subset of RY. This proves the
claim.

Now, let G be the Green’s function for the operator A + a, as defined in the introduction.
In addition to be radially symmetrical, one of its classical properties is that for all compact
subset K C B, there exists a constant A > 0 such that for all x € K and all y € B,

ly — 2|V PG (z,y) < A
Then, we write
m@a:[;%%@MAm@»+w@m@»ﬁ

From the equation satisfied by wu., the equivalence of k. and p., and the change of variable
T = k.z, it follows that

N-2

wlo) = NN =2 [ k) @G hads
B(0, ;)
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and then that

Ue()ue(ye) < A/ G(Ye, kex)vP™¢(z)dx
B(0,3-)

where A does not depend on €. Let us now define

1 1 1 1
Qi = {x €B <O,k—) / |ye — kx| > §|ye|} and Qf = {x €B (O,k—> / |ye — kx| < §|ye|}

We write

/ GYe, kex)of™ (x)dx = | Gye, kex)of™(x)dz + [ Gy, kex)v¢ (z)dx
B(0,4) Ol 02

According to the above mentioned property of the Green’s function, and since |yy| < 1 so that
the y.’s are in a compact subset of B,

p—e€
| Gk @ar < a4 [ E
Ql o

i ’ye - k6x|N72
2N72

p—E€
|ye| N 2A /B(o,,je) v w)de

Together with the remark we made at the end of subsection 3.3, and under the assumption
that ||a_||L71§(B) < 7, where v > 0 only depends on N and is as in this remark, we get that

A
/ Gy, ker)o?™“(a)dz < —
Ql |y€|

Similarly,
v (x)

G(Ye, kex)vP™(x)dr < A/ — ~~ dx
/Qg ( ) ( ) Q2 |y€ - kex|N_2
and if Q. = {z / |z| < |y.|}, then, with the change of variable y = k.z — y.,
- A L e (YT Y
G(Ye, kex)v?™(z)dr < — pe d
ottt = i | e (5 )
> 1|&|, and by lemma 3.4,
1 1 e (Yt Ye /
— p—e dy <
BN Jo, Ty ( ke ) PN ”)(p TRE Jo, WV

A 5 1yel
EAEEIr=y ey /0 tdt
Aly|?

= |5 |20k N

Since |41t

IN

Since ke < |ye| < 1, we get with lemma 2.2 that |y.|* — 1. It follows that |Z.|] — 1, and we can
write that
[yl < A
Bk = o]y

15



Choosing v such that v < %, this was done at the end of section 3.3, we obtain that

1
/ G(Ye, kex)vP™ ¢ (z)dr < —O(N)ﬂ
Q2 |y€|

€

It follows that

M uzduy) < Al / Gy, ke (¢)da
B(0,7-)

IN

Al [ Gl by (o)

€

AP [ Gl k) (e
Q?
< A+o(1)

which contradicts (8). It follows that (7) is true, and then (3) is also true. The proposition is
proved. 0

Now that proposition 1 is proved, we go on with the study of the asymptotic behaviour
of the u.’s. This is the aim of the following section, where the first assertion in theorem 3 is
proved.

4 Convergence to the Green’s function

Here again, we assume that the u.’s develop a concentration. First, we recall a result obtained
by Brézis and Peletier [BrPe]:

Lemma 4.1 Let u be a C? solution of

Au=f inB
u=20 on 0B

and let w be a neighbourhood of 0B. Then

llyras) + 1Vulos ey < A (11l + 1 e

L allo< B <1, and all ' CC w.

for all q < 57,

Note that it follows from this result that
| IVupdr =0
B

By lemma 4.1 we indeed just need to get estimates for the L'-norm in B and the L*-norm in
a neighbourhood of 0B, of the function g, given by

ge(x) = N(N - Q)f(x)u6<x)p_€ - CL(ZL’)UG(SE)
As easily seen, these estimates follow from proposition 1.

Now we prove the first assertion in theorem 3. This is the aim of the following lemma where,
as in the introduction, G denotes the Green’s function of the operator A + a.

16



Lemma 4.2 lim_ g uc (7 )u(z) = (N — 2)wy_1G(x,0) in C2.(B\{0}).

Proof: Let K be a compact subset of B\{0}, and x € K. It follows from the equation
satisfied by the u.’s that

ul(r) = N(N-2) / ()G (z, y)dy
]ﬂ N

= N(N—Q)E—M/ ge(2)dz

where

9e(2) = [ (kez) vZ(2)G (, ke2)
By classical properties of the Green’s function, there exists a constant A > 0 such that for all
r € K, and all y € B, G(z,y) < Alz — y|~¥ "2 Dealing distinctly with the cases |z — k.z| < §
and |z —kez| > 6, where 6 > 0 is such that for all x € K, |z| > 2, and, according to proposition
1, we see that

lim ge(2)dz = f(0)G(x, O)/ VP (2)dz

e—0 RN RN

where the limit is uniform with respect to x € K. As easily checked,
WN-1
vP(2)dz =
[ e =5

li_{ré Ue(z)ue(r) = (N — 2)wn-1G(x,0)

and

in C? (B\{0}). The convergence in C{_(B\{0}) then follows from lemma 4.1 and the equation
satisfied by w. = u.(z)u,, that is

4 —6)

A+l = NNV =2)f (e 2

pP—€
wE

The convergence in C?_(B\{0}) is easily obtained by classical results of elliptic theory, see for
instance [GT]. The lemma is proved. O
5 Convergence to a solution
In this section, we consider a sequence of functions (u.) such that

At + atie = N(N —2)A\f(z)ul™ inB

1. >0inB and 4. =0 ondB

N(N =2) [, f(z)artde =1

where

A= inf [ (IV]? + av?) da 2
veD(B)r\{0} (N(N —2) fB f,v|p+1_ed$)m

17



We set

v (Tt
vEDBR\OY (N(N — 2) [, flofridz) 7T

The following results are by now classical. We therefore restrict ourselves to brief comments
on their proofs. For details, see for instance [Hebl].

Lemma 5.1 im0 A. = X .

Proof: Let u € D(B)g\{0}. By Hélder’s inequality,

2
p+1

(N(N - 2)/ f|u|p+1—€dx> < Vol(B)wwiia (N(N — 2)/ f|u|p+1dx)
B B

It follows that A < liminf, ;o A.. Conversely, let o > 0 be any positive real number, and let
u € D(B)g\{0} be such that

[ (IVul* + au?) dx <At
; o)
(N(N =2) [, flulptdz) 7+

Clearly, when ¢ — 0,
I (IVul* + au?) dx . [ (IVul? + au?) dz
(N(N =2) [, flulp+i=eda) 7= (N(N —2) [, flulr+idz) 7

We then obtain that limsup,_,y Ac < A+ a. Since a > 0 is arbitrary, the result follows. O

We now state the following result.

Lemma 5.2 : Assume that a subsequence of (i) converges almost everywhere to a function
u # 0. Then:

1. w is a MRS solution of the problem

(%) Au+ a(z)u = N(N —2)\f(x)u? in B
u>0 mB, andu=0 ondB

2. lim 01, = @ in C*(B).

Proof: Point 1 easily follows from classical arguments of variational theory, like the ones
developed, for example, in the study of the Yamabe problem. We first prove that @ is a solution
of (x), and then that 4 is minimizing. Point 2 follows from classical arguments of elliptic theory.

[
At last, we state the following result.
Lemma 5.3 We always have A < % (N(N — 2)wN)%, and if this inequality is strict, then, up

to a subsequence, i, converges almost everywhere to a function u # 0. Together with lemma
5.2, the convergence is then C*, and u is a MRS solution of problem (x).

18



Proof: Here again, the result follows from classical variational arguments. We obtain the
first assertion with the function z, given by

o)
(2 + |x!2)T

where ¢ is a cut-off function that equals 1 around 0. As € — 0, we get indeed that

ze(w) =

2z

I (V2> + a2?) da . (N(N — 2)wy)
(N(N =2) [, flzcptida) 7 4

For the second assertion, the energy associated to the problem goes under the critical energy.
The fact that the wu.’s do not develop a concentration under such an assumption is by now
classical. ]

6 Proof of the theorems

Theorem 2 immediately follows from what we said in section 2, and from lemma 3.3. The first
assertion of theorem 3 was proved in section 4. Only theorem 1 and points 1, 2 and 3 of theorem
3 remain to be proved. Everything here comes from the estimate obtained in proposition 1,
and from the Pohozaev identity [Poh]. When applied to the functions u., this identity gives

N(N N(N -2 .
N ) p+1— €dr / p+1 d
SO fapurtcan + X2 ST s
I 11,
1 / 2 1 2
— [ (atlel) + glela(lah) ) ude = 5 [ 1o
B , 0B
111, he

In what follows, we assume that the u.’s develop a concentration. With the notations of section

5, this gives that A\ = % (N(N — 2)wN)%. In particular, we recover the results of sections 2, 3,
and 4. We estimate in what follows the terms I, 11, I11., and IV, of the Pohozaev identity.

The terms I, and IV, are the easiest to estimate. We straightforwardly obtain that

(N — 2)3WN

I, = oMz (1+o0(1))e

and it follows from lemma 4.2 that

1 _
IV, = 5(N = 2w} 19/ (1) + 0 (1)

where ¢ is as in the introduction.
Concerning the term 1., we write that

700

o Tor)

fir) =

19



Then,

(ky)
/ ]x|f/(|x|)Ui’+1_de _ f (O) / |x|kfu}67+1—€dx + 0] (/ |x|kf+1u€+1—edx)
B (kf - 1)! B B

(k1) (0)
- f—<1+o(1))u’:f / |z[*r P de +O [ p / || PP e
B(0,;)

(kf - 1)! B(0, 15)

ke

-~ -~

11} 112

€ €

If k; < N, and together with proposition 1, [T} converges by the dominated convergence
theorem. This holds also for I7? if ky+1 < N. When k; = N —1, I1? diverges, but is bounded
by |In k.|. This leads to

(k)
[t ety s 2 [ et

as soon as ky < N. In the same way,

/ 2l (2 edz = O (] In pe])
B
if ky = N, and
[ ez = 0 )
B
if kf > N. Then,

N —2)2 fk)(0
Il = ( )- f0(0) ,u]:f/ |x|kfvp+1dx+0</j:f>

if kf <N —2, while [T, = o (u¥72) if kf > N — 2.

€

We are finally concerned with the term I71.. The study there is more intricate, and we
separate the cases k, < N — 4, k, > N — 4, and k, = N — 4. We first write that

(ka) ()
a(r) = a p '( )Tk“ +0 (Tk“+1)
: a®)(0) 4, -
a(r) = (ka_l)!rk“ l—i-O(rk“)

If k, < N — 4, we obtain with the same kind of arguments than the ones used above that

(ka) 0 k
[I[E = @ ( ) 1 + e /“L]:a+2/ |x|kav2dl. +o0 (u]:a"rQ)
ka! 2 RN

Since
2

pe' = (1+o0(1)) uc(0)v=

20



we get point 1 of theorem 3 with what has been said before. If, for example, k, < N — 4 and

f

ks < k, + 2, multiplying the Pohozaev identity by s ¥ , we obtain that

- (kf)
w (elu;kf> + (J;ff—_((l);' (1 + 0(1)) /RN |:L‘|]€fvp+1dx —0

which straightforwardly leads to point 1(a) of theorem 3. The same arguments are valid for
the points 1(b) and 1(c) of theorem 3.

We now assume that k, > N — 4 and we let h be the function
1
h(z) = a(lz]) + Flzla'(jz])

There exists a constant C' > 0 such that |h(z)| < Clz|k. Let § > 0. We write that

/ B (e () da
B(0,5)

ka
< A/ 2] -
B(0,8) (12 + |z|?)

5 phatN-1
A/ ——dr
o (uZ+72)
o e ghatN-1
< AplttT / ———x—ds
o (1+s2)"7?

s
< Ak (O(l) —I—/M sk“_(N_4)_1d3>
1

S A <6ka—(N—4) + 'uk:a—(N—4))

€

IN

where A does not depend on € and . Independently, |z|Y=2|G(z,0)| < A. It follows that for
k, > N — 4, |z|*G(z,0)? is integrable. We let

/ h(z)u? (ze)u?(z)dz — / h(z) (N = 2)wy_1G(x,0))* dz
B\B(0,0)

B\B(0,0)

H5(6) =

By lemma 4.2, H; = o(1). We then write that

/Bh(x)uf(xe)uf(x)dx - / h(z) (N — 2)wn_1G(z,0)) dz

<| [ nepEnein] + | [ ) (7 = 2k Gle 0] + Hilo
xk“u2 x)ul(x)dz xka — Nwy Gz, 9 N .
<A /B(M)I Pug (ze)ug (z)de| + A /B(M)| o (N — 2)wn_1G(x,0))% da| + Hs(e)

< Askem (N 4 o(1)
Since § > 0 is arbitrary, it follows that

s [ (ol + Sleld(aD)) oo

= (v =20y [ (alel) + 3lole ) ) 6o, 0 + o)
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and then that
111, = (N = 2wl @(a)u + o0 (u) )

*#we then obtain the points 3(a) and 3(b) of theorem

2)

Multipying the Pohozaev identity by e *,
3. Point 3(c) is obtained similarly, multlplymg now the Pohozaev identity by ue (V=

At last, we assume that k, = N — 4. By proposition 1, we easily obtain that

1 (ka) ko
/ a(|z|) + =|z|d (|x]) ) vidr = a™(0) 1+ = /L]:“H/ |x|kavfd:1: + 0 (uf“”)
B 2 kq! 2 RN

(N —2)aN=4(0)

N-2 N—4,2 N—2
= dr + O

and we now left with getting an estimate for the term

II]j:/ || N da
RN

Let us consider 0 €]0, 1] to be chosen later. By proposition 1,

111! :/ 2|V *v2dz + O (1)
B(0

)
75)

Let (Z.) be a sequence of points such that |z.| < . We set

i)
Be= @)

If || is bounded, then R, — 1 since v, — v uniformly on every compact subset of RY.
Otherwise, |Z.| — 400, and, up to a subsequence, two cases occur: Either there exists dg > 0
such that k.|Z.| = do, or k|| — 0. In the first case, we set y. = k.Z.. Then |y.| < 0 and

Y Pue(ze)ue(ye)

~ |Ye
It follows from lemma 4.2 that
RE — (N — 2)0.)]\[_156\[_29(50)

In the second case, where |T.| — 400 and k.|z.| — 0, we use the Green’s formula. Setting
Ye = ke:i'ea

R,

Q

NN = 2)|y 2= / T @G

Q

NV =D [ @G ki
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We let 6. = Cly.| where C' €]0, 1], and we write that

N=2 pe r)dx = N-2 )P (x x)dx
el / oy TS Gl = / Tkt (@G e k)

J/

~—
1112

MLE / F (k) (2)Gye, ko) da
02

J

~—
1113

where

1 1
Qi:{chB(O,k—) /|y€—k€xl>5€} and Q?:{xEB(O,k—) /\ye—kea:|§(5e}

We then study I77? and I1I? separately. Concerning I112,

A A
G(Ye, kex)| < <
| (y LL')| |y€_k,6$‘N72 55\[,2

As a consequence, if z € Q!

AvP~eo(x)

N-2
2 ()Gl k)] < 4 () ) < 2

O

for € < €y, €9 > 0 small. In particular,
he(x) = |yel" 1o (2) f (kew) ol ™ (2) G (ye, kew)

is bounded from above by an integrable function, where 1g1 denotes the characteristic function
of QL. Clearly,

el

’ye_ke;d_‘ye_mm‘_l Ye . xz _>l
0 Clycl Cllyl lzf]  C
which is greater than 1. Moreover,
Gy, ) :
ey Rel)) =
Y (N - 2>WN—1|ye - kex|N_2
so that .
N-2
€ G € kE‘/I; _> ZN Y
e (Yes k) N =2
Then, and since f(0) = 1, h, converges almost everywhere to the function W By the
dominated convergence theorem,
I1? — —/ vPdr = 1
‘ (N —2)wn_1 Jg~ N(N —2)
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Concerning the term I7I2, a rough estimate is that

117?| < A|y€|NQ/QUp(x)G(ye,kex)dx
vP(x)

< Aly. NQ/ —————dx
N |y | 02 |ye - kex|N_2

Together with the change of variable k.x = y + y., we obtain

Iye|N2/ 1 (y+ye>
<A vP dy
ké\f ly|<de y|N_2 k:e

el =1yl _ lyel — 0 A R
> > —= 1 - —= 1 - €
> P > B = (1= 0) 0 = (L= O)lid

|111?

Clearly, if |y| < 6.,

Y+ Ye
ke

while v(z) < Alz|7N*2. As a consequence,

AlyeN Pwn_a o g — AC%wn_1
_ C)N+2|336|N+2k;£v 0 tat = 2(1 _ C’)N+2|ﬁe|2

and ITI? — 0. In particular, R, &~ N(N —2)III? and R, — 1. Summarizing: either k|Z.| — 0,
and then R, — 1, or k.|@.| — 9, where &y > 0, and then R, — (N — 2)wy_10Y 2g(d). Let
a €]0, 1] be given. We note that

lim (N — 2)wy_16) 2g(0) = 1

do—0+

and we choose ¢ > 0 such that for all dy €]0, J[,
1—a<(N—2wyv 10 2g(0) <1+a
Then,
l-a<R <1+«
We now set
ve()

and M, = max vel)
o<lel< 2 V()

m. = min
© oghizs v(@)

According to what we just said,
l—-a<m. <M <1l+u«

and then

(1-— a)/ 2|V % de < / 2|V ?de < (1 + a)/ 2| NP da
B(0.7;) B(0%;) B(0%;)

Therefore, as easily checked,

1
/ || NP de — wy_y
[ nke] Jp(0,2)
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Since a €]0, 1] is arbitrary,

I — wy_y

|In k|
and we thus proved that

(N — 2)wy_1aN=9(0)
2(N —4)!

1l = pY 2 In e + o (ud 72| In k)

Multiplying the Pohozaev identity by p. & , and according to the preceeding estimates, we
obtain point 2(a) of theorem 3. Similarly, multiplying the Pohozaev identity by pu-~"2|1In p.| ™!,
we obtain point 2(b) of theorem 3. In particular, theorem 3 is proved. 0

We are now left with the proof of theorem 1. According to the results of section 5, it suffices
to show that, under the assumptions of this theorem, at least one subsequence of (u.) converges
almost everywhere to a nonzero function. If not, the u.’s develop a concentration and we are
back to one of the situations described in theorem 3. Noting the assumptions of theorem 1 are
those that make the limits of the different points of theorem 3 negative, theorem 1 is proved.[]

Acknowledgement: The author whishes to express his gratitude to Emmanuel Hebey for his
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