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Abstract

Let (M, g) be a smooth compact Riemannian manifold of dimension
n ≥ 5. We consider the problem

∆2
gu+ α∆gu+ au = fu

n+4
n−4 , (?)

where ∆g = −divg(∇), α, a ∈ R, u, f ∈ C∞(M). We require u to be
positive and invariant under isometries. We prove existence results for (?)
on arbitrary compact manifolds. This includes the case of the geometric
Paneitz-Branson operator on the sphere.

In 1983, Paneitz [Pan] introduced a fourth order operator defined on 4-
dimensional Riemannian manifolds. Branson [Bra] generalized the definition
to n-dimensional Riemannian manifolds. Given (Mn, g), n ≥ 5, a compact
Riemannian manifold, and u ∈ C∞(Mn), we let

Png u = ∆2
gu− divg(anSgg + bnRicg)du+

n− 4

2
Qngu

In this expression, ∆gu = −divg(∇u), Sg is the scalar curvature of g, Ricg its

Ricci curvature, an = (n−2)2+4
2(n−1)(n−2) , bn = − 4

n−2 , and

Qng =
1

2(n− 1)
∆gSg +

n3 − 4n2 + 16n− 16

8(n− 1)2(n− 2)2
S2
g −

2

(n− 2)2
|Ricg|2g

If g̃ = ϕ4/(n−4)g is a conformal metric to g, then, see Branson [Bra],

Png (uϕ) = ϕ
n+4
n−4Png̃ (u) and Png ϕ =

n− 4

2
Qng̃ϕ

n+4
n−4

where the first of these two equations holds for all smooth functions u on Mn.
Let (Sn, h) be the unit n-sphere. Then,

Pnh u = ∆2
hu+ cn∆hu+ dnu,
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where cn = n2−2n−4
2 , and dn = (n−4)n(n2−4)

16 . We still refer to Png as the
Paneitz operator. Given α, a ∈ R, let Pg be the constant coefficient Paneitz type
operator whose expression is Pgu = ∆2

gu + α∆gu + au, where u ∈ C∞(Mn).
If G is a group of isometries of (Mn, g) and f ∈ C∞(M) is invariant under
the action of G, we are interested in this paper in finding smooth positive G-
invariant solutions of the fourth order equation

Pgu = fu2]−1 (1)

where 2] = 2n
n−4 is the critical Sobolev exponent for the embeddings of H2

2 (M)
in Lp-spaces. When (Mn, g) is the unit n-sphere (Sn, h), α = cn, and a = dn,
equation (1) reads as

∆2
hu+ cn∆hu+ dnu = fu2]−1 (2)

Then it follows from the above transformation laws that the existence of a
smooth positive solution to (2) is equivalent to the existence of a conformal
metric g to h such that Qng = f . Equation (2) has its exact analogue when
passing from the Paneitz operator to the conformal Laplacian on Sn, n ≥ 3.
The equation associated to the conformal Laplacian reads as

∆hu+
n(n− 2)

4
u = fu2?−1 (3)

where 2? = 2n
n−2 and f ∈ C∞(M), and we refer to the problem of finding smooth

positive solutions to this equation as the Kazdan-Warner or the Nirenberg prob-
lem. Extending a result of Moser [Mos] from S2 to S3, Escobar and Schoen [EsSc]
proved that if f is a smooth positive function on S3, invariant under the action
of a nontrivial group G of isometries of (S3, h) acting freely, then (3) possesses a
smooth positive G-invariant solution. This result of Escobar and Schoen [EsSc]
was then generalized by Hebey [Heb], when he proved that (3) still possesses a
smooth positive G-invariant solution if we only require that the action of G is
without fixed points. A nontrivial group G of isometries of a manifold (Mn, g)
is said to act freely if Mn/G is still a manifold. We say that G acts without
fixed points if for any x, the G-orbit OG(x) of x has at least two elements. A
nontrivial group acting freely acts without fixed points. Returning to (2), it was
proved in Djadli-Hebey-Ledoux [DHL] that if f is a smooth positive function
on S5, invariant under the action of a nontrivial group G of isometries of (S5, h)
acting freely, then (2) possesses a smooth positive G-invariant solution. Hebey
put to our attention the question of whether or not such a result holds when
the condition that G acts freely is replaced by the less restrictive condition that
G acts without fixed points. We answer this question by the affirmative, and
prove the following theorem:

Theorem 1 Let G be a compact subgroup of isometries of the standard sphere
(S5, h), f ∈ C∞(S5) positive and G−invariant. Assume that G acts without
fixed points. Then (2) possesses a smooth positive G−invariant solution, and
there exists a conformal G-invariant metric g to h such that Q5

g = f .
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References where (1) and (2) are studied are Djadli-Hebey-Ledoux [DHL],
Hebey-Robert [HeRo], and Jourdain [Jou].

1 The case of an arbitrary Riemannian manifold

Let (Mn, g) be a compact Riemannian manifold of dimension n ≥ 5. Not to
carry heavy notations, we note M instead of Mn. If Isomg(M) is the isometry
group of (M, g), we let G be a compact subgroup of Isomg(M). Given f ∈
C∞(M), positive and G−invariant, and given a, α > 0, we let

λG(f) = inf
u∈HGf

∫
M

(
(∆gu)2 + α|∇u|2g + au2

)
dvg

where dvg is the Riemannian volume element for g, and HGf is the set consisting

of G-invariant functions in H2
2 (M) which are such that

∫
M
f |u|2]dvg = 1. It can

be checked that whatever (M, g) is, whatever f is, and whatever a and α are,

λG(f) ≤ |OG(x)| 4n

K0f(x)
2

2]

(4)

for all x ∈M , where |OG(x)| is the cardinality of the orbit OG(x) and K0 is the
best constant for the optimal Sobolev Euclidean inequality(∫

Rn
|u|2

]

dvξ

) 2

2]

≤ K0

∫
Rn

(∆ξu)2 dvξ (5)

where dvξ is the volume element in Rn and ∆ξ is the usual Laplacian with
the minus sign convention. The first objective of this section is to prove the
following theorem:

Theorem 2 Let (M, g) be a compact Riemannian manifold of dimension n ≥ 5,
G a compact subgroup of Isomg(M), f ∈ C∞(M), positive and G−invariant,

and a, α > 0. If a ≤ α2

4 , and if for all x ∈M ,

λG(f) <
|OG(x)| 4n

K0f(x)
2

2]

(6)

then (1) possesses a smooth positive G−invariant solution.

We prove this theorem in what follows. For 0 < ε < 2] − 2, we define

λGε (f) = inf
u∈HGf,ε

(∫
M

(
(∆gu)2 + α|∇u|2g + au2

)
dvg

)
where HGf,ε is the set consisting of G-invariant functions in H2

2 (M) which are

such that
∫
M
f |u|2]−ε dvg = 1. The following lemma easily follows from what

has been done in [DHL].
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Lemma 1 Let (M, g) be a compact Riemannian manifold of dimension n ≥ 5.
Let G be a subgroup of Isomg(M), f ∈ C∞(M) a positive G−invariant function,

and a, α > 0 such that a ≤ α2

4 . Then λGε (f) is attained by a smooth positive
G−invariant function uε which satisfies

∆2
guε + α∆guε + auε = λGε (f)fu2]−1−ε

ε (7)

and
∫
M
fu2]−ε

ε dvg = 1. Moreover, up to a subsequence, (uε) converges weakly
in H2

2 (M) to a function u. If u 6≡ 0, then u is a positive smooth G−invariant
function which realizes λG(f), and, up to a positive constant scale factor, u is
a solution of (1).

We proceed with the proof of Theorem 2. We assume that (6) is true. We let
(uε) be the sequence of lemma 1. Let also λ = lim supλGε (f). Then λ ≤ λG(f),
and with Hölder and Sobolev inequalities we get that λ > 0. Assume now that
there is no positive G−invariant solution u ∈ C∞(M) to (1). Then uε → 0
almost everywhere. Let xε ∈ M be such that uε(xε) = supM uε. If uε(xε)
is bounded, it follows from classical regularity theory (see for instance [GT])
that (uε) is bounded in C4,β(M), 0 < β < 1. Then uε → 0 in C4(M), a

contradiction since
∫
M
fu2]−ε

ε dvg = 1. Hence, uε(xε) → +∞. Let x1 ∈ M

be such that xε → x1. We define µε = uε(xε)
− 2
n−4 and kε = µ

1−εn−4
8

ε . For

|x| < ig(M)
kε

, where ig(M) > 0 is the injectivity radius of M , we let

vε(x) = µ
n−4
2

ε uε(expxε(kεx)) and gε = (exp?xεg)(kεx),

where expxε denotes the exponential map at xε. Then vε verifies

∆2
gεvε + αk2

ε∆gεvε + ak4
ε vε = λGε (f)f(expxε(kεx))v2]−1−ε

ε

an equation which we can read also as(
∆gε +

αk2
ε

2

)2

vε = λGε (f)f(expxε(kεx))v2]−1−ε
ε +

(
α2

4
− a
)
vε

We have 0 ≤ vε ≤ 1 and kε → 0. By classical regularity theorems (see for
instance [GT]), (vε) is bounded in C4,β(K) for 0 < β < 1 and all compact
subsets K ⊂ Rn. Then, up to a subsequence, there exists v ∈ C4(Rn) such that
vε goes to v in C4

loc(Rn). In particular v ≥ 0, v(0) = 1, and

∆2
ξv = λf(x1)v2]−1

Then, see [HeRo], we know precisely what v is. Given x ∈M and r > 0, we let
Bg(x, r) be the geodesic ball of center x and radius r in M , and for p ∈ Rn, we
let Bξ(p, r) be the Euclidean ball in Rn of center p and radius r. For R > 0, we
have∫

Bg(xε,Rkε)

fu2]−ε
ε dvg =

(
µ−1
ε

)ε (n−4)2

8

∫
Bξ(0,R)

f(expxε(kεx))v2]−ε
ε dvgε

≥ f(x1)

∫
Bξ(0,R)

v2] dvξ + o(1)
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since µε → 0 and vε → v in C4(Bξ(0, R)). Now, since we also have that xε → x1,
kε → 0 and f ≥ 0, we obtain that for any δ > 0,∫

Bg(x1,δ)

fu2]−ε
ε dvg ≥ f(x1)

∫
Rn
v2] dvξ + o(1) (8)

Let OG(x1) = {x1, ..., xm}. Since f is G−invariant and G is a group of isome-
tries, ∫

Bg(xi,δ)

fu2]−ε
ε dvg =

∫
Bg(x1,δ)

fu2]−ε
ε dvg ≥ f(x1)

∫
Rn
v2] dvξ + o(1)

for all i = 1, ...,m. Taking δ > 0 sufficiently small, we obtain

1 =

∫
M

fu2]−ε
ε dvg ≥ mf(x1)

∫
Rn
v2] dvξ + o(1)

Multiplying by v the equation satisfied by v, and integrating, it follows with
(5), (4), and the inequality λ ≤ λG(f), that v is minimizing for (5) and that

λG(f) = λ =
|OG(x1)| 4n

f(x1)
2

2]K0

(9)

A contradiction with (6). This proves Theorem 2.

We proceed in what follows with the study of the behaviour of the uε’s. We
assume as in the proof of Theorem 2 that uε → 0 almost everywhere. It follows
from the proof of Theorem 2 that equality holds in (8). Then, for any δ small,∫

Bg(x1,δ)

fu2]−ε
ε dvg =

1

|OG(x1)|
+ o(1) (10)

We also get that µεε → 1 and that for any Ω ⊂⊂M\OG(x1),∫
Ω

u2]−ε
ε dvg = o(1) (11)

We now give a more precise description of the convergence of (uε) outside the
orbit OG(x1). Let σ1 = IdM , σ2, ..., σm ∈ G be such that xi = σi(x1) where
OG(x1) = {x1, ..., xm}. Define xε,i = σi(xε). First, we want to prove that there
exists C > 0 such that for any x ∈M ,

inf
i=1,...,p

dg(x, xε,i)
4(n−4)

8−ε(n−4)uε(x) ≤ C (12)

We follow an idea of Druet [Dru]. Assume that there exists yε ∈M such that

sup
x∈M

inf
i=1,...,p

dg(x, xε,i)
sεuε(x) = inf

i=1,...,p
dg(yε, xε,i)

sεuε(yε)→ +∞ (13)
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where sε = 4(n−4)
8−ε(n−4) . Define µ̂ε = uε(yε)

− 2
n−4 , k̂ε = µ̂

1−εn−4
8

ε , and set

v̂ε(x) = µ̂
n−4
2

ε uε

(
expyε(k̂εx)

)
For |x| < ig(M)

k̂ε
and ĝε(x) = exp?yεg(k̂εx), we have

∆2
ĝε v̂ε + αk2

ε∆ĝε v̂ε + ak4
ε v̂ε = f(expyε(k̂εx))v̂2]−1−ε

ε (14)

Let R > 0. With (13), and |x| ≤ R, we obtain

v̂ε(x) =
uε

(
expyε(k̂εx)

)
uε(yε)

≤

 inf
i=1,...,p

dg(yε, xε,i)

inf
i=1,...,p

dg(expyε(k̂εx), xε,i)


4(n−4)

8−ε(n−4)

Since inf
i=1,...,p

dg(expyε(k̂εx), xε,i) ≥ inf
i=1,...,p

dg(yε, xε,i)− k̂εR,

v̂ε(x) ≤

1−R k̂ε
inf

i=1,...,p
dg(yε, xε,i)

−
4(n−4)

8−ε(n−4)

for all |x| ≤ R. Now, with (13), we obtain that

inf
i=1,...,p

dg(yε, xε,i)

k̂ε
→ +∞ (15)

Then v̂ε is uniformly bounded on every compact set. Writing that(
∆ĝε +

αk̂2
ε

2

)2

v̂ε = f(expyε(k̂εx))v̂2]−1−ε
ε +

(
α2

4
− a
)
k̂4
ε v̂ε

and using classical regularity results (see for instance [GT]), there exists v̂ ∈
C4(Rn) such that, up to a subsequence, v̂ε → v̂ in C4

loc(Rn), and v̂(0) = 1. Now,
as easily checked,∫

Bg(yε,k̂ε)

u2]−ε
ε dvg = µ̂

−ε (n−4)2

8
ε

∫
Bξ(0,1)

v̂2]−ε
ε dvĝε

Since µ̂ε ≤ 1, it comes when ε→ 0 that∫
Bg(yε,k̂ε)

u2]−ε
ε dvg ≥

∫
Bξ(0,1)

v̂2] dvξ + o(1)

Now, up to a subsequence, we can assume that yε → y0 ∈ M . If y0 6∈ OG(x1),

then, with (11), we get that
∫
Bg(yε,k̂ε)

u2]−ε
ε dvg → 0. Then

∫
Bξ(0,1)

v̂2] dvξ = 0,
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a contradiction. Hence, up to an isometry of G, we can assume that y0 = x1.
Taking δ > 0 small enough,∫

Bg(yε,k̂ε)

u2]−ε
ε dvg =

∫
Bg(yε,k̂ε)∩Bg(x1,δ)

u2]−ε
ε dvg

For any R′ > 0, we have∫
Bg(x1,δ)\Bg(xε,R′kε)

u2]−ε
ε dvg ≤ ε(R′) + o(1)

where limR′→+∞ ε(R′) = 0. It follows that∫
Bg(yε,k̂ε)

u2]−ε
ε dvg ≤

∫
Bg(yε,k̂ε)∩Bg(xε,R′kε)

u2]−ε
ε dvg + ε(R′) + o(1)

If Bg(yε, k̂ε) ∩Bg(xε, R′kε) 6= ∅, then

inf
i=1,...,p

dg(yε, xε,i) ≤ k̂ε +R′kε (16)

With (15) and (16), we then obtain that k̂ε = o(kε) and
dg(yε,xε)

kε
is bounded.

Now we write yε = expxε(kεŷε) where ŷε is bounded. There exists C0 > 0 such
that

1

kε
exp−1

xε

(
Bg(expxε(kεŷε), k̂ε)

)
⊂ Bξ

(
ŷε, C0

k̂ε
kε

)
We thus obtain that∫

Bg(yε,k̂ε)∩Bg(xε,R′kε,)

u2]−ε
ε dvg ≤ µ

−ε (n−4)2

8
ε

∫
Bξ

(
ŷε,C0

k̂ε
kε

) v2]−ε
ε dvgε = o(1)

since k̂ε = o(kε) and (vε) is bounded. As a consequence,∫
Bg(yε,k̂ε)

u2]−ε
ε dvg ≤ ε(R′) + o(1)

for all R′ > 0. We then get that
∫
Bξ(0,1)

v̂2] dvξ = 0. A contradiction since

v̂(0) = 1. This proves (12). Given an open subset Ω ⊂⊂ M\OG(x1), we now
get by classical regularity theorems (see for instance [GT]) that (uε) is bounded
in C4,β(Ω). Since uε goes to 0 almost everywhere, it follows that

uε → 0 in C4(Ω) (17)

as ε→ 0, a relation we use in the following section.
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2 The case of the sphere

Let x0 ∈ Sn. For β > 1, define

ux0,β(x) = (β − cos r)−
n−4
2 and ũx0,β = (β2 − 1)

n−4
4 ux0,β

where r = dh(x0, x). Then,

Pnh (ũx0,β) = dnũ
2]−1
x0,β

and

∫
Sn
ũ2]

x0,β dvh = ωn

where ωn is the volume of the unit n−sphere. We now make these functions
G−invariant. Let x1 ∈ M be a point of finite orbite OG(x1) = {x1, ..., xm}.
We define uiβ = uxi,β , ũiβ = ũxi,β and ũβ =

∑m
i=1 ũiβ (this function is

G−invariant). Computing
∫
Sn P

n
h ũβ ũβ dvh and

∫
Sn f |ũβ |

2] dvh we find that∫
Sn
Pnh ũβ ũβ dvh = mdnωn + dnα(β − 1)

n−4
2 + o

(
(β − 1)

n−4
2

)
where

α =
∑
i 6=j

(1− cos dh(xi, xj))
−n−4

2 ωn−1

∫ +∞

0

2nrn−1

(1 + r2)
n+4
2

dr > 0

since |OG(x1)| ≥ 2, and(∫
Sn
f(x)ũ2]

β dvh

) 2

2]

≥ f(x1)
2

2] (mωn)
2

2]

(
1 +

2α

mωn
(β − 1)

n−4
2

+o
(

(β − 1)
n−4
2

))
provided that ∇kf(x1) = 0, for all k = 1, ..., n− 4. We write now that∫

Sn P
n
h ũβ ũβ dvh(∫

Sn f(x)ũ2]
β dvh

) 2

2]

≤ m
4
n dnω

4
n
n

f(x1)
2

2]

(
1− α

mωn
(β − 1)

n−4
2 + o

(
(β − 1)

n−4
2

))

Since dnω
4
n
n = 1/K0 (see [EFJ]), it follows that∫

Sn P
n
h ũβ ũβ dvh(∫

Sn f(x)ũ2]
β dvh

) 2

2]

≤ |OG(x1)| 4n

f(x1)
2

2]K0

(
1− α

mωn
(β − 1)

n−4
2 + o

(
(β − 1)

n−4
2

))

Noting that α > 0, we get that

λG(f) <
|OG(x1)| 4n

f(x1)
2

2]K0

(18)

for all x1 ∈ Sn such that ∇kf(x1) = 0 for all k = 1, ..., n − 4. It then follows
from Theorem 2 that the following theorem holds:
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Theorem 3 Let G be a compact subgroup of Isomg(Sn), n ≥ 5, acting without
fixed point. Let f ∈ C∞(Sn) be a positive G−invariant function, and let x0 ∈ Sn
be such that for any x ∈ Sn,

f(x0)

|OG(x0)|
4

n−4

≥ f(x)

|OG(x)|
4

n−4

Assume that ∇qf(x0) = 0 for all q = 1, ..., n−4. Then there exists u ∈ C∞(Sn),
positive and G−invariant, such that

Pnh u = fu2]−1

and there exists a G-invariant conformal metric g to h such that Qng = f .

We now prove Theorem 1. If there is no solution for (2), then we have (9)
with a point x1 ∈ Sn such that (10) and (17) are true. Assume that we have
proved that x1 is a critical point for f . Since n = 5, then (18) is true for x1.
A contradiction, and this proves the theorem. Then the proof of Theorem 1
reduces to the proof that x1 is a critical point for f . We adapt an argument
from Aubin. Given (M, g) a compact manifold of dimension n, let (uε) be as in
lemma 1. We suppose that (uε) converges weakly to 0 and let x1 ∈ M be such
that (10) and (17) are true. With (7) we have

∆2
guε + α∆guε + auε = λGε (f)fu2]−1−ε

ε

Let 0 < δ < min
x,y∈OG(x1)

x6=y

dg(x, y). We get with (10) that for all z ∈ C0(M),

∫
Bg(x1,δ)

zu2]−ε
ε dvg =

z(x1)

f(x1)|OG(x1)|
+ o(1) (19)

Now we choose ψ ∈ C∞(M) such that Suppψ ⊂ Bg(x1, δ), ∇ψ(x1) = ∇f(x1)
and ∇2

gψ(x1) = 0. We then have∫
M

(∇f,∇ψ)gu
2]−ε
ε dvg =

|∇f |2g(x1)

f(x1)|OG(x1)|
+ o(1)

On the other hand, since ∆gψ(x1) = 0, uε → 0 strongly in H2
1 (M) and is

9



bounded in H2
2 (M), we have∫

M

(∇f,∇ψ)gu
2]−ε
ε dvg

=

∫
M

(∇(fu2]−ε
ε ),∇ψ) dvg

−(2] − ε)
∫
M

fu2]−1−ε
ε (∇uε, ψ)g dvg

=

∫
M

fu2]−ε
ε ∆gψ dvg

− 2] − ε
λGε (f)

∫
M

(
∆2
guε + α∆guε + auε

)
(∇uε,∇ψ)g dvg

= − 2] − ε
λGε (f)

∫
M

∆2
guε(∇uε,∇ψ)g dvg + o(1)

= − 2] − ε
λGε (f)

∫
M

∆guε∆g(∇uε,∇ψ)g dvg + o(1)

where we have used (19). We have

∆g(∇uε,∇ψ)g = (∇∆guε,∇ψ)g

+O(|∇uε|g) +O(|x||∇2
guε|g|∇ψ|g) +O(|∇2

guε|g|∇2
gψ|g)

Then, with (17), (19) and since (uε) is bounded in H2
2 (M), we get that∫

M

(∇f,∇ψ)gu
2]−ε
ε dvg = − 2] − ε

λGε (f)

∫
M

∆guε(∇∆guε,∇ψ)g dvg + o(1)

= − 2] − ε
2λGε (f)

∫
M

(∇(∆guε)
2,∇ψ)g dvg + o(1)

= − 2] − ε
2λGε (f)

∫
M

(∆guε)
2∆gψ dvg + o(1) = o(1)

since ∆gψ(x1) = 0. Hence ∇f(x1) = 0. Taking M = Sn, this ends the proof of
Theorem 1.

Acknowledgements: The author wishes to thank Olivier Druet, Emmanuel
Hebey, and Antoinette Jourdain for their useful remarks on the manuscript.
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