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Abstract

Let (M, g) be a smooth compact Riemannian manifold of dimension
n > 5. We consider the problem

n+4
A3u+aAgu+au = fun—1, (*)
where Ay = —divg(V), a,a € R, u, f € C°°(M). We require u to be
positive and invariant under isometries. We prove existence results for (x)
on arbitrary compact manifolds. This includes the case of the geometric
Paneitz-Branson operator on the sphere.

In 1983, Paneitz [Pan| introduced a fourth order operator defined on 4-
dimensional Riemannian manifolds. Branson [Bra] generalized the definition
to n-dimensional Riemannian manifolds. Given (M™,g), n > 5, a compact
Riemannian manifold, and u € C*°(M™), we let

_ n—4
Plu = A2u — divg(anSgg + bp Ricg)du + TQ.Z“

In this expression, Aju = —divg(Vu), Sy is the scalar curvature of g, Ric, its
2
Ricci curvature, a, = %, by, = — 15, and
1 n3 —4n? 4+ 16n — 16 2 .
Q” = 7AgSg + 2 - 2 |RZCQ|§

9 2(n-1) 8(n—12(n—-22 9 (n—2)

If § = ¢*/(»=Yg is a conformal metric to g, then, see Branson [Bra],

n ntd o, n n—4 n ntd
Pl (ug) = @n-1 P (u) and Pjp = 5 Qupr—s

where the first of these two equations holds for all smooth functions v on M™.
Let (S™, h) be the unit n-sphere. Then,

Plu = Aiu + e Apu + dpu,
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where ¢, = %, and d, = %W. We still refer to P as the
Paneitz operator. Given o, a € R, let P, be the constant coefficient Paneitz type
operator whose expression is Pyu = Agu + aAgu + au, where u € C°(M™).
If G is a group of isometries of (M™,g) and f € C°°(M) is invariant under
the action of G, we are interested in this paper in finding smooth positive G-

invariant solutions of the fourth order equation

Pyu= fu*~! (1)

2n

where 2 = -2 is the critical Sobolev exponent for the embeddings of H3 (M)
in LP-spaces. When (M™, g) is the unit n-sphere (S",h), a = ¢,, and a = d,,
equation (1) reads as

AZu+ cqApu+ dyu = fu® ! (2)

Then it follows from the above transformation laws that the existence of a
smooth positive solution to (2) is equivalent to the existence of a conformal
metric g to h such that Qy = f. Equation (2) has its exact analogue when
passing from the Paneitz operator to the conformal Laplacian on S, n > 3.
The equation associated to the conformal Laplacian reads as

Ayt n(n4— 2)

where 2* = 2% and f € C°°(M), and we refer to the problem of finding smooth
positive solutions to this equation as the Kazdan-Warner or the Nirenberg prob-
lem. Extending a result of Moser [Mos] from S? to S?, Escobar and Schoen [EsSc]
proved that if f is a smooth positive function on S?, invariant under the action
of a nontrivial group G of isometries of (S3, h) acting freely, then (3) possesses a
smooth positive G-invariant solution. This result of Escobar and Schoen [EsSc]
was then generalized by Hebey [Heb], when he proved that (3) still possesses a
smooth positive G-invariant solution if we only require that the action of G is
without fixed points. A nontrivial group G of isometries of a manifold (M™, g)
is said to act freely if M™ /G is still a manifold. We say that G acts without
fixed points if for any x, the G-orbit Og(x) of x has at least two elements. A
nontrivial group acting freely acts without fixed points. Returning to (2), it was
proved in Djadli-Hebey-Ledoux [DHL] that if f is a smooth positive function
on S®, invariant under the action of a nontrivial group G of isometries of (S°, h)
acting freely, then (2) possesses a smooth positive G-invariant solution. Hebey
put to our attention the question of whether or not such a result holds when
the condition that G acts freely is replaced by the less restrictive condition that
G acts without fixed points. We answer this question by the affirmative, and
prove the following theorem:

uw= fu* ! (3)

Theorem 1 Let G be a compact subgroup of isometries of the standard sphere
(S5,n), f € C=(S®) positive and G—invariant. Assume that G acts without
fized points. Then (2) possesses a smooth positive G—invariant solution, and
there exists a conformal G-invariant metric g to h such that QS = f.



References where (1) and (2) are studied are Djadli-Hebey-Ledoux [DHL],
Hebey-Robert [HeRo], and Jourdain [Jou].

1 The case of an arbitrary Riemannian manifold

Let (M™,g) be a compact Riemannian manifold of dimension n > 5. Not to
carry heavy notations, we note M instead of M™. If Isomy(M) is the isometry
group of (M, g), we let G be a compact subgroup of Isomy(M). Given f €
C> (M), positive and G—invariant, and given a,« > 0, we let

NC(f) = inf / (Agu)® + oz|Vu|§ + au®) dvy
ueH? M
where dv, is the Riemannian volume element for g, and ’H? is the set consisting

of G-invariant functions in H3 (M) which are such that [}, f|u\2ndvg = 1. It can
be checked that whatever (M, g) is, whatever f is, and whatever a and « are,

n

AG(f) < M
Kof(z)>

for all x € M, where |O¢(x)| is the cardinality of the orbit O¢(x) and Ky is the
best constant for the optimal Sobolev Euclidean inequality

([ 1) <k [ acuran, )

where dve is the volume element in R™ and A¢ is the usual Laplacian with
the minus sign convention. The first objective of this section is to prove the
following theorem:

‘m 3

(4)

x|

Theorem 2 Let (M, g) be a compact Riemannian manifold of dimensionn > 5,
G a compact subgroup of Isomgy(M), f € C>(M), positive and G—invariant,

and a,a > 0. Ifa < %2, and if for all x € M,

1

Kof(z)>

then (1) possesses a smooth positive G—invariant solution.

NS

(6)

x|

We prove this theorem in what follows. For 0 < € < 2% — 2, we define

MC(f) = inf (/ (Agu)® + 04|Vu|3 + au?) dvg>
uG'H?’F M
where 7—[%6 is the set consisting of G-invariant functions in H2(M) which are

such that [, f \u|2n_6 dvy = 1. The following lemma easily follows from what
has been done in [DHL].



Lemma 1 Let (M,g) be a compact Riemannian manifold of dimension n > 5.
Let G be a subgroup of Isomg(M), f € C*(M) a positive G—invariant function,
and a,o0 > 0 such that a < "‘72, Then \E(f) is attained by a smooth positive
G—invariant function u. which satisfies

Agu6 + aAgue + aue = )\f(f)fufn_l_6 (7)

and fM fufm_6 dvy = 1. Moreover, up to a subsequence, (uc) converges weakly
in H3(M) to a function u. If u 2 0, then u is a positive smooth G—invariant
function which realizes \(f), and, up to a positive constant scale factor, u is
a solution of (1).

We proceed with the proof of Theorem 2. We assume that (6) is true. We let
(ue) be the sequence of lemma 1. Let also A = limsup AS(f). Then A < A9 (f),
and with Holder and Sobolev inequalities we get that A > 0. Assume now that
there is no positive G—invariant solution v € C*°(M) to (1). Then u. — 0
almost everywhere. Let z. € M be such that u.(x.) = supy; ue. If ue(xe)
is bounded, it follows from classical regularity theory (see for instance [GT])
that (u.) is bounded in C*#(M), 0 < 8 < 1. Then u, — 0 in C*(M), a
contradiction since [, fufu_edvg = 1. Hence, uc(xe) — +o0o. Let ©1 € M

__n—4
be such that x. — x1. We define u. = ug(ze)_ﬁ and k. = ui % . For
|z < lg,(cM), where i4(M) > 0 is the injectivity radius of M, we let

n—4
ve(®) = pe® uc(ewps, (kew)) and ge = (exp} g)(kew),

where exp,, denotes the exponential map at z.. Then v, verifies
fq_
A2 ve + ak?Ag ve + akve = \C(f) flexpy, (kex))w? ~17¢

an equation which we can read also as

2\ 2 2
<Age + 0626) ve = A (f) f (exps, (kex))vgu_l_e + <O; - a) Ve
We have 0 < v, < 1 and k. — 0. By classical regularity theorems (see for
instance [GT]), (ve) is bounded in C*#(K) for 0 < 8 < 1 and all compact
subsets K C R"™. Then, up to a subsequence, there exists v € C*(R") such that
ve goes to v in C}f (R™). In particular v > 0, v(0) = 1, and

loc

Agv = /\f(xl)UQufl

Then, see [HeRo|, we know precisely what v is. Given z € M and r > 0, we let
By(z,7) be the geodesic ball of center « and radius r in M, and for p € R", we
let Be¢(p,r) be the Euclidean ball in R™ of center p and radius r. For R > 0, we
have

2
((n=1)

/ fuF e du, = () / F(expa, (ke)0?' < du,
By (ze,Rke) Be(0,R)

Y

f(a) / v? dvg + o(1)
Bg(O,R)

4



since p — 0 and ve — v in C*(B¢(0, R)). Now, since we also have that z. — z1,
ke — 0 and f > 0, we obtain that for any § > 0,

/ ey 2 @) [ o dve ot (3)

Let Og(x1) = {21, ....,xm}. Since f is G—invariant and G is a group of isome-
tries,

/ fu?m_6 dvg = / fufu_6 dvg > f(acl)/ v dve +o(1)
By (z;,0) By(x1,9) R™

for all i = 1,...,m. Taking 6 > 0 sufficiently small, we obtain

1 :/ fufﬁ_€ dvg > mf(xl)/ v? dve + o(1)
M n

Multiplying by v the equation satisfied by v, and integrating, it follows with
(5), (4), and the inequality A < A\“(f), that v is minimizing for (5) and that

4
n

_ |0¢(z1)
@) K

XE(f) =X (9)

A contradiction with (6). This proves Theorem 2.

We proceed in what follows with the study of the behaviour of the u.’s. We
assume as in the proof of Theorem 2 that u. — 0 almost everywhere. It follows
from the proof of Theorem 2 that equality holds in (8). Then, for any ¢ small,

1

fufLe dvg = ——= +0(1 10
/Bg(ml,é) 7 |0g (1)) @) (10)

We also get that pu¢ — 1 and that for any @ CC M\Og(z1),

/ ufn_e dvg = o(1) (11)
Q

We now give a more precise description of the convergence of (u.) outside the
orbit Og(z1). Let o1 = Idp,09,...,0, € G be such that z; = o;(x1) where
O¢(z1) = {z1,...,xm}. Define z.; = o;(x.). First, we want to prove that there
exists C' > 0 such that for any x € M,

4(n—4)

‘ ilnf dg(z,xc )5y (z) <C (12)
i=1,....,p

We follow an idea of Druet [Dru]. Assume that there exists y. € M such that

sup inf dy(z,zc;)*uc(x) = inf  dg(ye, Tei) ue(ye) = 00 (13)
zeM =1,....,p i=1,...,p °



4(n—4) 2 =~ 1—el=
€

where s, = s crw B Define fic = uc(ye) 72, ke = [

De(T) = fle 7 ue (expys(fcex))
For |z| < “’](C—M) and ge(z) = e:rpzig(l%ex), we have

Agg/&e + ak?Aﬁe ’lA)e + ak?’(/je = f(expyE (]%Ex))ﬁgﬁ_l—e

Let R > 0. With (13), and |z| < R, we obtain

4(n—4)

i=1,....p

Ve(x) = < =
Uue(Ye) , ilnf dg(expy, (kex), Te ;)
i=1,...,p

Since ilnf dy(expy, (kex), xei) > ilnf dy(ye, ci) — kR,
i=1,...,p i=1,....p

__4(n—4)
N 8—e(n—4)

ke

. ll’lf dg(yev xﬁ,i)
=1,...,p

De(x) < [ 1-—

for all |x| < R. Now, with (13), we obtain that

. lnf d!](yﬁa J"E,i)
=1,...,p

! = — +00
ke

Then 9. is uniformly bounded on every compact set. Writing that

~ 2
k,2 R 2 R
<Age n O‘;) be = flexpy, (kew))o? 17 + <‘Z - a) i,

Ue (expyg(icex)) . ilnf dg(Ye, Te,i) et

and using classical regularity results (see for instance [GT]), there exists ¢ €
C*(R™) such that, up to a subsequence, 9. — o in C{t _(R"), and 9(0) = 1. Now,

as easily checked,

2% ¢ A*E# A2 ¢
oug " Sdug = fle 07 "€ dvg,
Bg (ye,ke) B¢(0,1)

Since fi. < 1, it comes when € — 0 that

/ ufke dvg > / % dve + o(1)
By(yﬂké) BE((]71)

Now, up to a subsequence, we can assume that y. — yo € M. If yo & Og(x1),
; pL ~2F _
then, with (11), we get that fBQ( dvg — 0. Then fBg(O,l) 0% dve = 0,

yeJee) Ue



a contradiction. Hence, up to an isometry of G, we can assume that yg = 1.
Taking § > 0 small enough,

i f_
/ A u? Cdv, = / ) u? ¢ dv,
By (yeke) By (ye,ke)NBg(21,0)

For any R’ > 0, we have

/ u¥ = dv, < e(R') + o(1)
By(x1,0)\Bg(zc,R'ke)

where limp/_, ;o €(R’) = 0. It follows that

/ ufke dvg < / que dvg + €(R') + o(1)
Bg(ysviéz) Bg(ym];?e)mBg(x&R/ke)

If Bg(y&ke) N Bg(xE;R/ke) # (2)7 then

inf dy(ye, 7)) < ke + Rk (16)

=1 p

4o

With (15) and (16), we then obtain that k. = o(kc) and w is bounded.

Now we write y. = expy, (keje) where . is bounded. There exists Co > 0 such

that .
1 1 oy n . ke
k:exng (Bg(el'p:c€ (ksye)» ke)) C B§ <y67 Coke>

We thus obtain that

of . _6(n;4)2
Uz dvg < pe

v dug, = o(1)

/Bg (9.Coe)

/Bg(ye,fce)ﬂBg(a:e,R’ke,)

since k. = o(k.) and (v.) is bounded. As a consequence,
/ ) w2 e dvg < e(R") +o(1)
By (Yerke)

for all R > 0. We then get that fBE(O 1 % dve = 0. A contradiction since

0(0) = 1. This proves (12). Given an open subset Q& CC M\Og(z1), we now
get by classical regularity theorems (see for instance [GT]) that (uc) is bounded
in C*+#(Q). Since u. goes to 0 almost everywhere, it follows that

ue — 0 in C*(Q) (17)

as € — 0, a relation we use in the following section.



2 The case of the sphere

Let xp € S™. For 8 > 1, define

n—4

n—4 -
U‘!L’Oﬁ(a‘.) = (ﬁ - COST)_T and Uz, 5 = (ﬁQ - 1) 4 Ugq,B

where r = dj, (2o, x). Then,
. Y ot
P’?(UIO;B) = dnuig’ﬁl and /Sn uin,,@ d’Uh = Wn
where w,, is the volume of the unit n—sphere. We now make these functions
G—invariant. Let 1 € M be a point of finite orbite Og(x1) = {x1,....,zm}.

We define wig = g, 8, @g = Uy, and ug = Y .~ 4;p (this function is
G—invariant). Computing [, Pfugis dv, and [g, f|715|2ﬁ dvy, we find that

n—4 n—4
/ Plugug dvy, = mdyw, +dpa(8—1)"2 40 (([3 - I)T)
where

S0 cosdi e z) " T [ e o
o= —cosdp(x;, T; T Wp_1 —dr
oy ! o (142

since |O¢g(z1)] > 2, and

2 2 n—4
2

([ s dvh);" > o F ) (14 22 (5-1)
sn n .
+o ((B— 1)"z ))

provided that V¥ f(x1) =0, for all k =1,...,n — 4. We write now that

4

Jor PRlsts dvn m dywp (1 «
2 > =
<fsn f(z)ﬁ%n dvh) 2 f(xy)2 Min

(5-1)"F +o((5- 1)"24))

Since dnwﬁ =1/Ky (see [EFJ]), it follows that

Jon Pl Oty (1281 +o(is-077"))
(for S@)7 )™ T Ko

Noting that a > 0, we get that

- |OG($21)|%
f(x1)2 Ko

for all ; € S” such that V¥ f(x;) = 0 for all k = 1,...,n — 4. It then follows
from Theorem 2 that the following theorem holds:

X(f (18)



Theorem 3 Let G be a compact subgroup of Isomg(S™), n > 5, acting without
fized point. Let f € C°(S™) be a positive G—invariant function, and let xy € S™
be such that for any v € S™,

f(zo) S f(x)
0G(x0)| 77~ |Og(z)|7

Assume that Vf(xg) =0 for allq=1,...,n—4. Then there exists u € C*(S"),
positive and G—1invariant, such that

Plu= fu2u*1
and there exists a G-invariant conformal metric g to h such that Qg = f.

We now prove Theorem 1. If there is no solution for (2), then we have (9)
with a point ;1 € S™ such that (10) and (17) are true. Assume that we have
proved that x; is a critical point for f. Since n = 5, then (18) is true for x;.
A contradiction, and this proves the theorem. Then the proof of Theorem 1
reduces to the proof that z; is a critical point for f. We adapt an argument
from Aubin. Given (M, g) a compact manifold of dimension n, let (u¢) be as in
lemma 1. We suppose that (u.) converges weakly to 0 and let x; € M be such
that (10) and (17) are true. With (7) we have

Af]u6 + algue + aue = )\?(f)fufn_l_e

Let 0 <d < min dy(z,y). We get with (10) that for all z € C°(M),

z,y€O g (x1)
T#y

z(x1)

/ zu2n_5dv =
By(x1,5) 7 f(21)|0c (1)

Now we choose 1 € C*°(M) such that Suppp C By(z1,0), Vip(z1) = Vf(x1)
and V29 (x1) = 0. We then have

+0(1) (19)

2f _¢ _ |Vf|3($1)
IR ) Oalan)]

On the other hand, since Ay¢(z1) = 0, ue — 0 strongly in Hf(M) and is

+0o(1)



bounded in HZ(M), we have
[ (w590,
- [ (v, vy an,
@ o) [ (Tu v, du,
M

- /N A,

f_
2o [ (s 0+ an) (T, V),
of _
=30 /M AJue(Vie, Vi) dvg + o(1)
o _
- 7)\G7(f§ /M Aguelg(Vue, Vi) g dvg + o(1)

where we have used (19). We have

Ag(vuﬁ V¢)g = (VAguGa VT/))g
+O(|Vuelg) + O(|$|‘V3ue|g‘vw|g) + O(|v3ue|g|v3¢|g)

Then, with (17), (19) and since (u.) is bounded in H3(M), we get that

o ¢
/M(V f, vw)guf”—f dvy, = 30 /M Ague(VAgue, Vib), dvog + o(1)
28 _ ¢
- _W/M(V(Agug)%vw)gdug +0(1)
28 ¢
= o [ (B Agbdny +o(1) = o)

since Agtp(x1) = 0. Hence V f(x1) = 0. Taking M = S", this ends the proof of
Theorem 1.
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