Positive solutions for a fourth order equation invariant under isometries

by

Frédéric ROBERT

Université de Cergy-Pontoise Département de Mathématiques - Site Saint-Martin 2, Avenue Adolphe Chauvin F 95302 Cergy-Pontoise Cedex, France e-mail: Frederic.Robert@math.u-cergy.fr

Abstract

Let (M,g) be a smooth compact Riemannian manifold of dimension $n \geq 5$. We consider the problem

$$\Delta_g^2 u + \alpha \Delta_g u + au = f u^{\frac{n+4}{n-4}},\tag{(\star)}$$

where $\Delta_g = -div_g(\nabla)$, $\alpha, a \in \mathbb{R}$, $u, f \in C^{\infty}(M)$. We require u to be positive and invariant under isometries. We prove existence results for (\star) on arbitrary compact manifolds. This includes the case of the geometric Paneitz-Branson operator on the sphere.

In 1983, Paneitz [Pan] introduced a fourth order operator defined on 4dimensional Riemannian manifolds. Branson [Bra] generalized the definition to *n*-dimensional Riemannian manifolds. Given (M^n, g) , $n \ge 5$, a compact Riemannian manifold, and $u \in C^{\infty}(M^n)$, we let

$$P_g^n u = \Delta_g^2 u - div_g (a_n S_g g + b_n Ric_g) du + \frac{n-4}{2} Q_g^n u$$

In this expression, $\Delta_g u = -div_g(\nabla u)$, S_g is the scalar curvature of g, Ric_g its Ricci curvature, $a_n = \frac{(n-2)^2+4}{2(n-1)(n-2)}$, $b_n = -\frac{4}{n-2}$, and

$$Q_g^n = \frac{1}{2(n-1)} \Delta_g S_g + \frac{n^3 - 4n^2 + 16n - 16}{8(n-1)^2(n-2)^2} S_g^2 - \frac{2}{(n-2)^2} |Ric_g|_g^2$$

If $\tilde{g} = \varphi^{4/(n-4)}g$ is a conformal metric to g, then, see Branson [Bra],

$$P_g^n(u\varphi) = \varphi^{\frac{n+4}{n-4}} P_{\tilde{g}}^n(u) \text{ and } P_g^n\varphi = \frac{n-4}{2} Q_{\tilde{g}}^n\varphi^{\frac{n+4}{n-4}}$$

where the first of these two equations holds for all smooth functions u on M^n . Let (\mathbb{S}^n, h) be the unit *n*-sphere. Then,

$$P_h^n u = \Delta_h^2 u + c_n \Delta_h u + d_n u,$$

AMS subject classification: 35J35, 58J99

where $c_n = \frac{n^2 - 2n - 4}{2}$, and $d_n = \frac{(n - 4)n(n^2 - 4)}{16}$. We still refer to P_g^n as the Paneitz operator. Given $\alpha, a \in \mathbb{R}$, let P_g be the constant coefficient Paneitz type operator whose expression is $P_g u = \Delta_g^2 u + \alpha \Delta_g u + au$, where $u \in C^{\infty}(M^n)$. If G is a group of isometries of (M^n, g) and $f \in C^{\infty}(M)$ is invariant under the action of G, we are interested in this paper in finding smooth positive G-invariant solutions of the fourth order equation

$$P_q u = f u^{2^\sharp - 1} \tag{1}$$

where $2^{\sharp} = \frac{2n}{n-4}$ is the critical Sobolev exponent for the embeddings of $H_2^2(M)$ in L^p -spaces. When (M^n, g) is the unit *n*-sphere (\mathbb{S}^n, h) , $\alpha = c_n$, and $a = d_n$, equation (1) reads as

$$\Delta_h^2 u + c_n \Delta_h u + d_n u = f u^{2^{\sharp} - 1} \tag{2}$$

Then it follows from the above transformation laws that the existence of a smooth positive solution to (2) is equivalent to the existence of a conformal metric g to h such that $Q_g^n = f$. Equation (2) has its exact analogue when passing from the Paneitz operator to the conformal Laplacian on \mathbb{S}^n , $n \geq 3$. The equation associated to the conformal Laplacian reads as

$$\Delta_h u + \frac{n(n-2)}{4}u = f u^{2^* - 1} \tag{3}$$

where $2^{\star} = \frac{2n}{n-2}$ and $f \in C^{\infty}(M)$, and we refer to the problem of finding smooth positive solutions to this equation as the Kazdan-Warner or the Nirenberg problem. Extending a result of Moser [Mos] from \mathbb{S}^2 to \mathbb{S}^3 , Escobar and Schoen [EsSc proved that if f is a smooth positive function on \mathbb{S}^3 , invariant under the action of a nontrivial group G of isometries of (\mathbb{S}^3, h) acting freely, then (3) possesses a smooth positive G-invariant solution. This result of Escobar and Schoen [EsSc] was then generalized by Hebey [Heb], when he proved that (3) still possesses a smooth positive G-invariant solution if we only require that the action of G is without fixed points. A nontrivial group G of isometries of a manifold (M^n, g) is said to act freely if M^n/G is still a manifold. We say that G acts without fixed points if for any x, the G-orbit $O_G(x)$ of x has at least two elements. A nontrivial group acting freely acts without fixed points. Returning to (2), it was proved in Djadli-Hebey-Ledoux [DHL] that if f is a smooth positive function on \mathbb{S}^5 , invariant under the action of a nontrivial group G of isometries of (\mathbb{S}^5, h) acting freely, then (2) possesses a smooth positive G-invariant solution. Hebey put to our attention the question of whether or not such a result holds when the condition that G acts freely is replaced by the less restrictive condition that G acts without fixed points. We answer this question by the affirmative, and prove the following theorem:

Theorem 1 Let G be a compact subgroup of isometries of the standard sphere $(\mathbb{S}^5, h), f \in C^{\infty}(\mathbb{S}^5)$ positive and G-invariant. Assume that G acts without fixed points. Then (2) possesses a smooth positive G-invariant solution, and there exists a conformal G-invariant metric g to h such that $Q_g^5 = f$.

References where (1) and (2) are studied are Djadli-Hebey-Ledoux [DHL], Hebey-Robert [HeRo], and Jourdain [Jou].

1 The case of an arbitrary Riemannian manifold

Let (M^n, g) be a compact Riemannian manifold of dimension $n \geq 5$. Not to carry heavy notations, we note M instead of M^n . If $Isom_g(M)$ is the isometry group of (M, g), we let G be a compact subgroup of $Isom_g(M)$. Given $f \in C^{\infty}(M)$, positive and G-invariant, and given $a, \alpha > 0$, we let

$$\lambda^G(f) = \inf_{u \in \mathcal{H}_f^G} \int_M \left((\Delta_g u)^2 + \alpha |\nabla u|_g^2 + au^2 \right) \, dv_g$$

where dv_g is the Riemannian volume element for g, and \mathcal{H}_f^G is the set consisting of G-invariant functions in $H_2^2(M)$ which are such that $\int_M f|u|^{2^{\sharp}} dv_g = 1$. It can be checked that whatever (M, g) is, whatever f is, and whatever a and α are,

$$\lambda^{G}(f) \le \frac{|O_{G}(x)|^{\frac{4}{n}}}{K_{0}f(x)^{\frac{2}{2^{\frac{2}{3}}}}} \tag{4}$$

for all $x \in M$, where $|O_G(x)|$ is the cardinality of the orbit $O_G(x)$ and K_0 is the best constant for the optimal Sobolev Euclidean inequality

$$\left(\int_{\mathbb{R}^n} |u|^{2^{\sharp}} dv_{\xi}\right)^{\frac{2}{2^{\sharp}}} \le K_0 \int_{\mathbb{R}^n} (\Delta_{\xi} u)^2 dv_{\xi}$$
(5)

where dv_{ξ} is the volume element in \mathbb{R}^n and Δ_{ξ} is the usual Laplacian with the minus sign convention. The first objective of this section is to prove the following theorem:

Theorem 2 Let (M, g) be a compact Riemannian manifold of dimension $n \geq 5$, G a compact subgroup of $Isom_g(M)$, $f \in C^{\infty}(M)$, positive and G-invariant, and $a, \alpha > 0$. If $a \leq \frac{\alpha^2}{4}$, and if for all $x \in M$,

$$\lambda^{G}(f) < \frac{|O_{G}(x)|^{\frac{4}{n}}}{K_{0}f(x)^{\frac{2}{2^{\frac{2}{p}}}}}$$
(6)

then (1) possesses a smooth positive G-invariant solution.

We prove this theorem in what follows. For $0 < \epsilon < 2^{\sharp} - 2$, we define

$$\lambda_{\epsilon}^{G}(f) = \inf_{u \in \mathcal{H}_{f,\epsilon}^{G}} \left(\int_{M} \left((\Delta_{g} u)^{2} + \alpha |\nabla u|_{g}^{2} + a u^{2} \right) \, dv_{g} \right)$$

where $\mathcal{H}_{f,\epsilon}^G$ is the set consisting of *G*-invariant functions in $H_2^2(M)$ which are such that $\int_M f|u|^{2^{\sharp}-\epsilon} dv_g = 1$. The following lemma easily follows from what has been done in [DHL].

Lemma 1 Let (M, g) be a compact Riemannian manifold of dimension $n \geq 5$. Let G be a subgroup of $Isom_g(M)$, $f \in C^{\infty}(M)$ a positive G-invariant function, and $a, \alpha > 0$ such that $a \leq \frac{\alpha^2}{4}$. Then $\lambda_{\epsilon}^G(f)$ is attained by a smooth positive G-invariant function u_{ϵ} which satisfies

$$\Delta_g^2 u_\epsilon + \alpha \Delta_g u_\epsilon + a u_\epsilon = \lambda_\epsilon^G(f) f u_\epsilon^{2^\sharp - 1 - \epsilon} \tag{7}$$

and $\int_M f u_{\epsilon}^{2^{\sharp}-\epsilon} dv_g = 1$. Moreover, up to a subsequence, (u_{ϵ}) converges weakly in $H_2^2(M)$ to a function u. If $u \not\equiv 0$, then u is a positive smooth G-invariant function which realizes $\lambda^G(f)$, and, up to a positive constant scale factor, u is a solution of (1).

We proceed with the proof of Theorem 2. We assume that (6) is true. We let (u_{ϵ}) be the sequence of lemma 1. Let also $\lambda = \limsup \lambda_{\epsilon}^{G}(f)$. Then $\lambda \leq \lambda^{G}(f)$, and with Hölder and Sobolev inequalities we get that $\lambda > 0$. Assume now that there is no positive G-invariant solution $u \in C^{\infty}(M)$ to (1). Then $u_{\epsilon} \to 0$ almost everywhere. Let $x_{\epsilon} \in M$ be such that $u_{\epsilon}(x_{\epsilon}) = \sup_{M} u_{\epsilon}$. If $u_{\epsilon}(x_{\epsilon})$ is bounded, it follows from classical regularity theory (see for instance [GT]) that (u_{ϵ}) is bounded in $C^{4,\beta}(M)$, $0 < \beta < 1$. Then $u_{\epsilon} \to 0$ in $C^{4}(M)$, a contradiction since $\int_{M} f u_{\epsilon}^{2^{\sharp}-\epsilon} dv_{g} = 1$. Hence, $u_{\epsilon}(x_{\epsilon}) \to +\infty$. Let $x_{1} \in M$ be such that $x_{\epsilon} \to x_{1}$. We define $\mu_{\epsilon} = u_{\epsilon}(x_{\epsilon})^{-\frac{2}{n-4}}$ and $k_{\epsilon} = \mu_{\epsilon}^{1-\epsilon\frac{n-4}{8}}$. For $|x| < \frac{i_{g}(M)}{k_{\epsilon}}$, where $i_{g}(M) > 0$ is the injectivity radius of M, we let

$$w_{\epsilon}(x) = \mu_{\epsilon}^{\frac{n-4}{2}} u_{\epsilon}(exp_{x_{\epsilon}}(k_{\epsilon}x)) \text{ and } g_{\epsilon} = (exp_{x_{\epsilon}}^{\star}g)(k_{\epsilon}x)$$

where $exp_{x_{\epsilon}}$ denotes the exponential map at x_{ϵ} . Then v_{ϵ} verifies

$$\Delta_{g_{\epsilon}}^2 v_{\epsilon} + \alpha k_{\epsilon}^2 \Delta_{g_{\epsilon}} v_{\epsilon} + a k_{\epsilon}^4 v_{\epsilon} = \lambda_{\epsilon}^G(f) f(exp_{x_{\epsilon}}(k_{\epsilon}x)) v_{\epsilon}^{2^{\sharp}-1-}$$

an equation which we can read also as

$$\left(\Delta_{g_{\epsilon}} + \frac{\alpha k_{\epsilon}^2}{2}\right)^2 v_{\epsilon} = \lambda_{\epsilon}^G(f) f(exp_{x_{\epsilon}}(k_{\epsilon}x)) v_{\epsilon}^{2^{\sharp}-1-\epsilon} + \left(\frac{\alpha^2}{4} - a\right) v_{\epsilon}$$

We have $0 \leq v_{\epsilon} \leq 1$ and $k_{\epsilon} \to 0$. By classical regularity theorems (see for instance [GT]), (v_{ϵ}) is bounded in $C^{4,\beta}(K)$ for $0 < \beta < 1$ and all compact subsets $K \subset \mathbb{R}^n$. Then, up to a subsequence, there exists $v \in C^4(\mathbb{R}^n)$ such that v_{ϵ} goes to v in $C^4_{loc}(\mathbb{R}^n)$. In particular $v \geq 0$, v(0) = 1, and

$$\Delta_{\epsilon}^2 v = \lambda f(x_1) v^{2^{\sharp} - 1}$$

Then, see [HeRo], we know precisely what v is. Given $x \in M$ and r > 0, we let $B_g(x, r)$ be the geodesic ball of center x and radius r in M, and for $p \in \mathbb{R}^n$, we let $B_{\xi}(p, r)$ be the Euclidean ball in \mathbb{R}^n of center p and radius r. For R > 0, we have

$$\int_{B_g(x_{\epsilon}, Rk_{\epsilon})} f u_{\epsilon}^{2^{\sharp}-\epsilon} dv_g = \left(\mu_{\epsilon}^{-1}\right)^{\epsilon \frac{(n-4)^2}{8}} \int_{B_{\xi}(0, R)} f(exp_{x_{\epsilon}}(k_{\epsilon}x)) v_{\epsilon}^{2^{\sharp}-\epsilon} dv_{g_{\epsilon}}$$
$$\geq f(x_1) \int_{B_{\xi}(0, R)} v^{2^{\sharp}} dv_{\xi} + o(1)$$

since $\mu_{\epsilon} \to 0$ and $v_{\epsilon} \to v$ in $C^4(B_{\xi}(0, R))$. Now, since we also have that $x_{\epsilon} \to x_1$, $k_{\epsilon} \to 0$ and $f \ge 0$, we obtain that for any $\delta > 0$,

$$\int_{B_g(x_1,\delta)} f u_{\epsilon}^{2^{\sharp}-\epsilon} \, dv_g \ge f(x_1) \int_{\mathbb{R}^n} v^{2^{\sharp}} \, dv_{\xi} + o(1) \tag{8}$$

Let $O_G(x_1) = \{x_1, ..., x_m\}$. Since f is G-invariant and G is a group of isometries,

$$\int_{B_g(x_i,\delta)} f u_{\epsilon}^{2^{\sharp}-\epsilon} \, dv_g = \int_{B_g(x_1,\delta)} f u_{\epsilon}^{2^{\sharp}-\epsilon} \, dv_g \ge f(x_1) \int_{\mathbb{R}^n} v^{2^{\sharp}} \, dv_{\xi} + o(1)$$

for all i = 1, ..., m. Taking $\delta > 0$ sufficiently small, we obtain

$$1 = \int_M f u_{\epsilon}^{2^{\sharp} - \epsilon} \, dv_g \ge m f(x_1) \int_{\mathbb{R}^n} v^{2^{\sharp}} \, dv_{\xi} + o(1)$$

Multiplying by v the equation satisfied by v, and integrating, it follows with (5), (4), and the inequality $\lambda \leq \lambda^G(f)$, that v is minimizing for (5) and that

$$\lambda^{G}(f) = \lambda = \frac{|O_{G}(x_{1})|^{\frac{4}{n}}}{f(x_{1})^{\frac{2}{2\#}}K_{0}}$$
(9)

A contradiction with (6). This proves Theorem 2.

We proceed in what follows with the study of the behaviour of the u_{ϵ} 's. We assume as in the proof of Theorem 2 that $u_{\epsilon} \to 0$ almost everywhere. It follows from the proof of Theorem 2 that equality holds in (8). Then, for any δ small,

$$\int_{B_g(x_1,\delta)} f u_{\epsilon}^{2^{\sharp}-\epsilon} \, dv_g = \frac{1}{|O_G(x_1)|} + o(1) \tag{10}$$

We also get that $\mu_{\epsilon}^{\epsilon} \to 1$ and that for any $\Omega \subset M \setminus O_G(x_1)$,

$$\int_{\Omega} u_{\epsilon}^{2^{\sharp}-\epsilon} \, dv_g = o(1) \tag{11}$$

We now give a more precise description of the convergence of (u_{ϵ}) outside the orbit $O_G(x_1)$. Let $\sigma_1 = Id_M, \sigma_2, ..., \sigma_m \in G$ be such that $x_i = \sigma_i(x_1)$ where $O_G(x_1) = \{x_1, ..., x_m\}$. Define $x_{\epsilon,i} = \sigma_i(x_{\epsilon})$. First, we want to prove that there exists C > 0 such that for any $x \in M$,

$$\inf_{i=1,\dots,p} d_g(x, x_{\epsilon,i})^{\frac{4(n-4)}{8-\epsilon(n-4)}} u_\epsilon(x) \le C$$
(12)

We follow an idea of Druet [Dru]. Assume that there exists $y_{\epsilon} \in M$ such that

$$\sup_{x \in M} \inf_{i=1,\dots,p} d_g(x, x_{\epsilon,i})^{s_\epsilon} u_\epsilon(x) = \inf_{i=1,\dots,p} d_g(y_\epsilon, x_{\epsilon,i})^{s_\epsilon} u_\epsilon(y_\epsilon) \to +\infty$$
(13)

where $s_{\epsilon} = \frac{4(n-4)}{8-\epsilon(n-4)}$. Define $\hat{\mu}_{\epsilon} = u_{\epsilon}(y_{\epsilon})^{-\frac{2}{n-4}}$, $\hat{k}_{\epsilon} = \hat{\mu}_{\epsilon}^{1-\epsilon\frac{n-4}{8}}$, and set

$$\hat{v}_{\epsilon}(x) = \hat{\mu}_{\epsilon}^{\frac{n-4}{2}} u_{\epsilon} \left(exp_{y_{\epsilon}}(\hat{k}_{\epsilon}x) \right)$$

For $|x| < \frac{i_g(M)}{\hat{k}_{\epsilon}}$ and $\hat{g}_{\epsilon}(x) = exp_{y_{\epsilon}}^{\star}g(\hat{k}_{\epsilon}x)$, we have

$$\Delta_{\hat{g}_{\epsilon}}^{2}\hat{v}_{\epsilon} + \alpha k_{\epsilon}^{2}\Delta_{\hat{g}_{\epsilon}}\hat{v}_{\epsilon} + ak_{\epsilon}^{4}\hat{v}_{\epsilon} = f(exp_{y_{\epsilon}}(\hat{k}_{\epsilon}x))\hat{v}_{\epsilon}^{2^{\sharp}-1-\epsilon}$$
(14)

Let R > 0. With (13), and $|x| \leq R$, we obtain

$$\hat{v}_{\epsilon}(x) = \frac{u_{\epsilon}\left(exp_{y_{\epsilon}}(\hat{k}_{\epsilon}x)\right)}{u_{\epsilon}(y_{\epsilon})} \leq \left(\frac{\inf_{i=1,\dots,p} d_g(y_{\epsilon}, x_{\epsilon,i})}{\inf_{i=1,\dots,p} d_g(exp_{y_{\epsilon}}(\hat{k}_{\epsilon}x), x_{\epsilon,i})}\right)^{\frac{4(n-4)}{8-\epsilon(n-4)}}$$

Since $\inf_{i=1,\dots,p} d_g(exp_{y_{\epsilon}}(\hat{k}_{\epsilon}x), x_{\epsilon,i}) \ge \inf_{i=1,\dots,p} d_g(y_{\epsilon}, x_{\epsilon,i}) - \hat{k}_{\epsilon}R$,

$$\hat{v}_{\epsilon}(x) \le \left(1 - R \frac{\hat{k}_{\epsilon}}{\inf_{i=1,\dots,p} d_g(y_{\epsilon}, x_{\epsilon,i})}\right)^{-\frac{4(n-4)}{8-\epsilon(n-4)}}$$

for all $|x| \leq R$. Now, with (13), we obtain that

$$\frac{\inf_{i=1,\dots,p} d_g(y_{\epsilon}, x_{\epsilon,i})}{\hat{k}_{\epsilon}} \to +\infty$$
(15)

Then \hat{v}_{ϵ} is uniformly bounded on every compact set. Writing that

$$\left(\Delta_{\hat{g}_{\epsilon}} + \frac{\alpha \hat{k}_{\epsilon}^2}{2}\right)^2 \hat{v}_{\epsilon} = f(exp_{y_{\epsilon}}(\hat{k}_{\epsilon}x))\hat{v}_{\epsilon}^{2^{\sharp}-1-\epsilon} + \left(\frac{\alpha^2}{4} - a\right)\hat{k}_{\epsilon}^4 \hat{v}_{\epsilon}$$

and using classical regularity results (see for instance [GT]), there exists $\hat{v} \in C^4(\mathbb{R}^n)$ such that, up to a subsequence, $\hat{v}_{\epsilon} \to \hat{v}$ in $C^4_{loc}(\mathbb{R}^n)$, and $\hat{v}(0) = 1$. Now, as easily checked,

$$\int_{B_g(y_{\epsilon},\hat{k}_{\epsilon})} u_{\epsilon}^{2^{\sharp}-\epsilon} \, dv_g = \hat{\mu}_{\epsilon}^{-\epsilon \frac{(n-4)^2}{8}} \int_{B_{\xi}(0,1)} \hat{v}_{\epsilon}^{2^{\sharp}-\epsilon} \, dv_{\hat{g}}$$

Since $\hat{\mu}_{\epsilon} \leq 1$, it comes when $\epsilon \to 0$ that

$$\int_{B_g(y_{\epsilon},\hat{k}_{\epsilon})} u_{\epsilon}^{2^{\sharp}-\epsilon} \, dv_g \ge \int_{B_{\xi}(0,1)} \hat{v}^{2^{\sharp}} \, dv_{\xi} + o(1)$$

Now, up to a subsequence, we can assume that $y_{\epsilon} \to y_0 \in M$. If $y_0 \notin O_G(x_1)$, then, with (11), we get that $\int_{B_g(y_{\epsilon},\hat{k}_{\epsilon})} u_{\epsilon}^{2^{\sharp}-\epsilon} dv_g \to 0$. Then $\int_{B_{\xi}(0,1)} \hat{v}^{2^{\sharp}} dv_{\xi} = 0$,

a contradiction. Hence, up to an isometry of G, we can assume that $y_0 = x_1$. Taking $\delta > 0$ small enough,

$$\int_{B_g(y_{\epsilon},\hat{k}_{\epsilon})} u_{\epsilon}^{2^{\sharp}-\epsilon} \, dv_g = \int_{B_g(y_{\epsilon},\hat{k}_{\epsilon})\cap B_g(x_1,\delta)} u_{\epsilon}^{2^{\sharp}-\epsilon} \, dv_g$$

For any R' > 0, we have

$$\int_{B_g(x_1,\delta)\setminus B_g(x_{\epsilon},R'k_{\epsilon})} u_{\epsilon}^{2^{\sharp}-\epsilon} \, dv_g \le \epsilon(R') + o(1)$$

where $\lim_{R'\to+\infty} \epsilon(R') = 0$. It follows that

$$\int_{B_g(y_{\epsilon},\hat{k}_{\epsilon})} u_{\epsilon}^{2^{\sharp}-\epsilon} \, dv_g \leq \int_{B_g(y_{\epsilon},\hat{k}_{\epsilon})\cap B_g(x_{\epsilon},R'k_{\epsilon})} u_{\epsilon}^{2^{\sharp}-\epsilon} \, dv_g + \epsilon(R') + o(1)$$

If $B_g(y_{\epsilon}, \hat{k}_{\epsilon}) \cap B_g(x_{\epsilon}, R'k_{\epsilon}) \neq \emptyset$, then

$$\inf_{i=1,\dots,p} d_g(y_\epsilon, x_{\epsilon,i}) \le \hat{k}_\epsilon + R' k_\epsilon \tag{16}$$

With (15) and (16), we then obtain that $\hat{k}_{\epsilon} = o(k_{\epsilon})$ and $\frac{d_g(y_{\epsilon}, x_{\epsilon})}{k_{\epsilon}}$ is bounded. Now we write $y_{\epsilon} = exp_{x_{\epsilon}}(k_{\epsilon}\hat{y}_{\epsilon})$ where \hat{y}_{ϵ} is bounded. There exists $C_0 > 0$ such that

$$\frac{1}{k_{\epsilon}}exp_{x_{\epsilon}}^{-1}\left(B_g(exp_{x_{\epsilon}}(k_{\epsilon}\hat{y}_{\epsilon}), \hat{k}_{\epsilon})\right) \subset B_{\xi}\left(\hat{y}_{\epsilon}, C_0\frac{\hat{k}_{\epsilon}}{k_{\epsilon}}\right)$$

We thus obtain that

$$\int_{B_g(y_{\epsilon},\hat{k}_{\epsilon})\cap B_g(x_{\epsilon},R'k_{\epsilon})} u_{\epsilon}^{2^{\sharp}-\epsilon} dv_g \le \mu_{\epsilon}^{-\epsilon\frac{(n-4)^2}{8}} \int_{B_{\xi}\left(\hat{y}_{\epsilon},C_0\frac{\hat{k}_{\epsilon}}{k_{\epsilon}}\right)} v_{\epsilon}^{2^{\sharp}-\epsilon} dv_{g_{\epsilon}} = o(1)$$

since $\hat{k}_{\epsilon} = o(k_{\epsilon})$ and (v_{ϵ}) is bounded. As a consequence,

$$\int_{B_g(y_{\epsilon},\hat{k}_{\epsilon})} u_{\epsilon}^{2^{\sharp}-\epsilon} \, dv_g \le \epsilon(R') + o(1)$$

for all R' > 0. We then get that $\int_{B_{\xi}(0,1)} \hat{v}^{2^{\sharp}} dv_{\xi} = 0$. A contradiction since $\hat{v}(0) = 1$. This proves (12). Given an open subset $\Omega \subset M \setminus O_G(x_1)$, we now get by classical regularity theorems (see for instance [GT]) that (u_{ϵ}) is bounded in $C^{4,\beta}(\Omega)$. Since u_{ϵ} goes to 0 almost everywhere, it follows that

$$u_{\epsilon} \to 0 \text{ in } C^4(\Omega)$$
 (17)

as $\epsilon \to 0$, a relation we use in the following section.

2 The case of the sphere

Let $x_0 \in \mathbb{S}^n$. For $\beta > 1$, define

$$u_{x_0,\beta}(x) = (\beta - \cos r)^{-\frac{n-4}{2}}$$
 and $\tilde{u}_{x_0,\beta} = (\beta^2 - 1)^{\frac{n-4}{4}} u_{x_0,\beta}$

where $r = d_h(x_0, x)$. Then,

$$P_h^n(\tilde{u}_{x_0,\beta}) = d_n \tilde{u}_{x_0,\beta}^{2^{\sharp}-1} \text{ and } \int_{\mathbb{S}^n} \tilde{u}_{x_0,\beta}^{2^{\sharp}} dv_h = \omega_n$$

where ω_n is the volume of the unit *n*-sphere. We now make these functions G-invariant. Let $x_1 \in M$ be a point of finite orbite $O_G(x_1) = \{x_1, ..., x_m\}$. We define $u_{i\beta} = u_{x_i,\beta}$, $\tilde{u}_{i\beta} = \tilde{u}_{x_i,\beta}$ and $\tilde{u}_{\beta} = \sum_{i=1}^m \tilde{u}_{i\beta}$ (this function is G-invariant). Computing $\int_{\mathbb{S}^n} P_h^n \tilde{u}_{\beta} \tilde{u}_{\beta} dv_h$ and $\int_{\mathbb{S}^n} f |\tilde{u}_{\beta}|^{2^{\sharp}} dv_h$ we find that

$$\int_{\mathbb{S}^n} P_h^n \tilde{u}_\beta \tilde{u}_\beta \, dv_h = m d_n \omega_n + d_n \alpha (\beta - 1)^{\frac{n-4}{2}} + o\left((\beta - 1)^{\frac{n-4}{2}} \right)$$

where

$$\alpha = \sum_{i \neq j} (1 - \cos d_h(x_i, x_j))^{-\frac{n-4}{2}} \omega_{n-1} \int_0^{+\infty} \frac{2^n r^{n-1}}{(1+r^2)^{\frac{n+4}{2}}} \, dr > 0$$

since $|O_G(x_1)| \ge 2$, and

$$\left(\int_{\mathbb{S}^n} f(x) \tilde{u}_{\beta}^{2^{\sharp}} \, dv_h \right)^{\frac{2}{2^{\sharp}}} \geq f(x_1)^{\frac{2}{2^{\sharp}}} (m\omega_n)^{\frac{2}{2^{\sharp}}} \left(1 + \frac{2\alpha}{m\omega_n} (\beta - 1)^{\frac{n-4}{2}} + o\left((\beta - 1)^{\frac{n-4}{2}} \right) \right)$$

provided that $\nabla^k f(x_1) = 0$, for all k = 1, ..., n - 4. We write now that

$$\frac{\int_{\mathbb{S}^n} P_h^n \tilde{u}_\beta \tilde{u}_\beta \, dv_h}{\left(\int_{\mathbb{S}^n} f(x) \tilde{u}_\beta^{2^{\sharp}} \, dv_h\right)^{\frac{2}{2^{\sharp}}}} \le \frac{m^{\frac{4}{n}} d_n \omega_n^{\frac{4}{n}}}{f(x_1)^{\frac{2}{2^{\sharp}}}} \left(1 - \frac{\alpha}{m\omega_n} (\beta - 1)^{\frac{n-4}{2}} + o\left((\beta - 1)^{\frac{n-4}{2}}\right)\right)$$

Since $d_n \omega_n^{\frac{4}{n}} = 1/K_0$ (see [EFJ]), it follows that

$$\frac{\int_{\mathbb{S}^n} P_h^n \tilde{u}_\beta \tilde{u}_\beta \, dv_h}{\left(\int_{\mathbb{S}^n} f(x) \tilde{u}_\beta^{2\sharp} \, dv_h\right)^{\frac{2}{2\sharp}}} \le \frac{|O_G(x_1)|^{\frac{4}{n}}}{f(x_1)^{\frac{2}{2\sharp}} K_0} \left(1 - \frac{\alpha}{m\omega_n} (\beta - 1)^{\frac{n-4}{2}} + o\left((\beta - 1)^{\frac{n-4}{2}}\right)\right)$$

Noting that $\alpha > 0$, we get that

$$\lambda^{G}(f) < \frac{|O_{G}(x_{1})|^{\frac{2}{n}}}{f(x_{1})^{\frac{2}{2!}}K_{0}}$$
(18)

for all $x_1 \in \mathbb{S}^n$ such that $\nabla^k f(x_1) = 0$ for all k = 1, ..., n - 4. It then follows from Theorem 2 that the following theorem holds:

Theorem 3 Let G be a compact subgroup of $Isom_g(\mathbb{S}^n)$, $n \geq 5$, acting without fixed point. Let $f \in C^{\infty}(\mathbb{S}^n)$ be a positive G-invariant function, and let $x_0 \in \mathbb{S}^n$ be such that for any $x \in \mathbb{S}^n$,

$$\frac{f(x_0)}{|O_G(x_0)|^{\frac{4}{n-4}}} \ge \frac{f(x)}{|O_G(x)|^{\frac{4}{n-4}}}$$

Assume that $\nabla^q f(x_0) = 0$ for all q = 1, ..., n-4. Then there exists $u \in C^{\infty}(\mathbb{S}^n)$, positive and G-invariant, such that

$$P_h^n u = f u^{2^{\sharp} - 1}$$

and there exists a G-invariant conformal metric g to h such that $Q_q^n = f$.

We now prove Theorem 1. If there is no solution for (2), then we have (9) with a point $x_1 \in \mathbb{S}^n$ such that (10) and (17) are true. Assume that we have proved that x_1 is a critical point for f. Since n = 5, then (18) is true for x_1 . A contradiction, and this proves the theorem. Then the proof of Theorem 1 reduces to the proof that x_1 is a critical point for f. We adapt an argument from Aubin. Given (M, g) a compact manifold of dimension n, let (u_{ϵ}) be as in lemma 1. We suppose that (u_{ϵ}) converges weakly to 0 and let $x_1 \in M$ be such that (10) and (17) are true. With (7) we have

$$\Delta_g^2 u_\epsilon + \alpha \Delta_g u_\epsilon + a u_\epsilon = \lambda_\epsilon^G(f) f u_\epsilon^{2^{\sharp} - 1 - \epsilon}$$

Let $0 < \delta < \min_{\substack{x,y \in O_G(x_1) \\ x \neq y}} d_g(x,y)$. We get with (10) that for all $z \in C^0(M)$,

$$\int_{B_g(x_1,\delta)} z u_{\epsilon}^{2^{\sharp}-\epsilon} dv_g = \frac{z(x_1)}{f(x_1)|O_G(x_1)|} + o(1)$$
(19)

Now we choose $\psi \in C^{\infty}(M)$ such that $Supp \psi \subset B_g(x_1, \delta), \nabla \psi(x_1) = \nabla f(x_1)$ and $\nabla^2_g \psi(x_1) = 0$. We then have

$$\int_M (\nabla f, \nabla \psi)_g u_\epsilon^{2^\sharp - \epsilon} \, dv_g = \frac{|\nabla f|_g^2(x_1)}{f(x_1)|O_G(x_1)|} + o(1)$$

On the other hand, since $\Delta_q \psi(x_1) = 0$, $u_{\epsilon} \to 0$ strongly in $H_1^2(M)$ and is

bounded in $H_2^2(M)$, we have

$$\begin{split} &\int_{M} (\nabla f, \nabla \psi)_{g} u_{\epsilon}^{2^{\sharp}-\epsilon} \, dv_{g} \\ &= \int_{M} (\nabla (f u_{\epsilon}^{2^{\sharp}-\epsilon}), \nabla \psi) \, dv_{g} \\ &- (2^{\sharp}-\epsilon) \int_{M} f u_{\epsilon}^{2^{\sharp}-1-\epsilon} (\nabla u_{\epsilon}, \psi)_{g} \, dv_{g} \\ &= \int_{M} f u_{\epsilon}^{2^{\sharp}-\epsilon} \Delta_{g} \psi \, dv_{g} \\ &- \frac{2^{\sharp}-\epsilon}{\lambda_{\epsilon}^{G}(f)} \int_{M} \left(\Delta_{g}^{2} u_{\epsilon} + \alpha \Delta_{g} u_{\epsilon} + a u_{\epsilon} \right) (\nabla u_{\epsilon}, \nabla \psi)_{g} \, dv_{g} \\ &= -\frac{2^{\sharp}-\epsilon}{\lambda_{\epsilon}^{G}(f)} \int_{M} \Delta_{g}^{2} u_{\epsilon} (\nabla u_{\epsilon}, \nabla \psi)_{g} \, dv_{g} + o(1) \\ &= -\frac{2^{\sharp}-\epsilon}{\lambda_{\epsilon}^{G}(f)} \int_{M} \Delta_{g} u_{\epsilon} \Delta_{g} (\nabla u_{\epsilon}, \nabla \psi)_{g} \, dv_{g} + o(1) \end{split}$$

where we have used (19). We have

$$\begin{split} \Delta_g(\nabla u_\epsilon, \nabla \psi)_g &= (\nabla \Delta_g u_\epsilon, \nabla \psi)_g \\ &+ O(|\nabla u_\epsilon|_g) + O(|x||\nabla_g^2 u_\epsilon|_g|\nabla \psi|_g) + O(|\nabla_g^2 u_\epsilon|_g|\nabla_g^2 \psi|_g) \end{split}$$

Then, with (17), (19) and since (u_{ϵ}) is bounded in $H_2^2(M)$, we get that

$$\int_{M} (\nabla f, \nabla \psi)_{g} u_{\epsilon}^{2^{\sharp}-\epsilon} dv_{g} = -\frac{2^{\sharp}-\epsilon}{\lambda_{\epsilon}^{G}(f)} \int_{M} \Delta_{g} u_{\epsilon} (\nabla \Delta_{g} u_{\epsilon}, \nabla \psi)_{g} dv_{g} + o(1)$$

$$= -\frac{2^{\sharp}-\epsilon}{2\lambda_{\epsilon}^{G}(f)} \int_{M} (\nabla (\Delta_{g} u_{\epsilon})^{2}, \nabla \psi)_{g} dv_{g} + o(1)$$

$$= -\frac{2^{\sharp}-\epsilon}{2\lambda_{\epsilon}^{G}(f)} \int_{M} (\Delta_{g} u_{\epsilon})^{2} \Delta_{g} \psi dv_{g} + o(1) = o(1)$$

since $\Delta_g \psi(x_1) = 0$. Hence $\nabla f(x_1) = 0$. Taking $M = \mathbb{S}^n$, this ends the proof of Theorem 1.

Acknowledgements: The author wishes to thank Olivier Druet, Emmanuel Hebey, and Antoinette Jourdain for their useful remarks on the manuscript.

References

- [Bra] Branson, T.P. Group representations arising from Lorentz conformal geometry, J. Funct. Anal., 1987, 74, 199-291.
- [DHL] Djadli, Z.; Hebey, E.; Ledoux, M. Paneitz type operators and applications, Duke Math. J., 2000, 104, 129-169.

- [Dru] Druet, O. The best constants problem in Sobolev inequalities, Math. Ann., 1999, 314, 327-346.
- [EFJ] Edmunds, D.E.; Fortunato, F.; Janelli, E. Critical exponents, critical dimensions, and the biharmonic operator. Arch. Ration. Mech. Anal. 1990, 112, 269-289.
- [EsSc] Escobar, J. F.; Schoen, R. M. Conformal metrics with prescribed scalar curvature, Invent. Math., 1986, 86, 243-254.
- [GT] Gilbarg, D.; Trudinger, N.S. Elliptic Partial Differential Equations of Second Order, 2nd Ed., Grundlehren der Mathematischen Wissenschaften, Springer-Verlag: Berlin, 1983, Vol. 224, 513 pp.
- [Heb] Hebey, E. Changements de métriques conformes sur la sphère. Le problème de Nirenberg, Bull. Sci. Math., 1990, 114, 215-242.
- [HeRo] Hebey, E.; Robert, F. Coercivity and Struwe's compactness for Paneitz type operators with constant coefficients, Calc. Var. Partial Differ. Equ., to appear.
- [Jou] Jourdain, A. Paneitz type operator and first spherical harmonics, Preprint 2000.
- [Mos] Moser, J. On a nonlinear problem in differential geometry, Dyn. Syst. (Academic Press, New York, 1973).
- [Pan] Paneitz, S. A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds, Preprint 1983.