
CONSTRUCTION AND ASYMPTOTICS FOR THE GREEN’S
FUNCTION WITH NEUMANN BOUNDARY CONDITION

—————————-
INFORMAL NOTES

FRÉDÉRIC ROBERT

Abstract. This notes are devoted to a construction and to pointwise proper-
ties of the Green’s functions of the Laplacian with Neumann boundary condi-

tion on a smooth bounded domain of Rn. These informal notes are essentially

self-contained and require only standard elliptic theory.

Let Ω be a smooth bounded domain of Rn (the definition is in Section 1). We
consider the following problem:

(1)
{

∆u = f in Ω
∂νu = 0 in ∂Ω

where u ∈ C2(Ω) and f ∈ C0(Ω). Here and in the sequel, ∆ := −
∑
i ∂ii and

for any x ∈ ∂Ω, ∂νu(x) denotes the normal derivative of u at the boundary point
x, that is ∂νu(x) := dux(ν(x)) where dux is the differential of u at x and ν(x)
is the outward normal derivative of the oriented hypersurface ∂Ω (see Section 1).
Note that the solution u is defined up to the addition of a constant and that it is
necessary that

∫
M
f dx = 0 (this is a simple integration by parts). Our objective

here is to construct and give properties of the Green kernel associated to (1). In
the sequel, for any function u ∈ L1(Ω), we define ū := 1

|Ω|
∫

Ω
u dy where |Ω| is the

volume of Ω.

Definition 1. We say that a function G : Ω×Ω\{(x, x)/ x ∈ Ω} → R is a Green’s
function for (1) if for any x ∈ Ω, noting Gx := G(x, ·), we have that

(i) Gx ∈ L1(Ω),
(ii)

∫
Ω
Gx dy = 0,

(iii) for all ϕ ∈ C2(Ω) such that ∂νϕ = 0 on ∂Ω, we have that

ϕ(x)− ϕ̄ =
∫

Ω

Gx∆ϕdy.

Condition (ii) here is required for convenience in order to get uniqueness, symmetry
and regularity for the Green’s function. Indeed, if G is a Green’s function and if
c : Ω→ R is any function, the function (x, y) 7→ G(x, y) + c(x) satisfies (i) and (iii).
The first result concerns the existence of the Green’s function:

Theorem 1. Let Ω be a smooth bounded domain of Rn. Then there exists a unique
Green’s function G for (1). Moreover, G is symmetric and extends continuously to
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Ω × Ω \ {(x, x)/ x ∈ Ω} and for any x ∈ Ω, we have that Gx ∈ C2,α(Ω \ {x}) and
satisfies {

∆Gx = − 1
|Ω| in Ω \ {x}

∂νGx = 0 on ∂Ω \ {x}.
In addition, for all x ∈ Ω and for all ϕ ∈ C2(Ω) we have that

ϕ(x)− ϕ̄ =
∫

Ω

Gx∆ϕdy +
∫
∂Ω

Gx∂νϕdy.

A standard and useful estimate for Green’s function is the following uniform point-
wise upper bound:

Proposition 1. Let G be the Green’s function for (1). Then there exist C(Ω) > 0
and m(Ω) > 0 depending only on Ω such that

(2)
1

C(Ω)
|x− y|2−n −m(Ω) ≤ G(x, y) ≤ C(Ω)|x− y|2−n for all x, y ∈ Ω, x 6= y.

Concerning the derivatives, we get that

(3) |∇yGx(y)| ≤ C|x− y|1−n for all x, y ∈ Ω, x 6= y.

Estimate (2) was proved by Rey-Wei [4] with a different method. We also refer
to Faddeev [2] for very nice estimates in the two-dimensional case.

Notations: in the sequel, C(a, b, ...) denotes a constant that depends only on Ω,
a, b... We will often keep the same notation for different constants in a formula,
and even in the same line. For U an open subset of Rn, k ∈ N, k ≥ 1, and p ≥ 1,
we define Hp

k (U) as the completion of C∞(Ū) for the norm
∑k
i=1 ‖∇i‖p

1. Preliminary: Existence and estimates of solutions to Neumann
problems via extensions

The main goal here is to prove the regularity and existence (Proposition 2 and
Theorem 2 below) for solutions to Neumann-type problems. These results are
classical (see Agmon-Douglis-Nirenberg [1]); we give here a self-contained proof
that uses only the interior estimates for solutions to elliptic equations. We first
define smooth domains:

Definition 2. Let Ω be an open subset of Rn, n ≥ 2. We say that Ω is smooth if
for all x ∈ ∂Ω, there exists δx > 0, there exists Ux an open neighborhood of x in
Rn, there exists ϕ : Bδx(0)→ Ux such that

(i) ϕ is a C∞ − diffeomorphism
(ii) ϕ(0) = x
(iii) ϕ(Bδx(0) ∩ {x1 < 0}) = ϕ(Bδx(0)) ∩ Ω
(iv) ϕ(Bδx(0) ∩ {x1 = 0}) = ϕ(Bδx(0)) ∩ ∂Ω

The outward normal vector is then defined as follows:

Definition 3. Let Ω be a smooth domain of Rn. For any x ∈ ∂Ω, there exists a
unique ν(x) ∈ Rn such that ν(x) ∈ (Tx∂Ω)⊥, ‖ν(x)‖ = 1 and (∂1ϕ(0), ν(x)) > 0
for ϕ as in Definition 2. This definition is independant of the choice of such a ϕ
and the map x 7→ ν(x) is in C∞(∂Ω,Rn).
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It is useful to extend solutions to (1) to a neighborhood of Ω. For this, a varia-
tional formulation of (1) is required: multiplying (1) by ψ ∈ C∞(Ω) and integrating
by parts leads us to the following definition:

Definition 4. We say that u ∈ H1
1 (Ω) is a weak solution to (1) with f ∈ L1(Ω) if∫

Ω

(∇u,∇ψ) dx =
∫

Ω

fψ dx for all ψ ∈ C∞(Ω).

In case u ∈ C2(Ω), as easily checked, u is a weak solution to (1) iff it is a classical
solution to (1).
We let ξ be the standard Euclidean metric on Rn and we set{

π̃ : Rn → Rn
(x1, x

′) 7→ (−|x1|, x′)

We prove an extension lemma:

Lemma 1. Let x0 ∈ ∂Ω. There exist δx0 > 0, Ux0 and a chart ϕ as in Definition
2 such that the metric g̃ := (ϕ ◦ π̃ ◦ ϕ−1)?ξ is in C0,1(Ux0) (that is Lipschitz
continuous), g̃|Ω = ξ, the Christoffel symbols of the metric g̃ are in L∞(Ux0) and
dϕ0 is an orthogonal transformation. In addition, consider u ∈ H1

1 (Ω ∩ Ux0) and
f ∈ L1(Ω ∩ Ux0) such that

(4)
∫

Ω

(∇u,∇ψ) dx =
∫

Ω

fψ dx for all ψ ∈ C∞c (Ω ∩ Ux0).

For all v : Ω ∩ Ux0 → R, we define

ṽ := v ◦ ϕ ◦ π̃ ◦ ϕ−1 in Ux0 .

Then, we have that ũ ∈ H1
1 (Ux0), ũ|Ω = u, f ∈ L1(Ux0) and

∆g̃ũ = f̃ in the distribution sense,

where ∆g̃ := −divg̃(∇).

Here, by ”distribution sense”, we mean that∫
Ux0

(∇ũ,∇ψ)g̃ dvg̃ =
∫
Ux0

f̃ψ dvg̃ for all ψ ∈ C∞c (Ux0).

Remark 1: the notation g̃ = (ϕ◦π̃◦ϕ−1)?ξ is a slight abuse of notation. Indeed, the
map π̃ is not a diffeomorphism, and it is not even C1. However, g̃ is well-defined
and smooth outside ∂Ω, and one proves that it can be extended to a Lipschitz
continuous function.

Remark 2: It is natural to wonder whether it is possible to gain regularity for the
metric g̃. Indeed, the metric g̃ we construct is C1 iff ∂Ω is flat in a neighborhood
of x0.

Proof of Lemma 1: Given a chart ϕ̂ at x0 defined on Bδ̃x0 (0) as in Definition 2, we
define the map {

ϕ : Bδ̃x0
(0) → Rn

(x1, x
′) 7→ x1ν(ϕ̂(0, x′)) + ϕ̂(0, x′)
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The inverse function theorem yields the existence of δx0 > 0 and Ux0 ⊂ Rn open
such that ϕ : Bδx0 (0)→ Ux0 is a smooth diffeomorphism satisfying (2). Moreover,
the pull-back metric satisfies the following properties:

(ϕ?ξ)11 = 1, (ϕ?ξ)1i = 0 ∀i 6= 1.

In particular, up to a linear transformation on the {x1 = 0} hyperplane, we can
assume that dϕ0 is an orthogonal transformation. It is easily checked that ((ϕ ◦
π̃)?ξ)ij = (ϕ?ξ)ij ◦ π̃ outside {x1 = 0} for all i, j, and then we prologate (ϕ◦ π̃)?ξ as
a Lipschitz continuous function in Ux0 , and so is g̃ := (ϕ ◦ π̃ ◦ ϕ−1)?ξ. In addition,
as easily checked, if Γ̃kij ’s denote the Christoffel symbols for the metric g̃, we have
that Γ̃kij ∈ L∞. Therefore, the coefficients of ∆g̃ are in L∞ and the principal part
is Lipschitz continuous.

We fix ψ ∈ C∞c (Ux0). For convenience, in the sequel, we define{
π : Rn+ → Rn−

(x1, x
′) 7→ (−x1, x

′).

Clearly, π is a smooth diffeomorphism. With changes of variable, we get that∫
Ux0

(∇ũ,∇ψ)g̃ dvg̃ =
∫

Ω∩Ux0
(∇u,∇(ψ + ψ ◦ ϕ ◦ π−1 ◦ ϕ−1)) dx

and ∫
Ux0

f̃ψ dvg̃ =
∫

Ω∩Ux0
f(ψ + ψ ◦ ϕ ◦ π−1 ◦ ϕ−1) dx.

It then follows from (4) that ∆g̃ũ = f̃ in Ux0 in the distribution sense. This ends
the proof of Lemma 1. �

We prove elliptic estimates close to the boundary. These results are classical (here
again, we refer to Agmon-Douglis-Nirenberg [1]): our objective here is to derive
these boundary estimates from interior estimates.

Proposition 2 (Regularity). Let x0 ∈ ∂Ω and let δ > 0 be a real number. Let
u ∈ Hq

1 (Ω ∩Bδ(x0)) and f ∈ Lp(Ω ∩Bδ(x0)), p, q > 1 be such that

(5)
∫

Ω

(∇u,∇ψ) dx =
∫

Ω

fψ dx for all ψ ∈ C∞c (Ω ∩Bδ(x0)).

Then u ∈ Hp
2 (Ω ∩ Bδ′(x0)) for all δ′ ∈ (0, δ), and for all r ∈ (1, p], there exists

C = C(Ω, p, q, r, δ, δ′) > 0 such that

(6) ‖u‖Hp2 (Ω∩Bδ′ (x0)) ≤ C
(
‖f‖Lp(Ω∩Bδ(x0)) + ‖u‖Lr(Ω∩Bδ(x0))

)
.

Moreover, if u ∈ C1(Ω ∩Bδ(x0)), then ∂νu = 0 in ∂Ω ∩Bδ(x0).
We assume that f ∈ C0,α(Ω ∩ Bδ(x0)) for some α ∈ (0, 1). Then u ∈ C2,α(Ω ∩
Bδ′(x0)) for all δ′ ∈ (0, δ) and for all r > 1, there exists C = C(Ω, r, α, δ, δ′) > 0
such that

(7) ‖u‖C2,α(Ω∩Bδ′ (x0)) ≤ C
(
‖f‖C0,α(Ω∩Bδ(x0)) + ‖u‖Lr(Ω∩Bδ(x0))

)
.

Proof. It follows from Lemma 1 that for ε > 0 small enough, the function u, f :
Ω∩B2ε(x0)→ R can be extended to ũ, f̃ : B2ε(x0)→ R such that ‖ũ‖Hq1 (B2ε(x0)) ≤
‖u‖Hq1 (Ω∩B2ε(x0)) and ‖ũ‖Lp(B2ε(x0)) ≤ ‖u‖Lp(Ω∩B2ε(x0)). Moreover, they are so-
lutions to ∆g̃ũ = f̃ weakly in B2ε(x0). Therefore, it follows from the interior



GREEN’S FUNCTION FOR A NEUMANN PROBLEM 5

estimates for elliptic pdes (see Theorem 9.11 of [3]) that ũ ∈ Hp
2 (B2ε(x0)) and that

there exists C(Ω, ε, x0, p, r) > 0 such that

‖ũ‖Hp2 (Bε(x0)) ≤ C(Ω, ε, x0, p, r)
(
‖f̃‖Lp(B2ε(x0)) + ‖ũ‖Lr(B2ε(x0))

)
.

Using the control above of the norms of ũ, f̃ by the norms of u, f and that ũ|Ω =
u, we get that (6) holds with δ′ = ε. Applying this estimate for all points of
∂Ω∩Bδ(x0), using the interior estimates of Theorem 9.11 of [3] and a finite covering,
we get that (6) holds for all δ′ ∈ (0, δ). This ends the proof of (6).

We now assume that u ∈ C1(Ω ∩ Bδ(x0)). Since u ∈ Hp
2 (Ω ∩ B′δ(x0)) for all

δ′ ∈ (0, δ), integrating (5) by parts yields:∫
Ω

(f −∆u)ψ dx =
∫
∂Ω

∂νuψ dσ

for all ψ ∈ C∞c (Ω ∩ Bδ(x0)). Taking all function ψ with compact support in
Ω ∩ Bδ(x0) yields ∆u = f a.e. in Ω ∩ Bδ(x0). Therefore,

∫
∂Ω
∂νuψ dσ = 0 for all

ψ ∈ C∞c (Ω ∩Bδ(x0)), and then ∂νu = 0 on ∂Ω ∩Bδ(x0).

We now concentrate on the Hölder case and we assume that there exists α ∈ (0, 1)
such that f ∈ C0,α(Ω ∩ Bδ(x0)). In particular, f ∈ Lp(Ω ∩ Bδ′(x0)) for all p > 1,
and therefore u ∈ Hp

2 (Ω∩Bδ′(x0)) for all δ′ ∈ (0, δ). It then follows from Sobolev’s
embedding theorem that u ∈ C1,θ(Ω∩Bδ(x0)) for all θ ∈ (0, 1) and all δ′ ∈ (0, δ): in
particular, ‖u‖C1,θ(Ω∩Bδ′ (x0)) is controled by ‖u‖r and ‖f‖C0,α . Another important
fact is that we have that ∂νu = 0 on the boundary ∂Ω. We take ε > 0, ũ and f̃ as
above. Via the chart ϕ that straightens the boundary, we can assume that Ω = Rn−
and that ∂ν ũ = ∂1ũ = 0 on the boundary ∂Rn−. We rewrite the equation ∆g̃ũ = f̃
as

−g̃ij∂ij ũ = f̃ − g̃ijΓ̃kij∂kũ =: f̂ in B2ε(x0).

Outside the boundary {x1 = 0}, the function g̃ijΓ̃kij∂kũ is θ−Hölder continuous with
the C0,θ−norm controled by ‖u‖r and ‖f‖C0,α . Therefore, g̃ijΓ̃kij∂kũ is θ−Hölder
continuous iff it is continous on {x1 = 0}. As easily checked, since we work in the
specific chart ϕ, we have that for all x′ ∈ {0} × Rn−1:

g̃ijΓ̃kij∂ku(0+, x′)− g̃ijΓ̃kij∂kũ(0−, x′) = 2H(0, x′)∂1ũ(0, x′) = 0

whereH denotes the mean curvature and v(0+, x′) := limx1→0; x1>0 v(x1, x
′). There-

fore, −g̃ij∂iju = f̂ ∈ C0,α, where g̃ has Lipschitz regularity: it then follows from
standard elliptic theory (see Theorems 9.19 and 6.2 of [3]) that u is in C2,α, and
its norm is controled as in (7) on Bε(x0). As for (6), a covering argument yields
the control on Bδ′(x0). �

From these estimates, we obtain the existence and the regularity for solutions to
the Neumann problem (here again, this is in Agmon-Douglis-Nirenberg [1]):

Theorem 2. Let Ω be a smooth bounded domain of Rn and let f ∈ Lp(Ω), p > 1
be such that

∫
Ω
f dx = 0. Then there exists u ∈ Hp

2 (Ω) which is a weak solution to{
∆u = f in Ω
∂νu = 0 in ∂Ω
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The function u is unique up to the addition of a constant. Moreover, there exists
C(p) > 0 such that

‖u− ū‖Hp2 (Ω) ≤ C(p)‖f‖p.
If f ∈ C0,α(Ω), α ∈ (0, 1), then u ∈ C2,α(Ω) is a strong solution and there exists
C(α) > 0 such that

‖u− ū‖C2,α(Ω) ≤ C(α)‖f‖C0,α(Ω).

Proof. Assume that f ∈ L2(Ω). For any u ∈ H2
1 (Ω), we define

J(u) :=
1
2

∫
Ω

|∇u|2 dx−
∫

Ω

fu dx,

and F := {u ∈ H2
1 (Ω)/

∫
Ω
u dx = 0}. It follows from Poincaré’s inequality that

there exists C > 0 such that ‖u‖2 ≤ C‖∇u‖2 for all u ∈ F . Therefore, there exists
C(‖f‖2) > 0 such that

J(u) ≥ 1
2
‖∇u‖22 − ‖f‖2‖u‖2 ≥ ‖∇u‖2

(
1
2
‖∇u‖2 − C‖f‖2

)
≥ −C(‖f‖2)

for all u ∈ F . Therefore, m := inf{J(u)/ u ∈ F} exists.

Step 1: We claim that m is achieved. Indeed, we let (ui)i ∈ F be a minimizing
sequence, that is limi→+∞ J(ui) = m. The inequalities above yield ‖ui‖H2

1
= O(1)

when i → +∞, and therefore, there exists u ∈ H2
1 (Ω) such that ui ⇀ u weakly in

H2
1 and strongly in L2 when i→ +∞ (up to a subsequence). We then get that

m+ o(1) = J(ui) = J(u) +
1
2
‖∇(ui − u)‖22 + o(1) ≥ m+

1
2
‖∇(ui − u)‖22 + o(1)

when i → +∞, and therefore, ui → u strongly in H2
1 and m = J(u) is achieved.

This proves the claim.

Step 2: We claim that u is a weak solution to (1). Indeed, given ψ ∈ H2
1 (Ω), we

have that ψ − ψ̄ ∈ F , and the Euler equation for J at u writes
∫

Ω
(∇u,∇ψ) dx =∫

Ω
f(ψ − ψ̄) dx. Since

∫
Ω
f dx = 0, we get that u is a weak solution to (1). This

proves the claim.

Step 3: We choose f ∈ Lp(Ω), p > 1. We claim that there exists C(p) > 0 such
that

(8) ‖u− ū‖Hp2 ≤ C(p)‖f‖p
for all u ∈ Hp

2 (Ω) which is a weak solution to (1).
We prove the claim by contradiction and we assume that there exists sequences
(ui)i ∈ Hp

2 (Ω) and (fi)i ∈ Lp(Ω) such that ‖fi‖p = o(‖ui − ūi‖Hp2 ) when i→ +∞.
With no loss of generality, we can assume that ūi = 0 and ‖ui‖Hp2 = 1 for all i.
Therefore there exists u ∈ Hp

2 (Ω) such that ui → u weakly in Hp
2 and strongly

in Lp when i → +∞. In particular,
∫

Ω
u dx = 0 and, passing to the limit in the

definition of the weak solution, we get that
∫

Ω
(∇u,∇ψ) dx = 0 for all ψ ∈ H2

1 (Ω),
and then, taking ψ = u, it follows from Poincaré’s inequality that u ≡ 0. Using
standard interior estimates and the boundary estimate (6), it follows from a covering
argument that

1 = ‖ui‖Hp2 ≤ C(p) (‖fi‖p + ‖ui‖p)
for all i. Since fi → 0 and ui → u ≡ 0 in Lp when i→ +∞, we get a contradiction.
This proves the claim.
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Step 4: We are now in position to prove Theorem 2. We fix f ∈ Lp(Ω) and we
let (fi)i ∈ C∞c (Ω) be such that limi→+∞ fi = f in Lp(Ω). Substracting f̄i, we can
assume that fi ∈ C∞(Ω) and

∫
Ω
fi dx = 0. Since fi ∈ L2(Ω) for all i, it follows

from Steps 1 and 2 that there exists ui ∈ H2
1 (Ω) such that ūi = 0 and ui is a

weak solution to (1) with fi. Since fi ∈ Lp, it follows from Proposition 2 that
ui ∈ Hp

2 (Ω). We fix i, j: we have that ui−uj is a weak solution to (1) with fi− fj .
It then follows from inequality (8) that

‖ui − uj‖Hp2 ≤ C(p)‖fi − fj‖p
for all i, j. Since fi → f in Lp, we get that (ui) is a Cauchy sequence in Hp

2 and
therefore, it converges in Hp

2 to a limit u ∈ Hp
2 . Passing to the limit, we get that u

is a solution to (1). This proves the claim.
The uniqueness is a direct consequence of (8). The proof of the C2,α regularity
goes similarly and we leave it to the reader. This ends the proof of Theorem 2. �

2. Construction of the Green’s function and proof of the upper
bound (2)

This section is devoted to the proof of Theorem 1.

2.1. Construction of Gx. We define cn := 1
(n−2)ωn−1

. We fix x ∈ Ω and we take
ux ∈ C2(Ω) that will be chosen later, and we define

Hx := cn| · −x|2−n + ux.

In particular, Hx ∈ Lp(Ω) for all p ∈ (1, n
n−2 ). We let u ∈ C2(Ω) be a function.

Standard computations (see [3] or [5]) yield

(9)
∫

Ω

Hx∆u dy = u(x) +
∫

Ω

u∆ux dy +
∫
∂Ω

(−∂νuHx + u∂νHx) dσ.

We let η ∈ C∞(R) be such that η(t) = 0 if t ≤ 1/3 and η(t) = 1 if t ≥ 2/3. We
define

vx(y) := η

(
|x− y|
d(x, ∂Ω)

)
cn|x− y|2−n

for all y ∈ Ω. Clearly, vx ∈ C∞(Ω) and vx(y) = cn|x − y|2−n for all y ∈ Ω close
to ∂Ω. It follows from Theorem 2 that there exists u′x ∈ C2,α(Ω) for all α ∈ (0, 1)
unique such that  ∆u′x = ∆vx −∆vx in Ω

∂νu
′
x = 0 in ∂Ω

u′x = 0

We define ux := u′x − vx ∈ C2,α(Ω) and cx := ∆vx ∈ R so that{
∆ux = −cx in Ω
∂νux = −∂ν(cn| · −x|2−n) in ∂Ω

Therefore, ∂νHx = 0 on ∂Ω and (9) rewrites∫
Ω

Hx∆u dy = u(x)− cx
∫

Ω

u dy −
∫
∂Ω

∂νuHx dσ

for all u ∈ C2(Ω). Taking u ≡ 1 yields cx = 1
|Ω| , and then, we have that∫

Ω

Hx∆u dy = u(x)− ū−
∫
∂Ω

∂νuHx dσ
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for all u ∈ C2(Ω). Finally, we define Gx := Hx −Hx and we have that:∫
Ω

Gx∆u dy = u(x)− ū−
∫
∂Ω

∂νuGx dσ

for all u ∈ C2(Ω). Therefore G is a Green’s function for (1). In addition,

Gx ∈ C2,α(Ω \ {x}) ∩ Lp(Ω) for all α ∈ (0, 1) and p ∈
(

1,
n

n− 2

)
.

Taking u ∈ C∞c (Ω \ {x}) above, and the definition of Gx, we get that

(10)
{

∆Gx = − 1
|Ω| in Ω \ {x}

∂νGx = 0 in ∂Ω.

2.2. Uniform Lp−bound.

Lemma 2. Fix x ∈ Ω and assume that there exist H ∈ L1(Ω) such that∫
Ω

H∆u dy = u(x)− ū

for all u ∈ C2(Ω) such that ∂νu = 0 on ∂Ω. Then H ∈ Lp(Ω) for all p ∈
(

1, n
n−2

)
and there exists C(p) > 0 independant of x such that

(11) ‖H − H̄‖p ≤ C(p)

for all x ∈ Ω.

Proof. For p as above, we define q := p
p−1 > n

2 . We fix ψ ∈ C∞(Ω) and we let
u ∈ C2(Ω) be such that  ∆u = ψ − ψ̄ in Ω

∂νu = 0 in ∂Ω
ū = 0

It follows from the properties of H that∫
Ω

(H − H̄)ψ dy =
∫

Ω

H(ψ − ψ̄) dy = u(x).

It follows from Sobolev’s embedding that Hq
2 (Ω) is continously embedded in L∞(Ω):

therefore, using the control of the Hq
2−norm of Theorem 2 yields∣∣∣∣∫

Ω

(H − H̄)ψ dy
∣∣∣∣ ≤ ‖u‖∞ ≤ C(q)‖u‖Hq2 ≤ C

′(q)‖ψ − ψ̄‖q ≤ C ′′(q)‖ψ‖q

for all ψ ∈ C∞c (Ω). It then follows from duality that H − H̄ ∈ Lp(Ω) and that (11)
holds. �

2.3. Uniqueness. We prove the following uniqueness result:

Lemma 3. Fix x ∈ Ω and assume that there exist G1, G2 ∈ L1(Ω) such that∫
Ω

Gi∆u dy = u(x)− ū

for all i ∈ {1, 2} and for all u ∈ C2(Ω) such that ∂νu = 0 on ∂Ω. Then there exists
c ∈ R such that G1 −G2 = c a.e on Ω.
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Proof. We define g := G1 −G2. We have that∫
Ω

g∆u dy = 0

for all u ∈ C2(Ω) such that ∂νu = 0 on ∂Ω. We fix ψ ∈ C∞c (Ω). It follows from
Theorem 2 that there exists u ∈ C2(Ω) such that ∆u = ψ− ψ̄ in Ω, ∂νu = 0 on ∂Ω
and ū = 0 . Therefore, we get that∫

Ω

(g − ḡ)ψ dy =
∫

Ω

g(ψ − ψ̄) dy =
∫

Ω

g∆u dy = 0.

for all ψ ∈ C∞c (Ω). Moreover, it follows from Lemma 2 that g ∈ Lp(Ω) for some
p > 1, and then we get that g − ḡ = 0 a.e, and then G1 = G2 + ḡ. �

As an immediate corollary, we get that the function G constructed above is the
unique Green’s function for (1).

2.4. Pointwise control. We let G be the Green’s function for (1). The objective
here is to prove that there exists C(Ω) > 0 such that

(12) |Gx(y)| ≤ C(Ω)|x− y|2−n

for all x, y ∈ Ω, x 6= y.

Proof. The proof of (12) goes through six steps.

Step 1: We fix K ⊂ Ω a compact set. We claim that there exists C(K) > 0 such
that

|Gx(y)| ≤ C(K)|x− y|2−n

for all x ∈ K and all y ∈ Ω, y 6= x.
We prove the claim. We use the notations ux, u′x, vx above. As easily checked,
vx ∈ C2(Ω) and ‖vx‖C2 ≤ Cd(x, ∂Ω)−n ≤ Cd(K, ∂Ω)−n ≤ C(K). Therefore, it
follows from Theorem 2 that ‖u′x‖∞ ≤ C(K), and then |Hx(y)| ≤ C(K)|x− y|2−n
for all y ∈ Ω, y 6= x. Since Gx = Hx −Hx holds, the claim follows.

Step 2: We fix δ > 0. We claim that there exists C(δ) > 0 such that

(13) ‖Gx‖C2(Ω\B̄x(δ)) ≤ C(δ)

for all x, y ∈ Ω such that |x− y| ≥ δ.
We prove the claim. It follows from (10) and (6) of Proposition 2 that for any
p > 1, there exists C(δ, p) > 0 such that ‖Gx‖C2(Ω\B̄x(δ)) ≤ C(δ) +C(δ)‖Gx‖Lp(Ω).
Step 2 is then a consequence of (11).

We are now interested in the neighborhood of ∂Ω. We fix x0 ∈ ∂Ω and we choose
a chart ϕ as in Lemma 1. For simplicity, we assume that ϕ : Bδ(0)→ Rn and that
ϕ(0) = x0 and we define V := ϕ(Bδ(0)). We fix x ∈ V ∩ Ω and we let G̃x be the
extension G̃x := Gx ◦ ϕ ◦ π̃ ◦ ϕ−1: we have that

G̃x : V \ {x, x?} → R with x? := ϕ ◦ π−1 ◦ ϕ−1(x) ∈ Ω
c
.

Moreover, since Gx is C2,α outside x and π̃ is Lipschitz continuous, we have that
G̃x ∈ Hq

1,loc(V \ {x, x?}) for all q > 1; in addition, it follows from (11) that G̃x ∈
Lp(V ) for all p ∈

(
1, n

n−2

)
and that there exists C(p) > 0 independant of x such

that
‖G̃x‖p ≤ C(p).
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Step 3: We claim that

(14) ∆g̃G̃x = δx + δx? −
1
|Ω|

in D′(V ).

We prove the claim. We let ψ ∈ C∞c (V ) be a smooth function. Separating V ∩ Ω
and V ∩ Ωc and using a change of variable, we get that∫

V

G̃x∆g̃ψ dvg̃ =
∫
V ∩Ω

Gx∆
(
ψ + ψ ◦ ϕ ◦ π−1 ◦ ϕ−1

)
dy.

Noting that ∂ν
(
ψ + ψ ◦ ϕ ◦ π−1 ◦ ϕ−1

)
= 0 on ∂Ω (we have used that ν(ϕ(0, x′)) =

dϕ(0,x′)(~e1)) and using the definition of the Green’s function Gx, we get that∫
V

G̃x∆g̃ψ dvg̃ = ψ(x) + ψ(ϕ ◦ π−1 ◦ ϕ−1(x))− 1
|Ω|

∫
V ∩Ω

(
ψ + ψ ◦ ϕ ◦ π−1 ◦ ϕ−1

)
dy

= ψ(x) + ψ(x?)− 1
|Ω|

∫
V

ψ dvg̃.

This proves (14) and ends the claim.

Step 4: We fix z ∈ V . We claim that there exists Γz : V \ {z} → R such that the
following properties hold:

(15)


∆g̃Γz = δz in D′(V ),

|Γz(y)| ≤ C|z − y|2−n for all y ∈ V \ {z},

Γz ∈ C1(V \ {z})


We prove the claim. We define r(y) :=

√
g̃ij(z)(y − z)i(y − z)j for all y ∈ V .

As easily checked, r2−n ∈ C∞(V \ {z}): we define f := ∆g̃r
2−n on V \ {z}. It

follows from the properties of g̃ that f ∈ L∞loc(V \ {z}). Moreover, straightforward
computations yield the existence of C > 0 such that

(16) |f(y)| ≤ C|z − y|1−n for all y ∈ V \ {z}.
Computing ∆g̃r

2−n in the distribution sense yields

∆g̃r
2−n = f +Kzδz in D′(V ),

where Kz := (n−2)
∫
∂B1(0)

(ν(y), y)g̃(z)r(y)2−n dvg̃(z) > 0. Moreover, limz→x0 Kz =
Kx0 > 0.

We define h such that {
∆g̃h = f in V
h = 0 on ∂V

}
It follows from (16) and elliptic theory that h is well defined and that h ∈ Hp

2 (V )∩
Hp

1,0(V ) for all p ∈
(

1, n
n−1

)
and h ∈ C1,θ

loc (V \ {z}). Moreover, there exists C > 0
such that

(17) ‖h‖Hp2 ≤ C(p) for all p ∈
(

1,
n

n− 1

)
.

We claim that for any α ∈ (n− 3, n− 2), there exists C(α) > 0 such that

|h(y)| ≤ C(α)|y − z|−α

for all y ∈ V \ {z}.
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We prove the claim. We let ε > 0 be a small parameter and we define

hε(y) := εαh(z + εy) and fε(y) := ε2+αf(z + εy)

for all y ∈ B2(0) \ B̄1/2(0). We then have that

(18) ∆g̃εhε = fε in B2(0) \ B̄1/2(0),

where g̃ε = g̃(ε·). Since α > n− 3, we have with (16) that

(19) |fε(y)| ≤ Cεα−(n−3)|y|1−n ≤ 2n−1C

for all y ∈ B2(0) \ B̄1/2(0). We fix p := n
α+2 ∈

(
1, n

n−1

)
and q := n

α . A change of
variable, Sobolev’s embedding theorem and (17) yield

(20) ‖hε‖Lq(B2(0)\B̄1/2(0)) ≤ C‖h‖q ≤ C‖h‖Hp2 ≤ C

for all ε > 0 small. It then follows from (18), (19), (20) and Theorem 8.17 of [3]
that there exists C > 0 such that

|hε(y)| ≤ C for all y ∈ Rn such that |y| = 1.

Therefore, coming back to h, we get that |h(y)| ≤ C|y − z|−α for all |y − z| = ε.
Since ε can be chosen arbitrary small and h is bounded outside y, the claim is
proved.

We now set Γz := 1
Kz

(
r2−n − h

)
. It follows from the above estimates that Γ

satisfies (15). This ends Step 4.

We define µx := G̃x − Γx − Γx? . It follows from Steps 2 and 3 above that

(21) ∆g̃µx = − 1
|Ω|

in D′(V ).

Moreover, we have that µx ∈ Hq
1 (V \ {x, x?}) for all q > 1 and that

(22) ‖µx‖p ≤ C(p) for all p ∈
(

1,
n

n− 2

)
.

Step 5: We claim that for all V ′ ⊂⊂ V , there exists C(V ′) > 0 such that

(23) ‖µx‖L∞(V ′) ≤ C(V ′),

where C(V ′) is independent of x.

We prove the claim. Since x ∈ Ω ∩ V , we have that g̃ = ξ in a neighborhood of x,
and then g̃ is hypoelliptic around x: therefore, it follows from (21) that µx is C∞

around x. Similarly, around x? ∈ V ∩ Ω
c
, g̃ = (ϕ ◦ π̃ ◦ ϕ−1)?ξ is also hypoelliptic,

and therefore, µx is C∞ around x?. It then follows that µx ∈ Hq
1 (V ) for q > 1 and

(21) rewrites ∫
V

(∇µx,∇ψ)g̃ dvg̃ = − 1
|Ω|

∫
V

ψ dvg for all ψ ∈ C∞c (V ).

Therefore, it follows from Theorem 8.17 of [3] that µx ∈ L∞loc(V ) and that there
exists C(V, V ′, p) > 0 such that

‖µx‖L∞(V ′) ≤ C(V, V ′, p)
(
1 + ‖µx‖Lp(V )

)
for all p > 1. Taking p ∈

(
1, n

n−2

)
and using (22), we get (23) and the claim is

proved.



12 FRÉDÉRIC ROBERT

Step 6: We are now in position to conclude. It follows from the definition of µx
from (23) and from (15) that there exists C(V ′) > 0 such that

|G̃x(y)| ≤ C + C|x− y|2−n + |x? − y|2−n

for all x, y ∈ V ′ such that x 6= y. As easily checked, one has that |x?− y| ≥ c|x− y|
for all x, y ∈ V ′ ∩ Ω, and therefore

(24) |Gx(y)| ≤ C|x− y|2−n

for all x, y ∈ V ′ ∩ Ω such that x 6= y. Recall that V ′ is a small neighborhood of
x0 ∈ ∂Ω. Combining (24) with Step 1, we get that there exists δ(Ω) > 0 such that
(24) holds for all x, y ∈ Ω distinct such that |x − y| ≤ δ(Ω). For points x, y such
that |x − y| ≥ δ(Ω), this is Step 2. This ends the proof of the pointwise estimate
(12). �

2.5. Extension to the boundary and regularity with respect to the two
variables. We are now in position to extend the Green’s function to the boundary.

Proposition 3. The Green’s function extends continuously to Ω×Ω \ {(x, x)/ x ∈
Ω} → R.

Proof. As above, we denote G the Green’s function for (1). We fix x ∈ ∂Ω and
y ∈ Ω \ {x} and we define

Gx(y) := lim
i→+∞

G(xi, y) for all y ∈ Ω \ {x},

where (xi)i ∈ Ω is any sequence such that limi→+∞ xi = x.

We claim that this definition makes sense. It follows from (13) that for all δ > 0,
we have that

‖Gxi‖C2(Ω\B̄δ(x)) ≤ C(δ)
for all i. Let (i′) be a subsequence of i: it then follows from Ascoli’s theorem that
there exists G′ ∈ C1(Ω \ {x}) and a subsequence i” of i′ such that

lim
i→+∞

Gxi = G′ in C1
loc(Ω \ {x}).

Moreover, It follows from (12) that |G′(y)| ≤ C|x− y|2−n for all y 6= x. We choose
u ∈ C2(Ω) such that ∂νu = 0 on ∂Ω. We then have that

∫
Ω
Gxi∆u dy = u(xi)− ū

for all i. Letting i→ +∞ yields∫
Ω

G′∆u dy = u(x)− ū,

and then it follows from Lemma 3 that G′ does not depend of the choice of the
sequence (xi) converging to x. We then let Gx := G′ and the definition above
makes sense.

We claim that G ∈ C0(Ω × Ω \ {(x, x)/ x ∈ Ω}). We only sketch the proof since
it is similar to the proof of the extension to the boundary. We fix x ∈ Ω and
we let (xi)i be such that limi→+∞ xi = x. Arguing as above, we get that any
subsequence of (Gxi) admits another subsequence that converges to some function
G” in C1

loc(Ω\{x}). We choose u ∈ C2(Ω) such that ∂νu vanishes on ∂Ω and we get
that

∫
Ω
Gxi∆u dy = u(xi)− ū for all i. With the pointwise bound (12), we pass to

the limit and get that
∫

Ω
G”∆u dy = u(x)− ū: it then follows from Lemma 3 that

G” = Gx, and then (Gxi) converges uniformly to Gx outside x. The continuity of
G outside the diagonal follows immediately. �
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Remark: It is essential to assume that G satisfies point (ii) of the definition of
the Green’s function: indeed, for any c : Ω → R, the function (x, y) 7→ G(x, y) +
c(x) satisfies (i) and (iii), but it is not continous outside the diagonal if c is not
continuous.

2.6. Symmetry.

Proposition 4. Let G be the Green’s function for (1). Then G(x, y) = G(y, x) for
all x, y ∈ Ω× Ω, x 6= y.

Proof. Let f ∈ C∞c (Ω) be a smooth compactly supported function. We define

F (x) :=
∫

Ω

G(y, x)(f − f̄)(y) dy for all x ∈ Ω.

It follows from (12) and Proposition 3 above that F ∈ C0(Ω) is well defined. We
fix g ∈ C∞c (Ω) and we let ϕ,ψ ∈ C2(Ω) be such that ∆ϕ = f − f̄ in Ω

∂νϕ = 0 in ∂Ω
ϕ̄ = 0

and

 ∆ψ = g − ḡ in Ω
∂νψ = 0 in ∂Ω
ψ̄ = 0

It follows from Fubini’s theorem (which is valid here since G ∈ L1(Ω × Ω) due to
(12) and Proposition 3) that∫

Ω

(F − F̄ )g dx =
∫

Ω

F (g − ḡ) dx =
∫

Ω

F∆ψ dx

=
∫

Ω

(f − f̄)(y)
(∫

Ω

G(y, x)∆ψ(x) dx
)
dy =

∫
Ω

(∆ϕ)ψ dy

=
∫

Ω

ϕ∆ψ dy =
∫

Ω

ϕ(g − ḡ) dy =
∫

Ω

gϕ dy,

and therefore
∫

Ω
(F − F̄ − ϕ)g dx = 0 for all g ∈ C∞c (Ω). Since F,ϕ ∈ C0(Ω),

we then get that F (x) = ϕ(x) + F̄ for all x ∈ Ω. We now fix x ∈ Ω. Using the
definition of the Green’s function and the definition of F , we then get that∫

Ω

G(y, x)(f−f̄)(y) dy =
∫

Ω

G(x, y)(f−f̄)(y) dy+
1
|Ω|

∫
Ω

(∫
Ω

G(y, z) dz
)

(f−f̄)(y) dy,

and then, setting

Hx(y) := G(y, x)−G(x, y)− 1
|Ω|

∫
Ω

G(y, z) dz

for all y ∈ Ω \ {x}, we get that

0 =
∫

Ω

Hx(f − f̄) dy =
∫

Ω

(Hx − H̄x)f dy

for all f ∈ C∞c (Ω). Therefore, Hx ≡ H̄x, which rewrites

G(y, x)−G(x, y) =
1
|Ω|

∫
Ω

(G(y, z)−G(x, z)) dz + h(x),

for all x 6= y, where h(x) := 1
|Ω|
∫

Ω
G(z, x) dz − 1

|Ω2|
∫

Ω×Ω
G(s, t) ds dt for all x ∈ Ω.

Exchanging x, y yields h(x) + h(y) = 0 for all x 6= y, and then h ≡ 0 since h is
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continuous. Therefore, we get that

(25) G(y, x)−G(x, y) =
1
|Ω|

∫
Ω

(G(y, z)−G(x, z)) dz = Ḡy − Ḡy

for all x 6= y. The normalization (ii) in the definition of the Green’s function then
yields Proposition 4. �

Remark: If one does not impose the normalization (ii), we have already remarked
that we just get G′ : (x, y) 7→ G(x, y)+c(x) where G is the unique Green’s function
and c is a function. We then get that G′(x, y)−G′(y, x) = c(x)− c(y) for all x 6= y,
which is not vanishing when c is nonconstant.

These different lemmae and estimates prove Theorem 1.

3. Asymptotic analysis

This section is devoted to the proof of general asymptotic estimates for the
Green’s function. As a byproduct, we will get the control (3) of the derivatives of
Proposition 1. The following proposition is the main result of this section:

Proposition 5. Let G be the Green’s function for (1). Let (xα)α ∈ Ω and let
(rα)α ∈ (0,+∞) be such that limα→+∞ rα = 0.
Assume that

lim
α→+∞

d(xα, ∂Ω)
rα

= +∞.

Then for all x, y ∈ Rn, x 6= y, we have that

lim
α→+∞

rn−2
α G(xα + rαx, xα + rαy) = cn|x− y|2−n.

Moreover, for fixed x ∈ Rn, this convergence holds uniformly in C2
loc(Rn \ {x}).

Assume that

lim
α→+∞

d(xα, ∂Ω)
rα

= ρ ≥ 0.

Then limα→+∞ xα = x0 ∈ ∂Ω. We choose a chart ϕ at x0 as in Lemma 1 and we
let (xα,1, x′α) = ϕ−1(xα). Then for all x, y ∈ Rn ∩ {x1 ≤ 0}, x 6= y, we have that

lim
α→+∞

rn−2
α G(ϕ((0, x′α)+rαx), ϕ((0, x′α)+rαy) = cn

(
|x− y|2−n + |π−1(x)− y|2−n

)
,

where π−1(x1, x
′) = (−x1, x

′). Moreover, for fixed x ∈ Rn−, this convergence holds
uniformly in C2

loc(Rn− \ {x}).

Proof of Proposition 5:
Step 1: We first assume that

(26) lim
α→+∞

d(xα, ∂Ω)
rα

= +∞.

We define
G̃α(x, y) := rn−2

α G(xα + rαx, xα + rαy)
for all α ∈ N and all x, y ∈ Ωα := r−1

α (Ω − xα), x 6= y. We fix x ∈ Rn. It follows
from Theorem 1 that G̃α ∈ C2(Ωα × Ωα \ {(x, x)/ x ∈ Ωα}) and that

(27) ∆(G̃α)x = − r
n
α

|Ω|
in Ωα \ {x}
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for α ∈ N large enough. Moreover, it follows from (12) that there exists C > 0 such
that

(28) |(G̃α)x(y)| ≤ C|y − x|2−n

for all α ∈ N and all y ∈ Ωα\{x}. It then follows from (26), (27), (28) and standard
elliptic theory that, up to a subsequence, there exists G̃x ∈ C2(Rn \ {x}) such that

(29) lim
α→+∞

(G̃α)x = G̃x in C2
loc(Rn \ {x}).

with

(30) |G̃x(y)| ≤ C|y − x|2−n

for all y ∈ Rn\{x}. We consider f ∈ C∞c (Rn) and we define fα(y) := f(r−1
α (y−xα)):

it follows from (26) that fα ∈ C∞c (Ω) for α ∈ N large enough. Applying Green’s
representation formula yields

fα(xα + rαx)− fα =
∫

Ω

G(xα + rαx, z)∆fα(z) dz.

With a change of variable, this equality rewrites

f(x) =
∫

Rn
G̃α(x, y)∆f(y) dy + fα

for α ∈ N large enough. With (28), (29) and the definition of fα, we get that

f(x) =
∫

Rn
G̃x∆f dy,

and then
∆(G̃x − cn| · −x|2−n) = 0 in D′(Rn).

The hypoellipticity of the Laplacian, (30) and Liouville’s theorem yield

G̃x(y) = cn|y − x|2−n for all y 6= x.

This ends Step 1.

Step 2:

lim
α→+∞

d(xα, ∂Ω)
rα

= ρ ≥ 0.

We take ϕ as in the statement of the Proposition and we define

G̃α(x, y) := rn−2
α G(ϕ((0, x′α) + rαx), ϕ((0, x′α) + rαy)

for all x, y ∈ Rn−, x 6= y with α ∈ N large enough. We fix x ∈ Rn− and we symmetrize
G̃ as usual:

Ĝα(x, y) := G̃α(x, π̃(y))
for all y ∈ Rn close enough to 0 and where, as above, π̃ : Rn → Rn−. As in the first
case, we get that there exists C > 0 such that

|Ĝα(x, y)| ≤ C
(
|y − x|2−n + |y − π−1(x)|2−n

)
for all y 6= x, π−1(x) and there exists Ĝx ∈ C2(Rn \ {x, π−1(x)}) such that

lim
α→+∞

(Ĝα)x = Ĝx in C2
loc(Rn \ {x, π−1(x)}).

Moreover, letting L = dϕ0 be the differential of ϕ at 0, arguing again as in the first
case, we have that

∆L?ξĜx = δx + δπ−1(x) in D′(Rn−).



16 FRÉDÉRIC ROBERT

Therefore, with a change of variable, we get that

∆ξ(Ĝx ◦ L−1) = δL(x) + δL◦π−1(x) in D′(Rn−),

and then

∆ξ

(
Ĝx ◦ L−1 − cn

(
| · −L(x)|2−n + | · −L ◦ π−1(x)|2−n

))
= 0 in D′(Rn−),

Arguing as above, we get that Ĝx ◦L−1 = cn
(
| · −L(x)|2−n + | · −L ◦ π−1(x)|2−n

)
,

and then
Ĝx = cn

(
| · −x|2−n + | · −π−1(x)|2−n

)
since L is an orthogonal transformation. This ends Step 2.

Proposition 5 is a direct consequence of Steps 1 and 2. �

We now prove Proposition 1:

Corollary 1. Let G be the Green’s function for (1). Then there C,M > 0 such
that

1
C|x− y|n−2

−M ≤ G(x, y) ≤ C

|x− y|n−2

and
|∇yG(x, y)| ≤ C

|x− y|n−1

for all x, y ∈ Ω, x 6= y.

Proof of the corollary: We claim that there exists m ∈ R such that

(31) G(x, y) ≥ −m for all x, y ∈ Ω, x 6= y.

We argue by contradiction and we assume that there exists (xα)α, (yα)α ∈ Ω such
that

(32) lim
α→+∞

G(xα, yα) = −∞.

Assume that limα→+∞ |yα− xα| = 0. We then define rα := |yα− xα| and we apply
Proposition 5:

If limα→+∞
d(xα,∂Ω)

rα
= +∞, we have that

|yα − xα|n−2G(xα, yα) = rn−2
α G

(
xα, xα + rα

yα − xα
|yα − xα|

)
= cn + o(1)

when α→ +∞. This contradicts (32).
If d(xα, ∂Ω) = O(rα) when α→ +∞, we get also a contradiction.

This proves that limα→+∞ |xα−yα| 6= 0. Therefore, with (2), we get thatG(xα, yα) =
O(1) when α → +∞: this contradicts (32). Therefore, there exists m such that
(31) holds.

We define M := m + 1. With (2), there exists also C > 0 such that |G(x, y)| ≤
C|x− y|2−n for all x 6= y. We claim that there exists c > 0 such that

(33) G(x, y) +M ≥ c|x− y|2−n

for all x 6= y. Here again, we argue by contradiction and we assume that there
exists (xα)α, (yα)α ∈ Ω such that

(34) lim
α→+∞

|xα − yα|n−2(G(xα, yα) +M) = 0.
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Since G + M ≥ 1, it follows from (34) that limα→+∞ |xα − yα| = 0. Therefore, as
above, we get that the limit of the left-hand-side in (34) is positive: a contradiction.
This proves that (33) holds. In particular, this proves the first part of the corollary.

Concerning the estimate of the gradient, we argue by contradiction and we use
again Proposition 5. We just sketch the proof. Assume by contradiction that there
exists (xα)α, (yα)α ∈ Ω such that

lim
α→+∞

|yα − xα|n−1|∇yG(xα, yα)| = +∞.

It follows from (13) that limα→+∞ |yα − xα| = 0. We set rα := |yα − xα|. Assume
that rα = o(d(xα, ∂Ω)) when α→ +∞. It then follows from Proposition 5 that

lim
α→+∞

|yα − xα|n−1|∇yG(xα, yα)| = 1
ωn−1

,

which contradicts the hypothesis. The proof goes the same way when d(xα, ∂Ω) =
O(rα) when α→ +∞. This ends the proof of the gradient estimate. �
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