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Eigenvalue bounds of the Robin Laplacian
with magnetic field

Georges Habib∗, Ayman Kachmar †

Abstract

On a compact Riemannian manifold M with boundary, we give an estimate for
the eigenvalues (λk(τ, α))k of the magnetic Laplacian with the Robin boundary
conditions. Here, τ is a positive number that defines the Robin condition and α

is a real differential 1-form on M that represents the magnetic field. We express
these estimates in terms of the mean curvature of the boundary, the parameter τ

and a lower bound of the Ricci curvature of M (see Theorem 1.3 and Corollary
1.5). The main technique is to use the Bochner formula established in [2] for the
magnetic Laplacian and to integrate it over M (see Theorem 1.2). In the last part,
we compare the eigenvalues λk(τ, α) with the first eigenvalue λ1(τ) = λ1(τ, 0) (i.e.
without magnetic field) and the Neumann eigenvalues λk(0, α) (see Theorem 1.6)
using the min-max principle.

1 Introduction and Results

Let (M, g) be a Riemannian manifold of dimension n and let α be a smooth real differential
1-form onM. Given two vector fields X, Y in the complexified tangent bundle TM⊗C, the
magnetic covariant derivative is defined as ∇α

YX = ∇M
Y X + iα(Y )X, where ∇M denotes

the Levi-Civita connection on M. It is shown in [2, Lemma 3.2] that ∇α satisfies the
Leibniz rule and the compatibility property with respect to the Riemannian metric g,
and is also used to define the magnetic Hessian by Hessαf(X, Y ) = 〈∇α

Xd
αf, Y 〉. Here

and in all the paper, the product 〈·, ·〉 will denote the Hermitian inner product extended
from the metric g to the tangent bundle TM ⊗ C or to the cotangent bundle T ∗M ⊗ C.

We will also use the natural one-to-one isomorphism between T ∗M ⊗ C and TM ⊗ C by
w(X) = 〈X,w#〉 for any X ∈ TM ⊗ C and w ∈ T ∗M ⊗ C.

Given any complex-valued function f on M, the magnetic Laplacian is defined as being
the trace of the magnetic Hessian

∆αf := −trace(Hessαf) = −divα(dαf)#,

where dαf := dMf + ifα and divα is the magnetic divergence given for any vector field
X ∈ TM ⊗ C by divαX := divMX + i〈X,α#〉.
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The study of the spectrum of the magnetic Laplacian has interested many researchers
[1, 3, 4, 6, 7, 8] during the last years. For example, the authors in [2] gave an estimate à
la Lichnerowicz for the first eigenvalue in terms of a lower bound of the Ricci curvature
(assumed to be positive) and the infinity norm of the magnetic field dMα. In particular,
they deduce a spectral gap between the first eigenvalue (which is not necessarily zero)
and the second one. The main technique used in the paper is a Bochner type formula for
the magnetic Laplacian ∆α, which they integrate it over the manifold M and they control
all the integral terms involving dMα. Indeed, they prove

Theorem 1.1. [2, Thm. 4.1] Let (M, g) be a complete Riemannian manifold of dimension
n. Then for all f ∈ C∞(M,C), we have

−
1

2
∆M(|dαf |2) = |Hessαf |2 − ℜ〈dαf, dα(∆αf)〉+ RicM(dαf, dαf)

+ i(dMα(dαf, dαf)− dMα(dαf, dαf))

+
i

2
(〈f̄dαf, δMdMα〉 − 〈fdαf, δMdMα〉),

(1.1)

where δM denotes the formal adjoint of dM on (M, g).

In this paper, we are interested in estimating the eigenvalues of the magnetic Laplacian
with the Robin boundary condition. That is, we assume on a given compact manifold M

with boundary N there exists a complex-valued function f on M satisfying the equation
∆αf = λf onM and the boundary condition (dαf)(ν) = τf for some positive real number
τ. Here ν denotes the inward unit normal vector field of N, which will be identified with
its dual one form. It a standard fact that the spectrum of such boundary problem is
purely discrete and consists of a sequence of eigenvalues (λk(τ, α))k arranged in increasing
order counting multiplicities. In order to get the estimates for the eigenvalues, we shall
first integrate the Bochner formula in Theorem 1.1 as in [2] by taking into account the
boundary terms. First, we get

Theorem 1.2. Let (Mn, g) be a compact Riemannian manifold with boundary N and let
α be a differential real 1-form on M. Then, we have
∫

M

|Hessαf +
1

n
(∆αf)g|2dvg =

n− 1

n

∫

M

|∆αf |2dvg −

∫

M

RicM(dαf, dαf)dvg

+

∫

M

ℑm
(
(dMα)(dαf, dαf)

)
dvg +

∫

M

|f |2|dMα|2dvg

− (n− 1)

∫

N

H|〈dαf, ν〉|2dvg − 2

∫

N

ℜ(〈ν, dαf〉∆α
Nf)dvg

−

∫

N

〈II(dαNf), d
α
Nf〉dvg. (1.2)

for all complex valued function f ∈ C∞(M,C).

Here II denotes the second fundamental form of the boundary and H is the mean cur-
vature. Also ∆α

N is a Laplacian defined on functions on N which is associated to some
exterior derivative dαN (see Section 2 for the definition).
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The formula (1.2) can be useful for different applications in spectral theory. One of
these applications is to use Theorem 1.2 for a particular solution of the magnetic Robin
boundary problem. Therefore, we get the universal bound on the eigenvalues of the
magnetic Robin Laplacian under some assumptions on the magnetic field dMα, the Ricci
curvature RicM and the second fundamental form II. Indeed,

Theorem 1.3. Let (Mn, g) be a compact Riemannian manifold with boundary ∂M = N

and let α be a differential 1-form on M and τ > 0. Assume that RicM ≥ k (k > 0) and
that II + τ ≥ 0. If α satisfies

k − (n− 1)τHmin ≤ ||dMα||∞ ≤

(

1 + 2

√

n− 1

n

)−1

k, (1.3)

then any eigenvalue λ(τ, α) of the Laplacian ∆α satisfies

λ(τ, α) ≤ a−(k, ||d
Mα||∞, n) or λ(τ, α) ≥ a+(k, ||d

Mα||∞, n),

where

a±(k, ||d
Mα||∞, n) = n

(k − ||dMα||∞)±
√

(k − ||dMα||∞)2 − 4(n−1
n
)||dMα||2∞

2(n− 1)
,

and Hmin := minM H.

Remark 1.4.

• The assumption in (1.3) on the mean curvature is valid when Hmin > 0, since
(

1 + 2
√

n−1
n

)−1

k < k. Also, when τ is very large, (1.3) becomes an upper bound

on ||dMα||∞, which is a growth condition on the magnetic field with respect to the
Ricci curvature.

• It follows from Inequality (1.3) that (k − ||dMα||∞)2 − 4(n−1
n
)||dMα||2∞ > 0 and

a−(k, ‖d
Mα‖∞, n) > 0. This is more transparent in the proof of Theorem 1.3.

As a direct consequence of Theorem 1.3 and a standard continuity argument as in [2], one
gets

Corollary 1.5. Let (Mn, g) be a compact Riemannian manifold with boundary ∂M = N

and let α be a differential 1-form on M and τ > 0. Assume that RicM ≥ k (k > 0) and
that II + τ ≥ 0. If k ≤ (n− 1)τHmin and α satisfies

||dMα||∞ ≤

(

1 + 2

√

n− 1

n

)−1

k,

then any eigenvalue λ(τ, α) of the Laplacian ∆α satisfies

λ(τ, α) ≥ a+(k, ||d
Mα||∞, n),

where

a+(k, ||d
Mα||∞, n) = n

(k − ||dMα||∞) +
√

(k − ||dMα||∞)2 − 4(n−1
n
)||dMα||2∞

2(n− 1)
.
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Proof of Corollary 1.5: It is enough to prove the lower bound on the first eigenvalue
λ1(τ, α). We apply Theorem 1.3 to the 1-form α′ = εα, for ε ∈]0, 1[. The inequality
(1.3) is clearly satisfied for α′. Hence λ1(τ, εα) is either less than a−(k, ε||d

Mα||∞, n)
or bigger than a+(k, ε||d

Mα||∞, n). Note that λ1(τ, εα) and a−(k, ε||d
Mα||∞, n) depend

continuously on ε. Since λ1(τ, 0) > 0 and a−(k, ε||d
Mα||∞, n)−→

ε→0
0, we get that the

inequality λ1(τ, εα) ≥ a+(k, ε||d
Mα||∞, n) is true in a neighborhood of ε = 0. De-

fine ε∗ = sup{ε ∈ (0, 1) | λ1(τ, εα) ≥ a+(k, ε||d
Mα||∞, n)}. If ε∗ < 1, then we get

λ1(τ, ε∗α) ≥ a+(k, ε∗||d
Mα||∞, n) and lim

δ→0+
λ1(τ, (ε∗ + δ)α) ≤ a−(k, ε∗||d

Mα||∞, n), which

violates the continuity of λ1(τ, εα) with respect to ε. Therefore, ε∗ = 1. �

As a direct application of Corollary 1.5, we find the lower bound for the eigenvalues of the
Dirichlet Laplacian proved by Reilly in [5]. Indeed, on a manifold M with boundary N

such that RicM ≥ k with nonnegative mean curvature H, consider any closed 1-form α on
M. Take a number τ big enough so that τ ≥ k

(n−1)Hmin

and II + τ ≥ 0. Then one deduces

that λ(τ, α) ≥ n
n−1

k. As the spectrum of the Robin Laplacian tends to the Dirichlet one
when τ → ∞, the result then follows.

In the last part of this paper, we present two-sided estimates of all the eigenvalues λk(τ, α)
in terms of λ1(τ) = λ1(τ, 0) and the Neumann eigenvalues λN

k (α) := λk(0, α), using a
variational argument (see Theorem 1.6 below). These estimates yield a quantitative mea-
surement of the diamagnetism (i.e. the quantity λ(τ, α)− λ1(α)). To state this theorem,
we define for a normalized eigenfunction of the Robin Laplacian (without magnetic field)
fτ : M → R the constant the following constant

C(τ) =
min
x∈M

f 2
τ (x)

max
x∈M

f 2
τ (x)

> 0 . (1.4)

Note that C(0) = 1, lim
τ→+∞

C(τ) = 0 and the function fτ can be selected in a unique

manner so that fτ > 0. We have

Theorem 1.6. For all τ > 0 and k ≥ 1,

λ1(τ) + C(τ)λN
k (α) ≤ λk(τ, α) ≤ λ1(τ) +

1

C(τ)
λN
k (α) .

Remark 1.7.

1. Using the existing estimates on the Neumann eigenvalues λN
k (α) (see e.g. [1]), we

deduce immediately estimates on the Robin eigenvalues λk(τ, α).

2. (Zero magnetic field) Assume that α is closed and not exact. Combining the
result in [6] and the estimates in Theorem 1.6, we deduce that λ1(τ, α) = λ1(τ) if
and only if the flux of α satsifies

Φα
c :=

∮

c

α ∈ Z

for every closed curve c ⊂ M .
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The rest of the paper is organized as follows. Section 2 is devoted to the lengthy proof
of Theorem 1.2. In Section 3, we prove Theorem 1.3. Finally, we present the proof of
Theorem 1.6 in Section 4.

2 Proof of Theorem 1.2

In this section, we will prove Theorem 1.2. We will integrate all the terms in the Bochner
formula. First, with the help of the Stokes formula the integral of the l.h.s. of Equation
(1.1) is equal to

−
1

2

∫

M

∆M (|dαf |2)dvg = −
1

2

∫

N

g(dM(|dαf |2), ν))dvg = −

∫

N

ℜ〈∇M
ν dαf, dαf〉dvg.

Now, we will compute the term ℜ〈∇M
ν dαf, dαf〉 pointwise by decomposing the vectors

into the tangential and normal parts over a local orthonormal frame {ei}i=1,··· ,n−1 of TxN

at some point x ∈ N. Indeed, using the definition of the operator dα, we write

〈∇M
ν dαf, dαf〉 =

n−1∑

i=1

(∇M
ν dαf)(ei)〈ei, d

αf〉+ (∇M
ν dαf)(ν)〈ν, dαf〉

=

n−1∑

i=1

(∇M
ν dMf)(ei)〈ei, d

αf〉+ iν(f)

n−1∑

i=1

α(ei)〈ei, d
αf〉

+ if

n−1∑

i=1

(∇M
ν α)(ei)〈ei, d

αf〉+ (∇M
ν dαf)(ν)〈ν, dαf〉

=
n−1∑

i=1

(∇M
ei
dMf)(ν)〈ei, d

αf〉+ iν(f)
n−1∑

i=1

α(ei)〈ei, d
αf〉

+ if

n−1∑

i=1

(dMα)(ν, ei)〈ei, d
αf〉+ if

n−1∑

i=1

(∇M
ei
α)(ν)〈ei, d

αf〉

+ (∇M
ν dαf)(ν)〈ν, dαf〉.
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In the last equality, we just use the fact that the hessian of the function f is a symmetric
2-tensor. We then proceed

〈∇M
ν dαf, dαf〉 =

n−1∑

i=1

ei(ν(f))〈ei, d
αf〉 −

n−1∑

i=1

(dMf)(∇M
ei
ν)〈ei, d

αf〉+ iν(f)

n−1∑

i=1

α(ei)〈ei, d
αf〉

+ if

n−1∑

i=1

(dMα)(ν, ei)〈ei, d
αf〉+ if

n−1∑

i=1

ei(α(ν))〈ei, d
αf〉

− if

n−1∑

i=1

α(∇M
ei
ν)〈ei, d

αf〉+ (∇M
ν dαf)(ν)〈ν, dαf〉

= 〈dN(ν(f)), dαf〉+

n−1∑

i=1

(dMf)(II(ei))〈ei, d
αf〉+ iν(f)

n−1∑

i=1

α(ei)〈ei, d
αf〉

+ if

n−1∑

i=1

(dMα)(ν, ei)〈ei, d
αf〉+ if〈dN(α(ν)), dαf〉

+ if

n−1∑

i=1

α(II(ei))〈ei, d
αf〉+ (∇M

ν dαf)(ν)〈ν, dαf〉.

As α is a 1-form on M, we can write it at any point of the boundary as α = αT + α(ν)ν.
We then define the operator dαN by dαNh := dNh + ihαT for any complex-valued function
h ∈ C∞(N,C). Hence, the above equality becomes

〈∇M
ν dαf, dαf〉 =〈dαN(ν(f)), d

αf〉+ 〈II(dαNf), d
αf〉+ if〈νydMα, dαf〉

+ if〈dN(α(ν)), dαf〉+ (∇M
ν dαf)(ν)〈ν, dαf〉.

Therefore after integrating, we deduce that

−
1

2

∫

M

∆M(|dαf |2)dvg =−

∫

N

ℜ(〈dαN(ν(f)), d
αf〉+ 〈II(dαNf), d

αf〉+ if〈νydMα, dαf〉

+ if〈dN(α(ν)), dαf〉+ (∇M
ν dαf)(ν)〈ν, dαf〉)dvg. (2.1)

In the second step, we want to integrate the term ℜ〈dαf, dα(∆αf)〉 in the r.h.s. of Theorem
1.1. First, recall the Stokes formula on complex functions: For all h ∈ C∞(M,C) and
smooth complex valued 1-form β, one has

∫

M

〈dMh, β〉dvg =

∫

M

hδMβdvg −

∫

N

h〈ν, β〉dvg.

Therefore according to this formula, one can easily get that
∫

M

〈dαh, β〉dvg =

∫

M

hδαβdvg −

∫

N

h〈ν, β〉dvg,

where the adjoint δα of dα is given by δα = δM−i〈·, α〉 [2, Def. 2.1]. Here we mention that
δαX = −trace(∇αX), where ∇α is the magnetic covariant derivative defined previously.
Hence, by taking h = ∆αf and β = dαf, we deduce

∫

M

〈dα(∆αf), dαf〉dvg =

∫

M

|∆αf |2dvg −

∫

N

(∆αf)〈ν, dαf〉dvg. (2.2)

6



Now we want to evaluate the term ∆αf in the second integral of the r.h.s. of the equality
above. Using the compatibility equations in [2, Lem. 3.2] and taking an orthonormal
frame {ei}i=1,··· ,n−1 of TN with ∇N

ei
ei = 0 at some point, we compute

∆αf = −
n−1∑

i=1

〈∇α
ei
(dαf), ei〉 − 〈∇α

ν (d
αf), ν〉

= −

n−1∑

i=1

ei(〈d
αf, ei〉) +

n−1∑

i=1

〈dαf,∇α
ei
ei〉 − 〈∇α

ν (d
αf), ν〉

= −

n−1∑

i=1

ei(〈d
αf, ei〉) +

n−1∑

i=1

〈dαf,∇M
ei
ei + iα(ei)ei〉 − 〈∇α

ν (d
αf), ν〉

= −
n−1∑

i=1

ei(〈d
αf, ei〉) +

n−1∑

i=1

〈dαf, II(ei, ei)ν + iα(ei)ei〉 − 〈∇α
ν (d

αf), ν〉

= −
n−1∑

i=1

ei(〈d
α
Nf, ei〉) + (n− 1)H〈dαf, ν〉+

n−1∑

i=1

〈dαNf, iα(ei)ei〉 − 〈∇α
ν (d

αf), ν〉

= ∆α
Nf + (n− 1)H〈dαf, ν〉 − 〈∇α

ν (d
αf), ν〉,

where ∆α
N := δαNd

α
N , with δαN = δN − i(·, αT ). We notice that δαN is the L2-adjoint of dαN

on N. Plugging the expression of ∆αf above into Equation (2.2), we find

∫

M

〈dα(∆αf), dαf〉dvg =

∫

M

|∆αf |2dvg −

∫

N

(∆α
Nf)〈ν, d

αf〉dvg − (n− 1)

∫

N

H|〈dαf, ν〉|2dvg

+

∫

N

〈∇α
ν (d

αf), ν〉〈ν, dαf〉dvg.

=

∫

M

|∆αf |2dvg −

∫

N

(∆α
Nf)〈ν, d

αf〉dvg − (n− 1)

∫

N

H|〈dαf, ν〉|2dvg

+

∫

N

〈∇M
ν (dαf), ν〉〈ν, dαf〉dvg +

∫

N

iα(ν)|〈ν, dαf〉|2dvg.

(2.3)

The last step is to compute the term i
2

∫

M

〈f̄dαf, δMdMα〉dvg and its conjugate in Theorem

1.1. For this, we proceed as in [2, p.17] to get

i

2

∫

M

〈f̄dαf, δMdMα〉dvg =
i

2

∫

M

〈dM(f̄dαf), dMα〉dvg +
i

2

∫

N

〈f̄dαf, νydMα〉dvg

=
i

2

∫

M

(dMα)(dαf, dαf)dvg −
1

2

∫

M

|f |2|dMα|2dvg

+
i

2

∫

N

〈f̄dαf, νydMα〉dvg.

(2.4)

7



Now, we have all the ingredients to integrate Equation (1.1) over M. In fact, using Equa-
tions (2.1), (2.3) and (2.4), we find that

−

∫

N

ℜ(〈dαN(ν(f)), d
αf〉+ 〈II(dαNf), d

αf〉+ if〈νydMα, dαf〉+ if〈dN(α(ν)), dαf〉

+(∇M
ν dαf)(ν)〈ν, dαf〉)dvg =

∫

M

|Hessαf |2dvg −

∫

M

|∆αf |2dvg +

∫

N

ℜ((∆α
Nf)〈ν, d

αf〉)dvg

+(n− 1)

∫

N

H|〈dαf, ν〉|2dvg −

∫

N

ℜ(〈∇M
ν (dαf), ν〉〈ν, dαf〉)dvg +

∫

M

RicM(dαf, dαf)dvg

+
i

2

∫

M




(dMα)(dαf, dαf)− (dMα)(dαf, dαf)
︸ ︷︷ ︸

2iℑm((dMα)(dαf,dαf))




 dvg −

∫

M

|f |2|dMα|2dvg

+
i

2

∫

N




〈f̄dαf, νydMα〉 − 〈fdαf, νydMα
︸ ︷︷ ︸

=−2iℑmf〈νydMα,dαf〉

〉




 dvg.

By writing dαf = dαNf + (ν(f) + ifα(ν))ν at any point of the boundary, the first integral
in the l.h.s. reduces to

∫

N

ℜ〈dαN(ν(f)), d
αf〉dvg =

∫

N

ℜ〈dαN(ν(f)), d
α
Nf〉dvg

=

∫

N

ℜ(ν(f)δαNd
α
Nf)dvg =

∫

N

ℜ(ν(f)∆α
Nf)dvg

=

∫

N

ℜ(〈dαf − iαf, ν〉∆α
Nf)dvg

=

∫

N

ℜ(〈ν, dαf〉∆α
Nf)dvg −

∫

N

ℜ(iα(ν)f ∆α
Nf)dvg.

Using the fact that δαN is the L2-adjoint of dαN and that dαN(f1f2) = f2d
Nf1 + f1d

α
Nf2 for

any complex valued functions f1 and f2 on N, the above equality becomes
∫

N

ℜ〈dαN(ν(f)), d
αf〉dvg =

∫

N

ℜ(〈ν, dαf〉∆α
Nf)dvg −

∫

N

ℜ〈dαNf, d
α
N (iα(ν)f)〉dvg

=

∫

N

ℜ(〈ν, dαf〉∆α
Nf)dvg +

∫

N

ℜ(i〈dαNf, fd
N(α(ν)) + α(ν)dαNf〉)dvg

=

∫

N

ℜ(〈ν, dαf〉∆α
Nf)dvg +

∫

N

ℜ(if̄〈dαNf, d
N(α(ν))〉)dvg

+

∫

N

α(ν)ℜ(i〈dαNf, d
α
Nf〉)

︸ ︷︷ ︸

=0

dvg

=

∫

N

ℜ(〈ν, dαf〉∆α
Nf)dvg −

∫

N

ℜ(if〈dN(α(ν)), dαf〉)dvg.

Therefore, we deduce

−2

∫

N

ℜ(〈ν, dαf〉∆α
Nf)dvg −

∫

N

〈II(dαNf), d
α
Nf〉dvg =

8



∫

M

|Hessαf |2dvg −

∫

M

|∆αf |2dvg + (n− 1)

∫

N

H|〈dαf, ν〉|2dvg +

∫

M

RicM(dαf, dαf)dvg

−

∫

M

ℑm
(
(dMα)(dαf, dαf)

)
dvg −

∫

M

|f |2|dMα|2dvg.

The proof of the proposition then follows. �

3 Proof of Theorem 1.3

In the following, we will give a proof of Theorem 1.3. For this, we consider an eigenfunction
f of the Robin Laplacian associated to the eigenvalue λ(τ, α), that is ∆αf = λ(τ, α)f with
ν(f)+ ifα(ν) = τf for some positive τ. We then apply Equality (1.2) to the eigenfunction
f . First, we have
∫

N

ℜ(〈ν, dαf〉∆α
Nf)dvg = τ

∫

N

ℜ(f̄∆α
Nf)dvg = τ

∫

N

ℜ(f∆α
Nf)dvg = τ

∫

N

|dαNf |
2dvg.

Also, the following inequality
∫

M

ℑm
(
(dMα)(dαf, dαf)

)
dvg ≤ ||dMα||∞

∫

M

|dαf |2dvg,

holds. Therefore, as the r.h.s. of Equality (1.2) is nonnegative, we get after using the
conditions RicM ≥ k and II + τ ≥ 0 that

0 ≤
n− 1

n
λ(τ, α)2

∫

M

|f |2dvg − (k − ||dMα||∞)

∫

M

|dαf |2dvg + ||dMα||2∞

∫

M

|f |2dvg

−(n− 1)τ 2
∫

N

H|f |2dvg − τ

∫

N

|dαNf |
2dvg.

Since f is an eigenfunction of the Laplacian, one has
∫

M

|dαf |2dvg = λ(τ, α)

∫

M

|f |2dvg − τ

∫

N

|f |2dvg.

Hence, the above inequality reduces to

0 ≤
n− 1

n
λ(τ, α)2

∫

M

|f |2dvg − (k − ||dMα||∞)λ(τ, α)

∫

M

|f |2dvg + (k − ||dMα||∞)τ

∫

N

|f |2dvg

+||dMα||2∞

∫

M

|f |2dvg − (n− 1)τ 2Hmin

∫

N

|f |2dvg − τ

∫

N

|dαNf |
2dvg.

By grouping the terms and using the fact that the last term is nonpositive, we find at the
end

0 ≤

(
n− 1

n
λ(τ, α)2 − (k − ||dMα||∞)λ(τ, α) + ||dMα||2∞

)∫

M

|f |2dvg

+τ
(
k − ||dMα||∞ − (n− 1)τHmin

)
∫

N

|f |2dvg.

Since now the sign of the term (k − ||dMα||∞)− (n− 1)τHmin is nonpositive, we deduce
as in [2, Eq. 62] the inequality

0 ≤
n− 1

n
λ(τ, α)2 − (k − ||dMα||∞)λ(τ, α) + ||dMα||2∞.

Therefore, as the discriminant of this polynomial is nonnegative, we finish the proof. �

9



4 Proof of Theorem 1.6

Let f be the function defined by f = ufτ , where u : M → C is a complex valued function
on M and fτ is a normalized eigenfunction of the Robin Laplacian associated to the first
eigenvalue λ1(τ). Then, we compute

∫

M

|(dM + iα)f |2dvg =

∫

Ω

|udMfτ + fτ (d
Mu+ iαu)|2dvg

=

∫

M

|u|2|dMfτ |
2dvg +

∫

M

f 2
τ |(d

M + iα)u|2dvg

+2

∫

M

fτℜ〈ud
Mfτ , d

Mu+ iαu〉dvg

=

∫

M

fτδ
M(|u|2dMfτ )dvg − τ

∫

N

|u|2f 2
τ dvg +

∫

M

f 2
τ |(d

M + iα)u|2dvg

+

∫

M

ℜ〈dM(f 2
τ ), ūd

Mu〉dvg

=

∫

M

fτ |u|
2δM(dMfτ )dvg −

∫

M

fτg(d
M(|u|2), dM(fτ ))dvg − τ

∫

N

|u|2f 2
τ dvg

+

∫

M

f 2
τ |(d

M + iα)u|2 +

∫

M

ℜ〈dM(f 2
τ ), ūd

Mu〉dvg

= λ1(τ)

∫

M

f 2
τ |u|

2dvg −

∫

M

fτg(d
M(|u|2), dM(fτ ))dvg − τ

∫

N

|u|2f 2
τ dvg

+

∫

M

f 2
τ |(d

M + iα)u|2dvg +

∫

M

ℜ〈dM(f 2
τ ), ūd

Mu〉dvg.

Now, it is easy to see that one has pointwise

fτg(d
M(|u|2), dM(fτ )) = fτ 〈ūd

Mu+ udMu, dM(fτ )〉 = ℜ〈dM(f 2
τ ), ūd

Mu〉.

Consequently, we deduce that

∫

M
|dαf |2dvg + τ

∫

N
f 2dvg

||f ||2
= λ1(τ) +

∫

M
f 2
τ |d

αu|2 dvg
∫

M
|u|2f 2

τ dvg
.

Now the proof follows from the variational min-max principle. Indeed, the definition of
C(τ) in (1.4) yields

C(τ)

∫

M
|dαu|2 dvg

∫

M
|u|2 dvg

≤

∫

M
f 2
τ |d

αu|2 dvg
∫

M
|u|2f 2

τ dvg
≤

1

C(τ)

∫

M
|dαu|2 dvg

∫

M
|u|2 dvg

,

which finishes the proof. �

Acknowledgment. The authors are indebted to Nicolas Ginoux, Norbert Peyerimhoff
and Alessandro Savo for their valuable comments on the paper. The first named author
acknowledges the financial support of the Alexander von Humboldt Foundation. The
authors are indebted to the anonymous referee who suggested the proof of Corollary 1.5.

10



References

[1] B. Colbois and A. Savo, Eigenvalue bounds for the magnetic Laplacian,
arXiv:1611.01930v1.

[2] M. Egidi, S. Liu, F. Münch and N. Peyerimhoff, Ricci curvature and eigenvalue
estimates for the magentic Laplacian on manifolds, arXiv:1608.01955v1.

[3] L. Erdös, Rayleigh-type isoperimetric inequality with a homogeneous magnetic field,
Calc. Var. Partial Differential Equations 4 (1996), 283-292.

[4] R. L. Frank, A. Laptev and S. Molchanov, Eigenvalue estimates for magnetic
Schrödinger operators in domains, Proc. Amer. Math. Soc. 136 (2008), 4245-4255.

[5] R. C. Reilly, Applications of the Hessian operator in a Riemannian manifold, Indi-
ana Univ. Math. J. 26 (1977), 459-472.

[6] I. Shigekawa, Eigenvalue problems for the Schrödinger operator with the magnetic
field on a compact Riemannian manifold, J. Funct. Anal. 75 (1987), 92-127.

[7] M. A. Shubin, Discrete magnetic Laplacian, Comm. Math. Phys. 164 (1994), no. 2,
259-275.

[8] M. A. Shubin, Essential self-adjointness for semi-bounded magnetic Schrödinger
operators on non-compact manifolds, J. Funct. Anal. 186 (2001), no. 1, 92-116.

11


	1 Introduction and Results
	2 Proof of Theorem 1.2
	3 Proof of Theorem 1.3
	4 Proof of Theorem 1.6

