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Abstract. These notes are devoted to the study of solutions to the equation

∆2
gu − divg(A(∇u)]) + au = fu(n+4)/(n−4). They focus on existence and

compactness issues related to this equation.
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1. Background material

1.1. Riemannian geometry. The reader is supposed to be familiar with basic
concepts in Riemannian geometry. We list below a few definitions and properties
that are needed in the sequel. This preliminary part is not supposed to be a course
in Riemannian geometry. The interested reader can consult some of the various
references available, for instance, we refer to [Cha], [DoC], [Heb1], [GHL], [Sak],
[Spi]. In the sequel, we consider M a smooth manifold of dimension n ≥ 1 (in
particular, this is a topological space).

1.1.1. Tangent and cotangent spaces. Let x ∈ M , and let ϕ : U → Ω a local chart
of M where x ∈ U , U being an open subset of M and Ω is an open subset of
Rn. We let C(M)x denote the set of smooth functions defined in a neigborhood
of x. The tangent vectors of M at x are the linear functions X : C(M)x → R
such that X(f) = 0 in case the differential of f ◦ ϕ−1 vanishes at ϕ(x). This
notion is independant of th choice of the chart ϕ. We denote as TxM the set
of tangent vectors at x: it is a linear space. For any i ∈ {1, ..., n}, we define(

∂
∂xi

)
x

(
∂
∂xi

)
x
∈ TxM by(

∂

∂xi

)
x

(f) :=
∂(f ◦ ϕ−1)

∂xi
(ϕ(x))

for all f ∈ C(M)x. The space TxM is n−dimensional, and a basis is give, by((
∂
∂xi

)
x

)
i∈{1,...,n}

. In other words, any vector X ∈ TxM can be written as

X =

n∑
i=1

Xi

(
∂

∂xi

)
x

,

where the Xi’s are uniquely determined real numbers. We let (TxM)? be the dual
space of TxM , that is the space of linear forms on TxM . A possible basis of (TxM)?

is (dx1
x, ..., dx

n
x) the dual basis of (

(
∂
∂xi

)
x
)i∈{1,...,n}. Therefore, any η ∈ (TxM)? is
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uniquely written as

η =

n∑
i=1

ηidx
i
x,

where ηi ∈ R for all i ∈ {1, ..., n}.

1.1.2. Tensors on manifolds. Given v = (p, q), with p, q ∈ N, we define the bundle
of (p, q)−tensors on M as follows⊗

(p,q)

M := {(x,L)/ x ∈M, L : (TxM)p × ((TxM)?)q → R is (p+ q)− linear} .

The bundle of (p, q)−tensors has a natural structure of C∞−manifold of dimension
n + np+q. We define Π(p,q) :

⊗
(p,q)M → M by Π(p,q)(x,L) = x for all (x,L) ∈⊗

(p,q)M . A smooth field of (p, q)−tensors on M is a smooth function T : M →⊗
(p,q)M such that Π(p,q) ◦ T = IdM . Since TxM is canonically isomorphic to

(TxM)??, a vector field on M is interpretated as a (0, 1)−tensor field on M . If T is
a smooth (p, q)−tensor field (which includes vector fields, as discussed above), we
can write T (x) = (x,Lx), where Lx is a (p+q)−linear form: with a standard abuse
of notation, we will often refer to x 7→ Lx as the tensor field T . Given a chart ϕ
around x0 as above, for i1, ..., ip ∈ {1, ..., n} and j1, ..., jq ∈ {1, ..., n}, we let the
coordinates of the tensor T as follows

T (x)
j1...jq
i1...ip

= T (x)

((
∂

∂xi1

)
x

, ...,

(
∂

∂xip

)
x

, dxj1x , ..., dx
jq
x

)
.

In particular, if X1, ..., Xp ∈ TxM and η1, ..., ηq ∈ (TxM)? are written in a chart

Xk =

n∑
i=1

(Xk)i
(

∂

∂xi

)
x

and ηk =

n∑
1=1

(ηk)idx
i
x,

then

T (x)(X1, ..., Xp, η
1, ..., ηq) = T (x)

j1...jq
i1...ip

(X1)i1 · · · (Xp)
ip · (η1)j1 · · · (ηq)jq .

Here and in the sequel, we use Einstein’s summation convention: in the right-hand-
side term, we omitted the sum for i1 = 1..n,..., jq = 1...n. This summation is
independant of the choice of the chart. We will then often define a tensor through
its coordinates. For instance, let u ∈ C1(M), let x ∈ M and X ∈ TxM and define
(∇u)(x)(X) = dux(X), where dux denotes the differential of u at x. Then ∇u is a
(1, 0)−tensor, and we denote by ∂iu(x) := (∇u)(x)i = ∂i(u◦ϕ−1)ϕ(x) its coordinate
in the chart ϕ.

1.1.3. Riemannian manifolds. Let (M, g) be a smooth Riemannian manifold of di-
mension n ≥ 1. Here, g denotes the metric, that is a smooth field of positive
symmetric bilinear forms on the tangent bundle (that is a (2, 0)−tensor field). The
linear space Rn is systematically endowed with its canonical Euclidean metric that
we will denote ξ. We endow M with the Levi-Civita connection (denoted as ∇)
associated to the metric g, that is the only torsion-free connection M such that
∇g = 0. The Christoffel symbols of this connection in a chart are

Γkij =
1

2
gkm (∂igjm + ∂jgim − ∂mgij) ,
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where (gij) denote the coordinates of the metric tensor in the chart, and (gij)
denote the coordinates of g−1, the inverse of the metric tensor, in the same chart.
Note that g−1 is a (0, 2)−tensor field. Let x ∈M and X,Y, Z ∈ TxM . We define

R(X,Y )(x).Z = ∇X̃(x)(∇Ỹ Z̃)−∇Ỹ (x)(∇X̃ Z̃)−∇[X̃,Ỹ ](x)Z̃

where X̃, Ỹ , Z̃ are vector fields on M such that X̃(x) = X, Ỹ (x) = Y and Z̃(x) = Z.

This definition is independant of the choice of the extensions X̃, Ỹ , Z̃. Given x ∈M ,
X,Y, Z ∈ TxM and η ∈ (TxM)?, we define the curvature tensor as follows:

R(x)(X,Y, Z, η) = η (R(Y, Z)(x).X) .

The function R is a smooth (3, 1)−tensor fields. Note that the definition varies from
one book to the other, however, two definitions differ only by the multiplication by
±1 of the curvature tensor. The coordinates of R in a chart are given by

R(x)lijk =

(
∂Γlki
∂xj

)
x

−

(
∂Γlji
∂xk

)
x

+ Γljα(x)Γαki(x)− Γlkα(x)Γαji

where the Γkij are given above.

The Riemann tensor is the (4, 0)−tensor field Rmg whose coordinates in a chart are
Rijkl := gαlR

α
ijk. The Ricci tensor Ricg is the symmetric (2, 0)-tensor fields with

coordinates Rij := Rαiβjg
αβ . The scalar curvature Rg is the trace of the Ricci

tensor Rg := gijRij .

1.1.4. Riemannian distance and geodesics. The distance between two points x, y ∈
M is, by definition

dg(x, y) = inf

{∫ 1

0

|ċ(t)|g(c(t)) dt/ c ∈ C1([0, 1],M) such that c(0) = x and c(1) = y

}
,

where for any t ∈ [0, 1], ċ(t) ∈ Tc(t)M is such that ċ(t)(f) = d(f◦c)
dt t

for all f ∈
C(M)c(t), and where |ċ(t)|g(c(t)) is the norm of ċ(t) for the scalar product g(c(t)).
The function dg is well-defined as a distance, and the topology induced by dg is the
topology induced by the structure of manifold of M . Given x ∈ M and d > 0, we
define the geodesic ball

Bd(x) = {y ∈M/dg(x, y) < d} .

Let us consider the exponential map. Let (M, g) be a complete Riemannian man-
ifold, and let x ∈ M . The exponential map at x is defined on the tangent space
TxM by expx(X) = γ(1), where γ : [0, 2] → M is the unique geodesic such that
γ(0) = x and γ̇(0) = X ∈ TxM . The definition on the whole space TxM is
not trivial, and is a consequence of Hopf-Rinow’s theorem. A particularly im-
portant property is the following: given a complete Riemannian manifold, the
Riemannian distance between two points is always achieved, and the path be-
tween these two points that realizes the distance is a geodesic. One then de-
fines the injectivity radius as ig(x) = inf{ρx(u)/ u ∈ TxM, |u|g(x) = 1}, where
ρx(u) = inf{T > 0 such that t 7→ expx(tu) is minimizing on [0, T ]}. The injectiv-
ity radius is ig(M) = inf{ig(x)/ x ∈ M}. When M is compact, then ig(M) > 0.
Note that when ig(M) > 0, for any x ∈ M , the restriction of expx to {X ∈
TxM/ |X|g(x) < ig(M)} induces a diffeomorphism onto Big(M)(x). Assimilating
(TxM, g(x) to (Rn, ξ) isometrically, one can then consider expx as a local chart
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around the point x. We will refer to this chart as the exponential chart, and, with
a standard abuse of notations, we will sometimes consider expx as defined on an
open subset of Rn. We will often use the following useful result: let x0 ∈ M and
consider the exponential map at x0. Then, in the chart expx0

, we have that

gij(x0) = δij and Γkij(x0) = 0 for all i, j, k ∈ {1, ..., n}, (1)

where δij is the Kronecker symbol: that is δij = 1 if i = j and 0 otherwise. Let us
conclude this part with the following important relation between the Riemannian
distance and the exponential map:

dg(x, expx(X)) = |X|g(x) (2)

for all x ∈M and all X ∈ TxM such that |X|g(x) < ig(M).

1.1.5. Miscellaneous tools in Riemannian geometry. •Scalar product for ten-
sors. Given T, T ′ two (p, q)−tensor, we define their scalar product as follows:

(T, T ′)g = T
i1...ip
j1...jq

gi1k1 · · · gipkp · gj1l1 · · · gjqlqT
k1...kp
l1...lq

.

Indeed, defining |T |g =
√

(T, T )g, we get a smooth family of norms on (p, q)−tensors.

•The musical isomorphism. Let x ∈M . We let # be the musical isomorphism
between TxM and (TxM)? defined as follows:

# : TxM → (TxM)?

X 7→
{
TxM → R
Y 7→ (X,Y )g(x)

}
.

This isomorphism is nothing but the canonical identification of a Euclidean space
with its dual space. We let X# the image of X via #, and η# the image of
η ∈ (TxM)? via the inverse of #. This definition extends naturally to vector
field (that is (0, 1)−tensor fields) and to (1, 0)−tensor fields. If X is a vector
field and η is a (1, 0)−tensor fields, the coordinates of their images in a chart

are Xi := (X#)i = gijX
j and ηi := (η#)i = gijηj . Clearly

(
X#

)#
= X and(

η#
)#

= η.

•Riemannian element of volume. Given (M, g) a Riemannian manifold of
dimension n ≥ 1, we let dvg be its Riemannian element of volume. Given ϕ : U →
Ω ⊂ Rn a local chart of M in U ⊂M , we have that

((ϕ−1)?dvg)(x) =
√
|g|(x)dx1 ∧ · · · ∧ dxn,

where |g|(x) = det(gij(ϕ
−1(x))), and the gij ’s are the coordinates of the metric

tensor in the chart ϕ, and dx1 ∧ · · · ∧ dxn is the determinant in the canonical basis
of Rn. This element of volume induces a Riemannian measure and a Riemannian
integral on M . The volume of the manifold is defined as

Volg(M) :=

∫
M

dvg.

Note that this volume can be infinite. However, Volg(M) < ∞ as soon as M is
compact.

•Divergence. Let η be a smooth (1, 0)−tensor on M . The divergence of η is
defined as divg(η) := gij(∇η)ij = gij(∂iηj − Γkijηk), which is an expression inde-
pendant of the chart.
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•Laplace-Beltrami operator. The Laplace Beltrami operator of a function u ∈
C2(M) is given in a chart by

(∆gu)(x) := −divg(∇u) = −gij(x)
(
∂ij(u ◦ ϕ−1)ϕ(x) − Γkij(x)∂k(u ◦ ϕ−1)ϕ(x)

)
.

Note that we use here the minus sign convention. When g = ξ the Euclidean metric,
one has that ∆ξ =

∑
i ∂ii.

•The divergence theorem. Let us conclude this part with the following state-
ment that we will use intensively:

Theorem 1.1. Let (M, g) be a compact Riemannian manifold without boundary.
Let η be a smooth (1, 0)−tensor. Then we have that∫

M

divg(η) dvg = 0.

In particular, given u, v ∈ C∞(M), we have that∫
M

u∆gv dvg =

∫
M

(∇u,∇v)g dvg

1.2. Sobolev spaces. Here, we refer systematically to Hebey [Heb1, Heb2].

1.2.1. Definition. Let (M, g) be a compact Riemannian manifold with the Rie-
mannian element of volume dvg. For any p ≥ 1, we define Lp(M) as the Lp−space
of M with the measure dvg, endowed with the Lp−norm:

‖u‖Lp(M) :=

(∫
M

|u|p dvg
) 1
p

, ‖u‖L∞(M) := supessM |u| when p =∞

for u ∈ Lp(M). Then (Lp(M), ‖ · ‖Lp(M)) is a Banach space. When there is no
ambiguity, we let ‖ · ‖p = ‖ · ‖Lp(M). For k ∈ N and p ≥ 1, we define the Sobolev
space Hp

k (M) as the completion of C∞(M) in Lp(M) for the norm ‖·‖Hpk (M) defined
as follows:

‖u‖Hpk (M) =

k∑
i=1

‖∇ku‖p

for u ∈ C∞(M), where

‖∇ku‖p =

(∫
M

|∇ku|pg dvg
) 1
p

for all u ∈ C∞(M). This definition naturally extends to u ∈ Hp
k (M). When there

is no ambiguity, we will write ‖ · ‖Hpk := ‖ · ‖Hpk (M). Recall that we have the Hölder

inequality for the Lp−space: Let p, q ≥ 1 such that 1/p+ 1/q = 1. Let u ∈ Lp(M)
and v ∈ Lq(M). Then uv ∈ L1(M) and we have that

‖uv‖1 ≤ ‖u‖p‖v‖q. (3)

1.2.2. Weak compactness. Let (E, ‖ · ‖) be a Banach space. Let (xi)i∈N ∈ E and
x ∈ E. We say that (xi) converges weakly to x if limi→+∞ φ(xi) = φ(x) for all
φ ∈ E′, where E′ denotes the continuous linear forms of E. In this case, we write
xi ⇀ x weakly in E′ when i→ +∞. In the case of the space H2

2 (M), we can rewrite
this definition as follows: if (ui)i∈N ∈ H2

2 (M) converges weakly to u ∈ H2
2 (M), then

we have that

lim
i→+∞

∫
M

(∆gui∆gϕ+ (∇ui,∇ϕ)g + uiϕ) dvg =

∫
M

(∆gu∆gϕ+ (∇u,∇ϕ)g + uϕ) dvg
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for all ϕ ∈ H2
2 (M). Actually, since H2

2 (M) is a Hilbert space when endowed with
a suitable scalar product (see Subsection 2.4), this last statement is equivalent to
the weak convergence.

Theorem 1.2. Let (M, g) be a compact Riemannian manifold. Let k ∈ N and
let p > 1. Then the unit ball of Hp

k (M) is weakly compact. In other words, for
any sequence (ui)i∈N ∈ Hp

k (M) such that ‖ui‖Hpk ≤ C for all i ∈ N, there exists

a subsequence (ui′)i∈N ∈ Hp
k (M) and there exists u ∈ Hp

k (M) such that ui′ ⇀ u
weakly in Hp

k (M) when i→ +∞.

1.2.3. Sobolev embeddings and inequalities.

Theorem 1.3. Let (M, g) be a compact Riemannian manifold of dimension n ≥ 1.
Let p ≥ 1 and let 0 ≤ m < k two integers such that n > p(k−m). Then Hp

k (M) is

embedded in Hq
m(M), where 1

q = 1
p−

k−m
n . Moreover, this embedding is continuous.

In other words, there exists C > 0 such that for all u ∈ Hp
k (M), then u ∈ Hq

m(M)
and

‖u‖Hqm ≤ C‖u‖Hpk .

In this notes, we will intensively use the following Sobolev inequality: Given

(M, g) a manifold of dimension n ≥ 5, then H2
2 (M) ⇀ L

2n
n−4 (M) continuously. In

other words, there exists A > 0 such that

‖u‖
L

2n
n−4 (M)

≤ A‖u‖H2
2 (M) (4)

for all u ∈ H2
2 (M).

Theorem 1.4. Let (M, g) be a compact Riemannian manifold of dimension n ≥ 1.
Let p ≥ 1 and let 0 ≤ m < k two integers such that n = p(k −m). Then Hp

k (M)
is embedded in Hq

m(M) for all q ≥ 1. Moreover, this embedding is continuous. In
other words, for any q ≥ 1, there exists C(q) > 0 such that for all u ∈ Hp

k (M),
then u ∈ Hq

m(M) and
‖u‖Hqm ≤ C(q)‖u‖Hpk .

Given α ∈ (0, 1], we say that u ∈ C0,α(M) if there exists C > 0 such that
|u(x)− u(y)| ≤ C dg(x, y)α for all x, y ∈M . The space C0,α(M) is a Banach space
when equiped with the norm

‖u‖C0,α(M) := ‖u‖∞ + sup
x6=y∈M

|u(x)− u(y)|
dg(x, y)α

.

Theorem 1.5. Let (M, g) be a compact Riemannian manifold of dimension n ≥ 1.
Let p ≥ 1 and let k ≥ 1 an integer such that kp > n. Then Hp

k (M) is embedded
in C0,α(M) for all α ∈ (0, 1) such that α < k − n

p . Moreover, this embedding is

continuous and there exists C(α) > 0 such that

‖u‖C0,α(M) ≤ C(α)‖u‖Hpk (M)

for all u ∈ Hp
k (M).

Note that there is a slight (but standard) abuse of notation in the above statement.
Indeed, for all u ∈ Hp

k (M), kp > n, there exists a continuous representative for the
class of u in Lp(M). Since it is unique, we identify the class u to this representative.
There are other embedding results for Hp

k (M): for the sake of simplicity, we do not
write them here, and we refer to Gilbarg-Trudinger [GiTr] or Adams [Ada].
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1.2.4. Compact embeddings. In the sequel, we say that an application T : E → F
between two Banach spaces is compact is for any sequence (xi)i∈N ∈ E uniformly
bounded for the norm of E, then there exists y ∈ F , there exists a subsequence
(xi′) such that limi→+∞ T (xi′) = y strongly in F . For the sake of simplicity, we do
not state the compact embeddings in Sobolev space in all their generality, but we
restrict to the case of H2

2 (M) that will be of interest in the sequel. The following
theorem is esentially due to Rellich and Kondrakov. Here again, we refer to [Ada]
and to [GiTr].

Theorem 1.6. Let (M, g) be a compact Riemannian manifold of dimension n ≥
1. Then the embedding H2

2 (M) ↪→ H2
1 (M) is compact. In case n ≥ 5, then the

embedding H2
2 (M) ↪→ Lq(M) is compact for all q ∈ [1, 2n

n−4 ).

Indeed, the recurent problem we will have to face will be that the embedding

H2
2 (M) ↪→ L2](M) is not compact. And these notes are mainly concerned with

this issue.

1.3. Regularity theorems. The main references here are Agmon-Nirenberg [DoNi],
Agmon-Douglis-Nirenberg [ADN] and the celebrated [GiTr] by Gilbarg and Trudinger
and the distribution theory [Sch] by L.Schwartz. We present here the statement of
two regularity results in the context of Riemannian manifolds. Here, the references
are [Aub2], [Heb1] and [EsRo]. Let (M, g) be a smooth compact Riemannian man-
ifold. We let A be a smooth symmetric (2, 0)−tensor on M and a ∈ C∞(M). We
let the operator Pg := ∆2

g − divg(A(∇·)#) + a defined as

Pgu = ∆2
gu− divg(A(∇u)#) + au (5)

for all u ∈ C∞(M). Here, A(∇u)# is the (1, 0)−tensor whose coordinates in a
chart are (A(∇u)#)i = Aij((∇u)#)j = Aijg

jk(∇u)k. Concerning terminology, we
say that u ∈ H2

2 (M) is a weak solution of Pgu = f , where f ∈ L1(M), if∫
M

(
∆gu∆gϕ+A(∇u#,∇ϕ#) + auϕ

)
dvg =

∫
M

fϕ dvg

for all ϕ ∈ C∞(M). In the sequel, given k ∈ N, we define the norm

‖u‖Ck(M) :=

k∑
i=1

‖∇ku‖∞,

for all u ∈ Ck(M). In particular ‖u‖C0(M) = ‖u‖L∞(M) for all u ∈ C0(M). Note

that this definition of the Ck−norm extends to tensors.

1.3.1. Lp theory.

Theorem 1.7. Let (M, g) be a compact Riemannian manifold. Let a ∈ C∞(M)
and let A be a smooth symmetric (2, 0)−tensor on M . Let f ∈ Hp

k (M). Let
u ∈ H2

2 (Ω) be a weak solution of Pgu = f .Then u ∈ Hp
4+k(M). Moreover, we have

that

‖u‖Hp4+k(M) ≤ C
(
‖f‖Hpk (M) + ‖u‖Lp(M)

)
where C = C(M, g,K) and

‖a‖Ck+1(M) + ‖A‖Ck+2(M) ≤ K.
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1.3.2. Schauder theory.

Theorem 1.8. Let (M, g) be a compact Riemannian manifold. Let a ∈ C∞(M)
and let A be a smooth symmetric (2, 0)−tensor on M . Let α ∈ (0, 1) and let
f ∈ C0,α(M). Let u ∈ H2

2 (Ω) be a weak solution of Pgu = f .Then u ∈ C4,α(M).
Moreover, we have that

‖u‖C4(M) ≤ C
(
‖f‖C0,α(M) + ‖u‖C0(M)

)
where C = C(M, g,K) and

‖a‖Ck+1(M) + ‖A‖Ck+2(M) ≤ K.

Convention: in these notes, C will denote a positive constant independant of the
various indices and variables, unless the dependance is precised. The constant C
may vary from one line to the other, and even in the same line. The notation
C(a, b, ...) means that the constant C depends only on (M, g), a, b, ....

2. Motivations

2.1. The geometric operator and its conformal invariance properties.

2.1.1. The case of dimension four. Let (M4, g) be a Riemannian manifold. In 1983,
Paneitz [Pan] introduced the fourth order operator P 4

g : C4(M)→ C0(M) defined

as follows: given u ∈ C4(Ω), we have that

P 4
g u := ∆2

gu− divg

((
2

3
Rgg − 2Ricg

)
(∇u)#

)
.

Actually, this operator enjoys some nice conformal invariance properties. Namely,
let ϕ ∈ C∞(M) and let g̃ = e2ϕg be a metric conformal to g. We have that

P 4
g̃ = e−4ϕP 4

g . (6)

Associated to this operator is a notion of Q−curvature, a curvature that also enjoys
some nice conformal properties: namely, let

Q4
g =

1

6

(
∆gRg − 3|Ricg|2g +R2

g

)
.

Passing from Q4
g to Q4

g̃ is easy through the following formula:

P 4
g ϕ+Q4

g = Q4
g̃e

4ϕ. (7)

A possible survey on the questions raised by the Paneitz operator in dimension four
is [ChYa].

2.1.2. The case of dimension n ≥ 5. In these notes, we will not be concerned
with the four-dimensional case, but with the generalization of this operator to the
dimensions n ≥ 5. This generalization is due to Branson [Bra]. Let (M, g) be a
Riemannian manifold of dimension n ≥ 5, and define the operator Png : C4(M) →
C0(M) by

Png u := ∆2
gu− divg

(
(anRgg + bnRicg) (∇u)#

)
+
n− 4

2
Qngu, (8)

where

an =
(n− 2)2 + 4

2(n− 1)(n− 2)
and bn = − 4

n− 2
,
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and

Qng =
1

2(n− 1)
∆gRg +

n3 − 4n2 + 16n− 16

8(n− 2)2(n− 2)2
R2
g −

2

(n− 2)2
|Ricg|2g

is the Q−curvature in dimension n ≥ 5. Note that one recovers the Paneitz operator
when n = 4. This operator also enjoys nice conformal invariance properties: indeed,

let u ∈ C∞(M), u > 0 and consider the metric g̃ = u
4

n−4 g which is conformal to g.
Given ϕ ∈ C∞(M), we have that

Png ϕ = u−
n+4
n−4Png (uϕ). (9)

In particular, taking ϕ ≡ 1, one gets the equation

Png u =
n− 4

2
Qng̃u

n+4
n−4 , u > 0. (10)

2.1.3. The conformal Laplacian and the Yamabe problem. Actually, all this frame-
work is very similar to the framework involved with the conformal Laplacian. More
precisely, let (M2, g) a 2-dimensional Riemannian manifold. Let ϕ ∈ C∞(M2) and
consider the metric g̃ = e2ϕg conformal to g. One gets that

∆g̃ = e−2ϕ∆g.

In addition, the scalar curvature is a natural invariant associated to this operator.
Indeed, the scalar curvature of g̃ and the scalar curvature for g are related as follows:

∆gϕ+
1

2
Rg =

1

2
Rg̃e

2ϕ.

These relations are very similar to the relations (6) and (7) enjoyed by the Paneitz
operator. This analogy extends to the higher dimensional case. Let (M, g) be
a Riemannian manifold of dimension n ≥ 3, and define the conformal Laplacian
Lng : C2(M)→ C0(M) by

Lngu := ∆gu+
n− 2

4(n− 1)
Rgu

for all y ∈ C2(M). Let v ∈ C∞(M) such that v > 0 and consider the metric

g̃ = v
4

n−2 g conformal to g, then we have that

Lng̃ϕ = v−
n+2
n−2Lng (vϕ)

for all ϕ ∈ C∞(M), and then, taking ϕ ≡ 1 yields

Lng v =
n− 2

4(n− 1)
Rg̃v

n+2
n−2 . (11)

In particular, these properties are similar to the properties (9) and (10) enjoyed by
the Paneitz-Branson operator. The Paneitz operator can then be seen as an exten-
sion of the conformal Laplacian. Note that in [GJMS], Graham and al. constructed
operators of order 2k on manifold of dimension, with the restriction n ≥ 2k in case
n is even. The principal part of these operators is ∆k

g : when k = 1, they recover
the conformal Laplacian, and when k = 2, they recover the Paneitz operator.

In the conformal class of a metric, is there a metric that is nicer than the other
ones? Indeed, it happens that the good idea is to find a metric with constant scalar
curvature. For justifications of this assertion, we refer to [Bes] or to the survey
[LePa]. What is now refered to the Yamabe problem is the following:
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The Yamabe Problem: given (M, g) a compact Riemannian manifold of di-
mension n ≥ 2 without boundary, is there a metric g̃ conformal to g such that
Rg̃ = Cst?
In dimension n ≥ 3, the problem can be reformulated as follows:

The Yamabe Problem, pde aspect for n ≥ 3: given (M, g) a compact Rie-
mannian manifold of dimension n ≥ 2 without boundary, is there a function

v ∈ C∞(M) such that v > 0 and Lng v = εv
n+2
n−2 , where ε ∈ {−1, 0,+1}?

The resolution of this problem was quite a long history. Let us just mention that
Yamabe’s initial proof [Yam] was not complete and that the final resolution of the
problem is due to Aubin [Aub1] and Schoen [Sch1]. The classical reference for this
problem is the very nice survey of Lee and Parker [LePa]. The two-dimensional
problem was also answered positively, but the resolution is completely different:
in particular, it is related to the topology of the manifold and the uniformization
theorem.

The answer to the Yamabe problem in dimension n ≥ 3 is also positive. How-
ever, the answer hides the specificity of the sphere for which the Yamabe invariant
achieves its maximum possible value (here again, we refer to [LePa]). Schoen raised
the question of the compactness of metrics with constant scalar curvature and con-
jectured the following:

Conjecture (Schoen): let (M, g) be a compact Riemannian manifold without
boundary of dimension n ≥ 3 with positive Yamabe invariant. Then the set of
metrics g̃ conformal to g such that Rg̃ ≡ 1 is compact in the C2−topology if (M, g)
is not conformally equivalent to the sphere equiped with its round metric.

Note that in the case of the standard sphere, the set of conformal metrics with
constant scalar curvature is not compact for the C2−topology. Schoen proved this
conjecture when (M, g) is locally conformally flat [Sch2] and when n = 3 [Sch3].
O.Druet [Dru] proved the conjecture in dimension n = 4, 5, F.Marques [Mar] proved
it in dimensions n = 6, 7 and Y.-Y.Li-M.Zhu [LiZh] in dimension n = 8, 9. Recently,
the final (and positive) answer to the conjecture was given by Khuri and Schoen
[KhSc].

The question of compactness happens to be very rich. Indeed, the Yamabe problem
consists in saying that a certain set is nonempty, and the compactness issue amounts
to consider its structure, to know whether it is compact or not. When dealing with
multiplicity questions and degree theory for the Yamabe equation, the compactness
is a crucial point, see for instance Schoen and Zhang [ScZh] or Li and Zhu [LiZh].

2.2. The model equation. These questions of existence and compactness nat-
urally extend to the fourth order setting. Let (M, g) be a compact Riemannian
manifold of dimension n ≥ 5. Let A be a smooth symmetric (2, 0)−tensor field and
a, f ∈ C∞(M). We consider here function u ∈ C4(M) solutions to the following
model equation:

∆2
gu− divg(A(∇u)#) + au = fu2]−1, u > 0, (E)

where 2] = 2n
n−4 . Note that when the operator Pg := ∆2

g − divg(A(∇·)#) + a is

Png (the Paneitz-Branson operator), equation (E) means that the Q−curvature of

the metric g̃ = u
4

n−4 g verifies that n−4
2 Qg̃ = f . Following the preceding discussion
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about the Yamabe equation, we address in these notes the following questions:
(Q1): is there a solution u ∈ C4(M) to (E)?

(Q2): is the set of functions u solutions to (E) compact in the C4−topology?

2.3. A possible strategy for existence. From now one, we let f ∈ C∞(M) such
that f > 0. We let A be a smooth symmetric (2, 0)−tensor field and a ∈ C∞(M),
and we let the operator

Pg := ∆2
g − divg(A(∇·)#) + a.

Given q ∈ [2, 2]], we consider the functional Iq,f : H2
2 (M) \ {0} → R such that

Iq,f (u) :=

∫
M

(
(∆gu)2 +A((∇u)], (∇u)]) + au2

)
dvg(∫

M
f |u|q dvg

) 2
q

(12)

for all u ∈ H2
2 (M)\{0}. This functional is well defined since the Sobolev embedding

H2
2 (M) ↪→ Lq(M) is continuous (see Theorem 1.3). With a standard abuse of

notation, we define∫
M

uPgv dvg :=

∫
M

vPgu dvg

∫
M

(
∆gu∆gv +A((∇u)], (∇v)]) + auv

)
dvg (13)

when u, v ∈ H2
2 (M). This definition is relevant since A is symmetrical and Theorem

1.1 holds. We then say that
∫
M
uPgv dvg is defined in the distributional sense. Note

that it follows from Theorem 1.1 that when u ∈ C4(M),
∫
M
uPgu dvg and coincides

with (13).

2.3.1. Differentiability of the functional Iq,f .

Lemma 2.1. The functional Iq,f is differentiable in H2
2 (M) \ {0} and for any

u ∈ H2
2 (M), we have that

I ′q,f (u).ϕ = 2

∫
M

(
∆gu∆gϕ+A((∇u)], (∇ϕ)]) + auϕ− λq(u)f |u|q−2uϕ

)
dvg,

(14)

for all ϕ ∈ H2
2 (M), where λq(u) =

∫
M
uPgu dvg∫

M
f |u|q dvg .

Before proving this lemma, let us see why it is useful in our framework: take u ∈
C4(M) a solution to (E), and assume that λ2](u) > 0 and let ũ := (λ2](u))

− 1

2]−2 .
We then get with Theorem 1.1 that

I ′2],f (ũ).ϕ = 2

∫
M

(
∆gũ∆gϕ+A((dũ)], (∇ϕ)]) + aũϕ− λ2](ũ)f |ũ|2

]−2ũϕ
)
dvg

= 2 (λ2](u))
− 1

2]−2

∫
M

(
∆gu∆gϕ+A((∇u)], (∇ϕ)]) + auϕ− fu2]−1ϕ

)
dvg

= 2 (λ2](u))
− 1

2]−2

∫
M

(
ϕ∆2

gu− divg
(
A((∇u)]

)
ϕ+ auϕ− fu2]−1ϕ

)
dvg

= 2 (λ2](u))
− 1

2]−2

∫
M

(
ϕPgu− fu2]−1ϕ

)
dvg = 0

for all ϕ ∈ H2
2 (M). Then I ′2],f (u) = 0 and u is a critical point for I2],f .

Proof of Lemma 2.1: Indeed, let u ∈ H2
2 (M) and ϕ ∈ H2

2 (M) such that ‖ϕ‖H2
2 (M) ≤

1
2‖u‖H2

2 (M). Clearly, we have that u + ϕ ∈ H2
2 (M) \ {0}, and Iq,f (u + ϕ) is well-

defined. We have that
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∫
M

(u+ ϕ)Pg(u+ ϕ) dvg

=

∫
M

uPu dvg + 2

∫
M

(
∆gu∆gϕ+A((∇u)], (∇ϕ)]) + auϕ

)
dvg +

∫
M

ϕPϕ dvg

=

∫
M

uPu dvg + 2

∫
M

uPgϕdvg +O(1)‖ϕ‖2H2
2
. (15)

where |O(1)| ≤ C for all ϕ ∈ H2
2 (M) such that ‖ϕ‖H2

2 (M) ≤ 1
2‖u‖H2

2 (M). Note here
that we have used that A is symmetric. Concerning the denominator of Iq,f , we
need the following estimate: for all q ≥ 2 ≥ θ ≥ 0, there exists C(q, θ) > 0 that
depends only on q and θ such that∣∣|x+ y|q − |x|q − q|x|q−2xy

∣∣ ≤ C(q, θ)(|x|q−θ|y|θ + |y|q) for all x, y ∈ R. (16)

This inequality is straightforward. Using (16) and Hölder’s inequality, we get that∣∣∣∣∫
M

f |u+ ϕ|q dvg −
∫
M

f |u|q dvg − q
∫
M

f |u|q−2uϕdvg

∣∣∣∣
≤ C(q, 2)‖f‖∞

(∫
M

|u|q−2|ϕ|2 dvg +

∫
M

|ϕ|q dvg
)

≤ C(q, 2)‖f‖∞Volg(M)1− q

2]

(
‖u‖q−2

2]
‖ϕ‖22] + ‖ϕ‖q

2]

)
.

Since u, ϕ ∈ H2
2 (M), it follows from the Sobolev inequality (4) that∣∣∣∣∫

M

f |u+ ϕ|q dvg −
∫
M

f |u|q dvg − q
∫
M

f |u|q−2uϕdvg

∣∣∣∣
≤ C(q, ‖u‖H2

2
, ‖f‖∞Volg(M)) · ‖ϕ‖2H2

2
.

as soon as ‖ϕ‖H2
2 (M) ≤ 1

2‖u‖H2
2 (M). Since

∫
M
f |u|q dvg 6= 0, we then get that(∫

M

f |u+ ϕ|q dvg
)− 2

q

=

(∫
M

f |u|q dvg
)− 2

q
(

1 +
q
∫
M
f |u|q−2uϕdvg∫
M
f |u|q dvg

+O(1)‖ϕ‖2H2
2

)− 2
q

=

(∫
M

f |u|q dvg
) 2
q
(

1−
2
∫
M
f |u|q−2uϕdvg∫
M
f |u|q dvg

+O(1)‖ϕ‖2H2
2

)
(17)

where |O(1)| ≤ C for all ϕ ∈ H2
2 (M) such that ‖ϕ‖H2

2 (M) ≤ 1
2‖u‖H2

2 (M). Plugging

(15) and (17) in (12), one gets that

Iq,f (u+ ϕ) = Iq,f (u) ·
(

1 + 2

∫
M

(
∆gu∆gϕ+A((∇u)], (∇ϕ)]) + auϕ

)
dvg

−
2
∫
M
uPgu dvg∫

M
f |u|q dvg

∫
M

f |u|q−2uϕdvg +O(1)‖ϕ‖2H2
2

)
In particular, Iq,f is differentiable at u and we get (14). This ends the proof of the
lemma. �.

Exercise: prove that Iq,f ∈ C2(H2
2 (M),R).
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Definition 2.1. Let (M, g) be a compact Riemannian manifold of dimension n ≥ 5.
Let A be a smooth symmetric (2, 0)−tensor field and let a, f ∈ C∞(M) such that
f > 0. Let q ∈ [2, 2]]. Let u ∈ H2

2 (M). We say that u is a weak solution of

∆2
gu− divg(A(∇u)]) + au = f |u|q−2u (Eq)

if we have that∫
M

(
∆gu∆gϕ+A((∇u)], (∇ϕ)]) + auϕ

)
dvg =

∫
M

f |u|q−2uϕdvg

for all ϕ ∈ H2
2 (M).

In particular, u is a critical point for Iq,f iff u is a weak solution to Pgu =
λq(u)f |u|q−2u. We are now in position to suggest a strategy to obtain solutions to
(E):

2.3.2. Step 1: minimization of I2],f . Find (if possible) u ∈ H2
2 (M) \ {0} such that

I2],f (u) = inf
{
Iq,f (v)/ v ∈ H2

2 (M) \ {0}
}

. Since I2],f (λu) = I2](u) for all λ 6= 0,

up to multiplicating by a positive constant, one can assume that
∫
M
f |u|2] dvg = 1.

In this case, λ2](u) = I2],f (u). Such a function u then verifies I ′2],f (u) = 0, that is∫
M

(
∆gu∆gϕ+A((∇u)], (∇ϕ)]) + auϕ) dvg = I2],f (u)

∫
M

f |u|2
]−2uϕ

)
dvg

for all ϕ ∈ H2
2 (M). It is then a weak solution of Pgu = I2],f (u)f |u|2]−2u.

2.3.3. Step 2: find a nonnegative minimizer. In other words, can we choose the
function u ∈ H2

2 (M) above such that u ≥ 0 a.e.?

2.3.4. Step 3: regularity of weak solutions. Prove that when u ∈ H2
2 (M) is a weak

solution to Pgu = I2],f (u)f |u|2]−2u, then u ∈ C4(M). In this situation, we have
that ∫

M

(
Pgu− I2],f (u)f |u|2

]−2u
)
ϕdvg = 0

for all ϕ ∈ H2
2 (M), and then Pgu = I2],f (u)f |u|2]−2u in the usual sense.

2.3.5. Step 4: find a positive solution. With Steps 1 to 3, we have a function u ∈
C4(M) \ {0} such that u ≥ 0 and Pgu = I2],f (u)fu2]−1: prove that u > 0 indeed.

At this stage, if λ2](u) > 0, we have that I2],f (u)
− 1

2]−2u is a solution to (E).

Unfortunately (or fortunately...), each of these steps involves some particular diffi-
culties, either due to the exponent 2] or due to the bi-harmonic operator ∆2

g.

2.4. A suitable norm for H2
2 (M). It is standard here to use an equivalent norm

for H2
2 (M) more suitable to functional Iq,f . On H2

2 (M), we define the following
norm

‖u‖′H2
2 (M) = ‖∆gu‖2 + ‖∇u‖2 + ‖u‖2

for all u ∈ H2
2 (M). This norm will be very convenient in this notes, and it is

relevant thanks to the following proposition:

Proposition 2.1. The norms ‖ · ‖H2
2

and ‖ · ‖′
H2

2
are equivalent.
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Proof. The main tool here is the Bochner-Lichnerowitz-Weitzenbock formula. In-
deed, we have that∫

M

(∆gu)2 dvg =

∫
M

|∇2u|2g dvg +

∫
M

Ricg((∇u)#, (∇u)#) dvg

for all u ∈ H2
2 (M). In particular, we have that

‖∇2u‖22 + ‖∇u‖22 + ‖u‖2g

= ‖∆gu‖22 −
∫
M

Ricg((∇u)#, (∇u)#) dvg + ‖∇u‖22 + ‖u‖22

≤ ‖∆gu‖22 + C‖∇u‖22 + ‖u‖22
for all u ∈ H2

2 (M), and then there exists C > 0 such that ‖ · ‖H2
2
≤ ‖ · ‖′H−22 .

The reverse inequality goes the same way, and we get that the two norms are
equivalent. �

In particular, from now on, we will use this new norm, and we will write in the
sequel

‖u‖H2
2 (M) = ‖∆gu‖2 + ‖∇u‖2 + ‖u‖2 (18)

for all u ∈ H2
2 (M).

2.5. The main difficulties one encounters.

2.5.1. The critical exponent (1): minimization. Let q ∈ [2, 2]] and define

µq(f) := inf
{
Iq,f (u)/ u ∈ H2

2 (M) \ {0}
}
.

Proposition 2.2. Let (M, g) be a compact Riemannian manifold of dimension
n ≥ 5. Let A be a smooth symmetric (2, 0)−tensor field and let a, f ∈ C∞(M) such
that f > 0. Let q ∈ [2, 2]). Then µq(f) is finite and achieved. In other words,
µq(f) ∈ R and there existe u ∈ H2

2 (M) \ {0} such that Iq,f (u) = µq(f).

Proof. We first prove that µq(f) > −∞. Let u ∈ H2
2 (M) \ {0}. Since A is smooth,

there exists C > 0 such that∣∣∣∣∫
M

A((∇u)#, (∇u)#) dvg

∣∣∣∣ ≤ C ∫
M

|∇u|2g dvg

for all u ∈ H2
2 (M). It is there convenient to control the L2−norm of the gradient

by the L2−norm of the laplacian:

Lemma 2.2. Let (M, g) be a compact Riemanian manifold. Then for any ε > 0,
there exists C(ε) > 0 such that

‖∇u‖2 ≤ ε‖∆gu‖2 + C(ε)‖u‖2
for all u ∈ H2

2 (M).

Proof of Lemma 2.2: The proof goes by contradiction. Let ε > 0. We assume that
for all i ∈ N?, there exists ui ∈ H2

2 (M) such that

‖∇ui‖2 > ε‖∆gui‖2 + i‖ui‖2 and ‖∇ui‖2 = 1. (19)

It then follows from (19) that

‖∆gui‖2 + ‖∇ui‖2 + ‖u‖2 ≤ ε−1 + 1 + i−1

for all i ∈ N?. Then there exists C > 0 such that ‖ui‖H2
2 (M) ≤ C for all i ∈ N? (we

used the norm defined in (18)). It follows from the compactness of the embedding
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H2
2 (M) ↪→ H2

1 (M) (see Proposition 1.6) that there exists a subsequence (ui′) and
there exist u ∈ H2

2 (M) such that limi→+∞ ui′ = u strongly in H2
1 (M). With (19),

we get that ‖∇u‖2 = 1 and that ‖u‖2 = 0: a contradiction, and Lemma 2.2 is
proved. �

With Lemma 2.2, we have that there exists C ′ > 0 such that∣∣∣∣∫
M

A((∇u)#, (∇u)#) dvg

∣∣∣∣ ≤ 1

2

∫
M

|∇u|2g dvg + C ′‖u‖22

for all u ∈ H2
2 (M). Using this inequality, the fact that f > 0 and Hölder’s inequal-

ity, we get that

Iq,f (u) =

∫
M
uPgu dvg(∫

M
f |u|q dvg

) 2
q

=

∫
M

(
(∆gu)2 +A((∇u)#, (∇u)#) dvg + au2

)
dvg(∫

M
f |u|q dvg

) 2
q

≥
1
2

∫
M

(∆gu)2 dvg − (C ′ + ‖a‖∞)‖u‖22(∫
M
f |u|q dvg

) 2
q

≥
∫
M

(∆gu)2 dvg(∫
M
f |u|q dvg

) 2
q

− (C ′ + ‖a‖∞)
‖u‖22

(infM f)
2
q ‖u‖2q

≥
∫
M

(∆gu)2 dvg(∫
M
f |u|q dvg

) 2
q

− (C ′ + ‖a‖∞)Volg(M)2− 4
q

(infM f)
2
q

(20)

for all u ∈ H2
2 (M) \ {0}. This proves that µq(f) > −∞ and then µq(f) ∈ R.

Let (ui)i∈N ∈ H2
2 (M) \ {0} be a minimizing sequence for Iq,f , that is

lim
i→+∞

Iq,f (ui) = µq(f). (21)

Without loss of generality, we can assume that∫
M

f |ui|q dvg = 1 (22)

for all i ∈ N. With (20) and (21), we get that there exists C > 0 such that∫
M

(∆gui)
2 dvg ≤ C

for all i ∈ N. Since f > 0, we get with Hölder’s inequality and (22) that

‖ui‖2 ≤ Volg(M)
1
2−

1
q ‖ui‖q ≤

Volg(M)
1
2−

1
q

(infM f)
1
q

for all i ∈ N. With Lemma 2.2 and the definition (18), we then get that there exists
C > 0 such that

‖ui‖H2
2
≤ C

for all i ∈ N. It then follows from the weak compactness of the unit ball (see
Theorem 1.2) that there exists u ∈ H2

2 (M) such that there exists a subsequence
(ui′) of (ui) such that

ui′ ⇀ u
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weakly in (H2
2 (M))′ when i → +∞. Without loss of generality, we can assume

that the convergence actually holds for the initial sequence (ui)i∈N. Since the
embedding H2

2 (M) ⇀ H2
1 (M) is compact (see Theorem 1.6), we can assume that

limi→+∞ ui = u in H2
1 (M). Since 2 ≤ q < 2] and the embedding H2

2 (M) ↪→ Lq(M)
is compact (see Theorem 1.6), we can assume that limi→+∞ ui = u in Lq(M).
Consequently, we get that

lim
i→+∞

∫
M

f |ui|q dvg =

∫
M

f |u|q dvg = 1, (23)

and then u 6≡ 0. We let θi = ui − u ∈ H2
2 (M) for all i ∈ N. We have that∫

M

uiPgui dvg

=

∫
M

uPgu dvg + 2

∫
M

(
∆gu∆gθi +A((∇u)], (dθi)

]) + auθi
)
dvg

+

∫
M

(
(∆gθi)

2 +A((dθi)
], (dθi)

]) + aθ2
i

)
dvg

Since θi ⇀ 0 in (H2
2 (M))′ and ui → u in H2

1 (M) when i→ +∞, we get that∫
M

uiPgui dvg =

∫
M

uPgu dvg +

∫
M

(∆gθi)
2 dvg + o(1)

where limi→+∞ o(1) = 0. Plugging this equality in Iq,f (ui), one gets that

µq(f) =

∫
M

uPgu dvg +

∫
M

(∆gθi)
2 dvg + o(1) (24)

when i→ +∞. Since u 6≡ 0, we have that Iq,f (u) ≥ µq(f). With (23), we get that

µq(f) ≤
∫
M

uPgu dvg. (25)

Plugging (24) and (25) together, we get that

µq(f) =

∫
M

uPgu dvg = Iq,f (u) and lim
i→+∞

∫
M

(∆gθi)
2 dvg = 0.

In particular, the infimum µq(f) is achieved at u ∈ H2
2 (M). �

One crucial point in the preceding proof is the compactness of the embedding
H2

2 (M) ⇀ Lq(M) for 2 ≤ q < 2]. For q = 2], the embedding is continuous,
but not compact, and the above variational method does not work. This lack of
compactness is actually fundamental: there are obstructions to the existence of
critical points for I2],f , as proved in [DHL]. In the following statement, the first
spherical harmonics are the eigenfunctions of ∆h for the eigenvalue n, the first
nonzero eigenvalue of ∆h (see Subsection 4.4). The following was proved in [DHL]:

Theorem 2.1. Let (Sn, h) be the standard n−dimensional sphere equiped with its
round metric h. Let u, f ∈ C∞(Sn) such that

Pnh u = fu2]−1, u > 0 in Sn.
Here, Pnh denotes the Paneitz-Branson operator on the sphere. Then for first spher-
ical harmonic ϕ ∈ C∞(M), we have that∫

Sn
(∇f,∇ϕ)gu

2] dvh = 0.
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In particular, there is no solution to Phu = (1 + εϕ)u2]−1 for all ε > 0 and all ϕ
first spherical harmonic.

2.5.2. The critical exponent (2): regularity and compactness. Here again, a regu-
larity result holds for the subcritical case, but fails in the critical case:

Proposition 2.3. Let (M, g) be a compact Riemannian manifold of dimension
n ≥ 5. Let A be a smooth symmetric (2, 0)−tensor field and let a, f ∈ C∞(M) such
that f > 0. Let u ∈ H2

2 (M) be a weak solution to (Eq). Then u ∈ C4(M) and is a
solution to (Eq) in the usual sense.

Proof. The proof is quite standard and is now refered to a bootstrap argument.
Let

p0 = max{p ≥ 1/ u ∈ Lp(M)}.
It follows from the Sobolev embedding (see also Theorem 1.3) that p0 ≥ 2]. Assume
that p0 < +∞ and let p ∈ (2, p0). Then u ∈ Lp(M), and then

f |u|q−2u ∈ L
p
q−1 (M).

Since Pgu = f |u|q−2u, it then follows from regularity theorems (see Theorem 1.7)

that u ∈ H
p
q−1

4 (M). It then follows from Sobolev’s embedding theorem (see Theo-
rems 1.3, 1.4 and 1.5) that we are in one of the following cases:

(i) If q−1
p −

4
n < 0, then u ∈ C0(M), and then u ∈ Lr(M) for all r ≥ 1 and then

p0 = +∞, a contradiction.
(ii) If q−1

p −
4
n = 0, then u ∈ Lr(M) for all r ≥ 1 and then p0 = +∞, a

contradiction.
(iii) If q−1

p −
4
n > 0 then u ∈ Lr(M), where 1

r = q−1
p −

4
n , and then p0 ≥ r > p,

so that we have improved the order integrability of u. Since this is valid for all
p ∈ (2, p0), letting p go to p0, we get that

1

p0
≤ q − 1

p0
− 4

n
⇒ p0 ≤

n(q − 2)

4
< 2] (26)

since q < 2], a contradiction since p0 ≥ 2].

This proves that p0 = +∞, and then that u ∈ Lp(M) for all p ≥ 1. Then, Pgu ∈
Lp(M) for all p ≥ 1. It then follows from regularity theory (see Theorem 1.7) that
u ∈ Hp

4 (M) for all p ≥ 1, and then from Sobolev’s embedding theorem (see Theorem
1.5), that u ∈ C0,α(M) for all α ∈ (0, 1). We then get that f |u|q−2u ∈ C0,α(M),
and by regularity theory (see Theorem 1.8), one gets that u ∈ C4(M). �

Actually, the preceding bootstrap can be applied to obtained C4−bounds from

L2]−bounds for u. Of course, still in the subcritical case:

Proposition 2.4. Let (M, g) be a compact Riemannian manifold of dimension
n ≥ 5. Let A be a smooth symmetric (2, 0)−tensor field and let a, f ∈ C∞(M) such
that f > 0. Let q ∈ [2, 2])]. Then for any Λ > 0, there exists C0(Λ, q) > 0 such
that for any u ∈ C4(M) solution to (Eq), we have that

‖u‖2] ≤ Λ⇒ ‖u‖C4(M) ≤ C0(Λ, q).

Exercise: Prove this proposition using the proof of the regularity of solutions to
the subcritical problem and the regularity theorems.
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The reader will have pointed out that the subcritical exponent q < 2] in (26) is
crucial in this proof. Actually, in the critical case, one could start with p = 2],
and one would obtain r = 2]! So that there would be no improvement of the
integrability. On the other hand, still in the case q = 2], assume that there exists
p > 2] such that u ∈ Lp(M): in this situation, the bootstrap works and one recovers
that u ∈ C4(M).

Exercise [EXO]: Let u ∈ H2
2 (M) be a weak solution to (E). Prove that if there

exists p > 2] such that u ∈ Lp(M), then u ∈ C4(M).

Trudinger [Tru] was able to prove that a weak solution u ∈ H2
1 (M) of ∆gu+ au =

fu
n+2
n−2 (a weak solution to this equation is a function u such that

∫
M

((∇u,∇ϕ)g + auϕ) dvg =

∫
M

fu
n+2
n−2ϕdvg

for all ϕ ∈ H2
2 (M)) is actually in C2(M). But this proof does not easily extends to

the bi-harmonic operator.

2.5.3. The bi-harmonic operator (1): positivity. Another problem is to recover posi-
tive solutions to our equation. A natural approach would be to consider a minimizer
u of Iq,f and then to see whether |u| has a chance to be another minimizer. This
approach is very fruitful for second-order problems, here is how:

Let r ∈ [2, 2n
n−2 ), and let

Ĩr(u) :=

∫
M

(
|∇u|2g + au2

)
dvg(∫

M
f |u|r dvg

) 2
r

for all u ∈ H2
1 (M) \ {0} (note that this is well defined thanks to the Sobolev

embedding of Theorem 1.3). Assume that there exists a minimizer u ∈ H2
1 (M)\{0}

for Ĩr such that Ĩr(u) > 0, and assume that
∫
M
f |u|r dvg = 1. We have that

|u| ∈ H2
1 (M) and |∇|u||g = |∇u|g (see for instance [GiTr], Theorem 7.8, or [Heb1]).

Therefore, one gets that Ĩr(|u|) = Ĩr(u) also minimizes Ĩr. As in Proposition

2.3, we get that |u| is a weak solution to ∆g|u| + a|u| = Ĩr(|u|)f |u|r−1. With a
bootstrap argument, one gets that |u| ∈ C2(M). With K > 0 large enough such

that a+K− Ĩr(|u|)f |u|r−2 > 0, one gets that ∆g|u|+ (a+K− Ĩr(|u|)f |u|r−2)|u| =
K|u| ≥ 0, and then |u| > 0 by the strong comparison principle (see for instance
[GiTr], Theorem 3.5 or [Heb1]). In particular, the initial function u is either positive
or negative and, up to multiplying by a nonzero constant we have recovered a
positive solution to the equation ∆gũ+ aũ = fũr−1.

This strategy doe not apply to the fourth-order setting for (at least!) one good
reason: there exists u ∈ H2

2 (M) such that |u| 6∈ H2
2 (M). A very simple illustration
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of this fact is on Rn, actually. In the distributional sense, one has

〈∆|xi|, ϕ〉D′(Rn) =

∫
Rn
|xi|∆ϕdx

=

∫
{xi>0}

xi∆ϕdx−
∫
{xi<0}

xi∆ϕdx

=

∫
{xi>0}

(∆xi)ϕdx+

∫
∂{xi>0}

(−xi∂νϕ+ (∂νxi)ϕ) dσ

−
∫
{xi<0}

xi∆ϕdx

= 2

∫
{xi=0}

ϕdσ

here, ∂ν denotes the normal outer derivative. In particular, ∆|xi| 6∈ Lploc(Rn) for
all p ≥ 1. As we will see, there are situations in which the minimizers of Iq,f (when
they exist) change sign, contrary to the second-order case

3. Concerning regularity

As already mentioned, the strategy of Trudinger for second-order operators does
not adapt nicely to the fourth-order case. Note that Sandeep [San] could perform a
De Giorgi-Nash-Moser scheme for fourth-order equations, a technique that is very
close to Trudinger’s technique.

In these notes, we adapt the techniques developed by Van der Vorst [VdV] for
fourth-order problems (see also Djadli-Hebey-Ledoux [DHL] and Esposito-Robert
[EsRo] for the context of Riemannian manifolds). We prove the following:

Proposition 3.1. Let (M, g) be a compact Riemannian manifold of dimension
n ≥ 5. Let A be a smooth symmetric (2, 0)−tensor field and let a, f ∈ C∞(M) such
that f > 0. Let u ∈ H2

2 (M) be a weak solution to (E). Then u ∈ C4(M) and is a
solution to (E) in the usual sense.

In particular, the question of the regularity of weak solutions is completely solved
for our problem. The proof of Proposition 3.1 uses the notion of coercivity:

3.1. Coercivity.

Definition 3.1. We say that Pg as above is coercive if there exists λ > 0 such that∫
M

(
(∆gu)2 +A((∇u)#, (∇u)#) + au2

)
dvg ≥ λ

∫
M

u2 dvg

for all u ∈ H2
2 (M).

Exercise [COER]: Prove that the following assertions are equivalent:
(i) Pg is coercive
(ii) there exists λ > 0 such that∫

M

(
(∆gu)2 +A((∇u)#, (∇u)#) + au2

)
dvg ≥ λ‖u‖22]

for all u ∈ H2
2 (M).
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(iii) there exists λ > 0 such that∫
M

(
(∆gu)2 +A((∇u)#, (∇u)#) + au2

)
dvg ≥ λ‖u‖2H2

2

for all u ∈ H2
2 (M).

An important Corollary of the coercivity is the following existence result. The proof
is postponed to the Appendix.

Proposition 3.2. Let (M, g) be a compact Riemannian manifold. Let a ∈ C∞(M)
and let A be a smooth symmetric (2, 0)−tensor on M . Assume that the operator
Pg = ∆2

g − divg(A(∇·)#) + a is coerciv. Then for any f ∈ Hp
k (M), there exists a

unique u ∈ Hp
4+k(M) such that Pgu = f . Moreover, we have that

‖u‖Hp4+k(M) ≤ C · ‖f‖Hpk (M).

where C = C(M, g,K) and

‖a‖Ck+1(M) + ‖A‖Ck+2(M) ≤ K.

3.2. Proof of Proposition 3.1: We prove the proposition in the case the operator
Pg is coercive. Let p ≥ 1. Let R > 0 to be chosen later. Let v ∈ Lp(M). It follows

from Hölder’s inequality that f |u|2]−21|u|≥Rv ∈ Lr(M) with 1
r = 1

p + 4
n and that

‖f |u|2
]−21|u|≥Rv‖r ≤ ‖f‖∞‖|u|2

]−21|u|≥R‖n4 ‖v‖p.

It follows from regularity theory that there exists a unique w ∈ Hr
4 (M) such that

Pgv = f |u|2]−21|u|≥Rv. Moreover, there exists C = C(p, r, n) > 0 such that

‖w‖Hr4 (M) ≤ C · ‖f |u|2
]−21|u|≥Rv‖r.

It follows from Sobolev’s embedding in Theorem 1.3 that Hr
4 (M) is embedded

continuously in Lq(M), where 1
q = 1

r −
4
n = 1

p . Then w ∈ Lp(M) and there exists

C = C((M, g), p, r, n) > 0 such that

‖w‖Lp(M) ≤ C · ‖f‖∞‖|u|2
]−21|u|≥R‖n4 ‖v‖p.

We define the operator Tp,R : Lp(M) → Lp(M) such that for any v ∈ Lp(M),
Tp,R(u) = w where w is as above. It follows from the above discussion that Tp,R is
a continuous linear map and that its norm satisfies

‖Tp,R‖Lp→Lp ≤ C(p, r, n) · ‖f‖∞

(∫
{|u|≥R}

|u|2
]

dvg

) 4
n

.

Therefore, since u ∈ L2](M), there exists R0 = R((M, g), p, r, n) > 0 such that
‖Tp,R‖Lp→Lp ≤ 1

2 , and then, we get that IdLp − Tp,R : Lp(M) → Lp(M) is linear
continuous with linear continuous inverse.

Since f |u|2]−2u1|u|≤R ∈ L∞(M), we have by Proposition 3.2 that for all p ≥ 2],

there exists ũ ∈ Hp
4 (M) such that Pgũ = f |u|2]−2u1|u|≤R. We let ū = (IdLp −

Tp,R)−1(ũ) ∈ Lp(M). We have that

Pgu = f |u|2
]−2u1|u|≥R + f |u|2

]−2u1|u|≤R

Pg(u− ũ) = f |u|2
]−21|u|≥Ru
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and then u− ũ = T2],R(u), which yields (Id
L2] −T2],R)u = ũ = (IdLp −Tp,R)(ū) =

(Id
L2]−T2],R)(ū) since p ≥ 2] and u, ū ∈ L2](M). Since the operator (Id

L2]−T2],R

is invertible, we get that u = ū ∈ Lp(M) for all p ≥ 2]. The bootstrap argument
and Exercise [EXO] then yields that u ∈ C4(M).

We consider now the case when Pg is not coercive. We let K > 0 such that Pg+K
is coercive, and therefore invertible. We define the map Tp,R : Lp(M) → Lp(M)

by Tp,R(v) = (Pg + K)−1(f |u|2]−21|u|≥Rv) for all v ∈ Lp(M). This maps is well-

defined. We let p ≥ 2] such that u ∈ Lp(M) and as above, we get that u ∈ Lq(M)
for some q > 2]. The conclusion of the proposition then follows. �

Exercice: Complete the last part of the preceding proof. That is prove Proposition
3.1 in case Pg is not coercive.

4. Concerning positive solutions

4.1. The main result. As mentioned, finding positive solutions minimizing Iq,f
is not so easy... and can sometimes be impossible! We present here a technique
that permits in some situations to recover positive minimizers.

Proposition 4.1. Let (M, g) be a compact Riemannian manifold of dimension
n ≥ 5. Let A be a smooth symmetric (2, 0)−tensor field and let a, f ∈ C∞(M) such
that f > 0. We assume that Pg verifies the two following properties:

(i) Pg is coercive
(ii) for all u ∈ C4(M) such that Pgu ≥ 0, then u > 0 or u ≡ 0.
Let q ∈ [2, 2]] and assume that u ∈ H2

2 (M) is a minimizer for Iq,f . Then
u ∈ C4(M) and either u > 0 or u < 0.

Proof. We keep the same notations as in section 3. The regularity u ∈ C4(M) is
just Proposition 3.1 above. Therefore, there exists µ ∈ R such that

Pgu = µf |u|q−2u in M.

With the definition of Iq,f (u), we get that

µ = µq(f)×
(∫

M

f |u|q dvg
) 2
q−1

. (27)

We claim that µq(f) > 0. Indeed, since Pg is coercive, we get that there exists
λ > 0 such that ∫

M

uPgu dvg ≥ λ‖u‖2q

for all u ∈ H2
2 (M). We then get that

Iq,f (u) =

∫
M
uPgu dvg(∫

M
f |u|q dvg

) 2
q

≥ λ

(supM f)
2
q

(28)

for all u ∈ H2
2 (M) \ {0}, and therefore µq(f) ≥ λ(supM f)−

2
q > 0. This proves the

claim.

We let v ∈ H2
2 (M) such that Pgv = |Pgu| in M . The existence is a consequence

of Proposition 3.2. Since |Pgu| ∈ C0,1(M), one gets with Theorem 1.8 that v ∈
C4(M). Then, we have that Pg(v ± u) ≥ 0, and then v ± u ≥ 0 with point (ii).
Then v ≥ |u| and v 6= 0 (otherwise u ≡ 0). Since Pgv ≥ 0, we then get with point
(ii) that v > 0. Let us compute Iq,f (v):
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Iq,f (v) =

∫
M
vPgv dvg(∫

M
f |v|q dvg

) 2
q

= µ

∫
M
vf |u|q−1 dvg(∫

M
f |v|q dvg

) 2
q

≤ µ

∫
M

(f
1
q v) · (f |u|q)

q−1
q dvg(∫

M
f |v|q dvg

) 2
q

≤ µ

(∫
M
fvq dvg

) 1
q ·
(∫
M
f |u|q dvg

) q−1
q(∫

M
f |v|q dvg

) 2
q

with Hölder’s inequality

≤ µ

(∫
M
f |u|q dvg

) q−1
q(∫

M
fvq dvg

) 1
q

≤ µ
(∫

M

f |u|q dvg
) q−2

q

since v ≥ |u|

≤ µq(f) with (27)

Since the minimum is µq(f), one gets that Iq,f (v) ≥ µq(f), and then Iq,f (v) =
µq(f), and the minimum is achieved at v. There are then equalities everywhere
above, and in particular one gets |u| = v > 0. Since u is continuous, we get
therefore that either u > 0 everywhere or u < 0 everywhere. �

Point (ii) of Proposition 4.1 is the crucial point. Concerning terminology, we define
the pointwise maximum principle as follows:

Definition 4.1. We say that the operator Pg verifies the pointwise comparison
principle if for any u ∈ C4(M) such that Pgu ≥ 0, then either u > 0 or u ≡ 0.

4.2. The Rayleigh quotient and the first eigenfunction. Given an operator
Pg as in Proposition 3.1, we define the first eigenvalue of Pg as follows:

λ1(Pg) = inf
u∈H2

2 (M)\{0}

∫
M
uPgu dvg∫
M
u2 dvg

. (29)

It follows from Propositions 2.2 and 3.1 that λ1(Pg) is achieved by functions in
C4(M). We let

E1(Pg) =
{
u ∈ C4(M)/Pgu = λ1(Pg)u

}
.

Clearly, u ∈ H2
2 (M) is a minimizer for (29) iff u 6≡ 0 and u ∈ E1(Pg). Under the

hypothesis of Proposition 4.1, we have more informations:

Proposition 4.2. Let (M, g) be a compact Riemannian manifold of dimension
n ≥ 5. Let A be a smooth symmetric (2, 0)−tensor field and let a, f ∈ C∞(M) such
that f > 0. We assume that Pg verifies the two following properties:

(i) Pg is coercive
(ii) Pg satisifies the pointwise comparison principle.

Then every nonzero eigenfunction for λ1(Pg) does not change sign and the eigenspace
E1(Pg) is one-dimensional.

Proof. Let u ∈ H2
2 (M) \ {0} be a minimizer for the Rayleigh quotient. With

Propositon 3.1, u ∈ C4(M) and, up to multipliying by (−1), one can assume that
u is positive somewhere. It follows from Proposition 4.1 that actually u > 0. Let
v ∈ E1(Pg). Let x0 ∈ M and let t = v(x0)u(x0)−1. Then v − tu ∈ E1(Pg). In
case v − tu 6≡ 0, then v − tu is a minimizer for the Rayleigh quotient and then
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either v − tu > 0 everywhere or v − tu < 0 everywhere; a contradiction since
(v − tu)(x0) = 0. Then v = tu ∈ Ru, and E1(Pg) is one-dimensional. �

4.3. A short detour to second-order equations. While considering second-
order operators, coercivity is equivalent to the pointwise comparison principle.
Namely we have the following

Proposition 4.3. Let (M, g) be a compact Riemannian manifold of dimension
n ≥ 5. Let a ∈ C∞(M). We say that ∆g + a is coercive on H2

1 (M) if there exists
λ > 0 such that ∫

M

(
|∇u|2g + au2

)
dvg ≥ λ

∫
M

u2 dvg

for all u ∈ H2
1 (M). Then the two following assertions are equivalent:

(i) ∆g + a is coercive
(ii) for all u ∈ C2(M) such that ∆gu+ au ≥ 0, then u > 0 or u ≡ 0.

Proof. (i)⇒(ii): Let u ∈ C2(M) such that Lgu ≥ 0. Let u− := max{−u, 0}.
Then (see for instance [GiTr], Theorem 7.8, or [Heb1] for the Riemannian setting),
u− ∈ H2

1 (M) and ∇u− = −1{u≤0}∇u. We have that

0 ≤
∫
M

u−Lgu dvg =

∫
M

((∇u,∇u−)g + auu−) dvg

≤ −
∫
M

(
|∇u−|2g + au2

−
)
dvg ≤ −λ‖u−‖2

and then u− ≡ 0, which implies u ≥ 0. Then we have that ∆gu + (a + ‖a‖∞)u ≥
‖a‖∞u ≥ 0. It then follows from the strong comparison principle (see for instance
[GiTr], Theorem 3.5 or [Heb1] for the Riemannian setting) that either u > 0 or
u ≡ 0.

(ii)⇒(i) Let u ∈ H2
1 (M) \ {0} be a minimizer for the Rayleigh quotient∫

M

(
|∇u|2g + au2

)
dvg∫

M
u2 dvg

We let µ ∈ R the value achievd by this minimizer. Following discussion of the proof
of Proposition 4.2 above, we can assume that u ∈ C2(M) and that u > 0 in M and
verifies ∆gu + au = µu. Assume that µ ≤ 0. Then ∆g(−u) + a(−u) ≥ 0, and it
follows from (ii) that either −u > 0 or −u ≡ 0. A contradiction since u > 0. Then
µ > 0 and ∆g + a is coercive. �

Such a result does not extend to the fourth-order setting:

4.4. A situation where the minimizer changes sign.

Proposition 4.4. Let us consider the unit sphere (Sn, h), n ≥ 1, where h is the

round metric. Let a, α ∈ R such that α ∈ (n, 2n) and a > α2

4 . Then Ph =

∆2
h − α∆h + a is coercive and E1(Pg) is the (n + 1)−dimensional space of first

spherical harmonics, that is

E1(Pg) = {u ∈ C2(Sn)/∆hu = nu} = {l ◦ i/ l : Rn+1 → R is linear},

wher i : Sn → Rn+1 is the canonical embedding of the sphere into Rn+1. In partic-
ular, the minimizers for the Rayleigh quotient change sign.
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Proof. Let u ∈ E1(Pg). In particular u ∈ C4(Sn). Since u ∈ L2(Sn), we decompose
it along the eigenvalues of the Laplacian. This requires some notations: the eigen-
values of ∆h on Sn are of the form λi = i(i + n − 1) for all i ∈ N, and we denote
as Ei(∆h) the eigenspace associated to λi for all i ∈ N, each of the Ei(∆h)’s being
finite-dimensional. Note that here, the first eigenvalue of the Laplacian is 0 and
is denoted by λ0. We refer to [BGM] for a proof of these results. It follows from
spectral theory that we can write

u =

∞∑
i=0

αiϕi, (30)

where (αi)i∈N? ∈ R and (ϕi)i∈N? are such that

(i) ϕ ∈ Ei(∆h) for all i ∈ N
(ii)

∫
M
ϕiϕj dvg = δij , the Kronecker symbol, for all i, j ∈ N.

(iii)
∑∞
i=0 α

2
i <∞.

Here, the sum (30) must be understand in the L2−sense, that is limN→+∞ ‖u −∑N
i=0 αiϕi‖2 = 0. Let i ∈ N. We have that ϕi ∈ C∞(M) and Phϕi = p0(λi)ϕi,

where p0(X) = X2 − αX + a. In particular, integrating by parts, one gets

λ1(Ph)

∫
Sn
uϕi dvh =

∫
Sn
ϕiPhu dvh =

∫
Sn
uPhϕi dvh = p0(λi)

∫
Sn
uϕi dvh. (31)

With (30) and (31), one gets that

(λ1(Ph)− p0(λi))αi = 0. (32)

Since u 6≡ 0, there exists j0 ∈ N such that αj0 6= 0, and therefore p0(λj0) = λ1(Ph).
In particular, since p0(λj) is an eigenfunction for Ph for all j ∈ N, one gets that

λ1(Ph) = inf{p0(λj)/ j ∈ N}.
Since p0 is a quartic, there are two possibilities:

(i) either p0(λj) 6= λ1(Ph) for all j 6= j0
(ii) or there exists j1 6= j0 such that p0(λj) = λ1(Ph) iff j ∈ {j0, j1}.

In case (i), one gets with (32) that αj = 0 for all j 6= j0 and then E1(Ph) = Ej0(∆h).
In case (ii), one gets with (32) that αj = 0 for all j 6∈ {j0, j1} and then E1(Ph) =

Ej0(∆h)
⊕
Ej1(∆h).

Since p0(X) = X2−αX+a, one gets that p0 is increasing on (α2 ,+∞), and since
α ∈ (n, 2n), p0 is increasing on [n,+∞). Since λi = i(i + n − 1) for all i ∈ N, one
gets that p0(λi) > p0(λ1) = p0(n) for all i ≥ 2. Moreover, p0(λ0) = p0(0) < p0(λ1)
since α > n. Then λ1(Ph) = p0(λ1) = p0(n) = n2 − αn+ a and

E1(Ph) = E1(∆h) = {u ∈ C2(Sn)/∆hu = nu},
which is exactly the linear space of restrictions of linear forms of Rn+1 to the sphere
(here again, we refer to [BGM]). Note that the condition a > α2/4 implies that
λ1(Ph) = p0(n) > 0, and then Ph is coercive. �

A consequence of this result is that the operator Pg does not satisfy the pointwise
comparison principle, despite it is coercive: an important difference with second-
order operators. Actually, there are similar situations situations in the Euclidean
case: there are simply connected, and even convex domains for which there exists
smooth functions such that ∆2u ≥ 0, u = ∂νu = 0 on the boundary, but u is
not positive on the domain. These remarks seem to go back to Hadamard [Had].



26 FRÉDÉRIC ROBERT

Note that the situation is particularly surprising for annuli in dimension two: if
Dε = {x ∈ R2/ ε < |x| < 1}, then ∆2 can verify or not the above comparison
principle depending on the value of ε ∈ (0, 1). We refer to [CDS] for discussions and
results about this fact. These propertie are deeply related to the Green’s function:
indeed, the operator Pg verifies the pointwise comparison principle if and only if its
Green’s function is positive. We do not intend to discuss on the Green’s function
here and we refer to Grunau-Sweers [GrSw], for instance, for considerations about
it. It is now important to know in which situations the operator Pg satisfies the
pointwise comparison principle.

4.5. When does Pg satisfy the pointwise maximum principle? We begin
with the following simple, but crucial remark:

Proposition 4.5. Let a, a′ ∈ C∞(M) such that ∆ + a and ∆g + a′ are coercive on
H2

1 (M) (as defined in Proposition 4.3). Then the operator Pg = (∆g+a)◦(∆g+a′)
satisfies the pointwise maximum principle.

Proof. Let u ∈ C4(M) such that (∆g + a) ◦ (∆g + a′)u ≥ 0. It follows from
Proposition 4.3 that (∆g+a′)u ≥ 0, and then applying Proposition 4.3 again yields
u > 0 or u ≡ 0 �

We are now interested in knowing which of the operators Pg = ∆2−divg(A(∇)#)+
a are product of two second-order operators.

Proposition 4.6. Let (M, g) be a compact Riemannian manifold of dimension
n ≥ 1. Let A be a smooth symmetric (2, 0)−tensor and a ∈ C∞(M). Then Pg is
the product of two second order operators as in Proposition 4.5 if and only if there
exists f ∈ C∞(M) such that

A = fg and f2 − 2∆gf − 4a is a nonnegative constant.

Proof. We first proove the ”only if” part of the proposition. Let a1, a2 ∈ C∞(M)
such that Pg = (∆g + a) ◦ (∆g + a′). Writing Pg in two different ways, we get that

Pgu = ∆2
gu−Aij∇iju−∇iAij∇ju+ au

= ∆2
gu− (a1 + a2)gij∇iju− 2∇ia2∇iu+ (∆ga2 + a1a2)u.

Identifying these terms, and using that A is symmetric, we get that

Aij = (a1 + a2)gij for all i, j (33)

∇iAij = 2∇ja2 for all j (34)

a = ∆ga2 + a1a2 (35)

Letting f := a1 + a2, we then get with (33) that A = fg. Since A = (a1 + a2)g,
(34) yields (∇i(a1 + a2))gij = 2∇ja2 = 2gij∇ia2 for all j, and then ∇ia1 = ∇ia2

for all i. In other words, there exists K ∈ R such that a2 = a1 +K, and then, since
a1 + a2 = f , we get with (34) that

f2 + 2∆gf − 4α = K2 ∈ R≥0,

and the ”only if” part of the proposition is proved. The ”if” part follows from the
preceding proof. �

There are two interesting corollaries to this result:
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Corollary 4.1. Let (M, g) be a compact Riemannian manifold of dimension n ≥ 1.
Let α, a ∈ R. Then the operator ∆g +α∆g +a is a product of two elliptic operators
as in Proposition 4.5 if and only if 4a ≤ α2.

Corollary 4.2. The Paneitz-Branson operator is the product of two second-order
operators if and only if the metric is Einstein. In this situation, the Paneitz-
Branson operator has constant coefficients.

Proof. Let n ≥ 4 and assume that Png is a product of two second-order operators.
It follows from Proposition 4.6 and the definition (8) of Png that there exists f ∈
C∞(M) such that

(n− 2)2 + 4

2(n− 1)(n− 2)
Rgg −

4

n− 2
Ricg = fg.

We then get that there exists f̃ ∈ C∞(M) such that Ricg = f̃g. Since n ≥ 4, we
then get that there exists λ ∈ R such that Ricg = λg, and then g is Einstein. �

5. The minimization techniques

We have now enough material to perform some of the steps we mentioned in the
strategy we would like to apply. Indeed, with Theorem 3.1, we are left with proving
the existence of a minimizer. Actually the minimizers do not necessarily exist, and
even solutions to (E). Let us recall that this is due to the lack of compactness of

the embedding H2
2 (M) ↪→ L2](M). A possiblity to recover compactness is to use

the best constants in Sobolev inequalities.

5.1. The optimal Sobolev inequality. Recall that it follows from (4) (see also
Theorem 1.3) that there exists A,B > 0 such that

‖u‖22] ≤ A‖∆gu‖22 +B‖u‖2H2
1 (M) (36)

for all u ∈ H2
2 (M). We address here the question of the optimality of the different

constants A and B. More precisely, we will be interested in taking A as small as
possible.

5.1.1. Preliminary discussion: the Euclidean setting. In Rn, there exists A > 0
such that

‖u|2
L2] (Rn)

≤ A
∫
Rn

(∆ξu)2 dx (37)

for all u ∈ C∞c (Rn), the set of smooth compactly supported functions in Rn and ξ
is the Euclidean metric on Rn. Define

1

Kn
= inf
u∈D2

2(Rn)\{0}

∫
Rn(∆ξu)2 dx(∫
Rn |u|2

] dx
) 2

2]

(38)

Here,

D2
2(Rn) =

{
Completion of C∞c (Rn) for the norm ‖u‖D2

2(Rn) := ‖∆ξu‖2
}

(39)

It follows from Sobolev’s theorem that the constant Kn > 0 is well-defined. It
has been computed by Lieb [Lie], Lions [Lio], Edmunds-Fortunato-Jannelli [EFJ],
Swanson [Swa] and we have that

1

Kn
=
n(n2 − 4)(n− 4)ω

4
n
n

16
,
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where ωn is the volume of (Sn, h), the standard unit sphere of Rn+1 endowed with its
round metric. Moreover, the extremals for the optimal inequality (that is functions
in D2

2(Rn) that achieve the infimum in (38)) are known and are of the form

uλ,µ,x0
(x) = µ

(
λ

λ2 + |x− x0|2

)n−4
2

for all x ∈ Rn, (40)

where µ 6= 0, λ > 0 and x0 ∈ Rn are arbitrary.

5.1.2. Best first constant in the Riemannian setting. Let us consider the Riemann-
ian setting. The following optimal result concerning the best constant A is due to
Djadli-Hebey-Ledoux [DHL] for the first part, and to [Heb3] for the second:

Theorem 5.1. Let (M, g) be a compact Riemannian manifold of dimension n ≥ 5.
Then

Kn = inf{A/∃B ∈ R such that (36) holds ∀u ∈ H2
2 (M)}. (41)

Moreover, the infimum is achieved, that is there exists B0 > 0 such that(∫
M

|u|2
]

dvg

) 2

2]

≤ Kn

∫
M

(∆gu)2 dvg +B0

∫
M

(
|∇u|2g + u2

)
dvg (42)

for all u ∈ H2
2 (M).

Proof. We let A0 be the right-hand-side of (41). The proof proceeds in three steps:

Step 1: We claim that A0 ≥ Kn. Let A > A0. By the definition of A0, we get
that there exists A < Kn and B > 0 such that (36) holds for all u ∈ H2

2 (M). The
idea is then to prove that in this situations, the optimal Sobolev inequality (37)
holds with the constant A, which implies that A ≥ Kn. let us prove this claim. let
x0 ∈ M and consider a local chart of M around x0, namely let U ⊂ M an open
subset such that x0 ∈ U , let Ω be an open subset of Rn and ϕ : U → Ω be a chart
around x0. Without loss of generality, we can assume that there exists δ ∈ (0, 1)
such that

ϕ(x0) = 0, Ω = Bδ(0) and gij(x0) = δijfor all i, j ∈ {1, ..., n}

here, δij denotes the Kronecker symbol. For instance, see (1)), one can take ϕ
as the exponential map. From now on, with a standard abuse of notation, when
x ∈ Bδ(0) ⊂ Rn, we define gij(x) as gij(ϕ

−1(x)) (this last notion was defined in
1.1.2). In particular, with this convention, one has that

gij(0) = δij and Γkij(0) = 0 for all i, j, k ∈ {1, ..., n}. (43)

Let u ∈ C∞c (Rn). Let R > 0 such that supp u ⊂ BR/2(0). Let ε ∈ (0, R−1δ),
and consider

uε(x) = ε2−
n
2 u

(
ϕ(x)

ε

)
if x ∈ U and uε(x) = 0 elsewhere. (44)

Clearly u ∈ C∞(M) is well defined. With the Sobolev inequality (36), we get that(∫
M

|uε|2
]

dvg

) 2

2]

≤ A
∫
M

(∆guε)
2 dvg +B

∫
M

(
|∇uε|2g + u2

ε

)
dvg (45)
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for all ε > 0 small enough. We get that∫
M

u2
ε dvg =

∫
Bδ(0)

ε4−nu(ε−1x)2
√
|g|(x) dx = ε4

∫
Rn
u(x)2

√
|g|(εx) dx,∫

M

|∇uε|2g dvg =

∫
Bδ(0)

ε4−ngij(x)∂iu(ε−1x)∂ju(ε−1x)
√
|g|(x) dx

= ε2
∫
Rn
gij(εx)∂iu(x)∂ju(x)

√
|g|(εx) dx∫

M

|uε|2
]

dvg =

∫
Bδ(0)

ε−nu(ε−1x)2]
√
|g|(x) dx =

∫
Rn
u(x)2]

√
|g|(εx) dx,∫

M

(∆guε)
2 dvg =

∫
Bδ(0)

ε4−n
(
gij(x)

(
∂ij(u(ε−1x))− Γkij(x)∂k(u(ε−1x)

))2√|g|(x) dx

=

∫
Rn

(
gij(εx)

(
∂iju(x)− εΓkij(εx)∂ku(x)

))2√|g|(εx) dx.

Letting ε → 0 and using (43), and plugging these terms in inequality (45), we get
that (∫

Rn
|u|2

]

dx

) 2

2]

≤ A
∫
Rn

(∆ξu)2 dx

for all u ∈ C∞c (Rn). With the definition (39) of D2
2(Rn) and the definition (38) of

Kn, we get that A ≥ Kn. Since this is valid for all A > A0, one gets that A ≥ Kn,
and the claim is proved.

Step 2: We claim that A0 ≤ Kn. The proof uses the following idea: in the
neighborhood of any point of M , we can choose a chart such that this neighborhood
is isometric to an open subset of Rn with a metric ”close” to the Euclidean metric.
Using the optimal Sobolev inequality (38), we get that for any ε > 0, there exists
Bε > 0 such that (36) holds with A = Kn + ε for all smooth function with compact
support in the considered neighborhood. With a finite covering of the manifold,
one finally finds that there exists B′ε such that

‖u‖22] ≤ (Kn + ε)‖∆gu‖22 +B′ε‖u‖2H2
1 (M) (46)

for all u ∈ H2
2 (M), and then A0 ≤ Kn. We omit the proof and refer to [DHL]. The

proof if detailed in Appendix 2.

Step 3: We claim that A0 = Kn is achieved. Actually this is the difficult part.
The argument goes by contradiction, and we assume that the infimum A0 = Kn is
not achieved. This is equivalent to say that

inf
u∈H2

2 (M)\{0}

∫
M

(
(∆gu)2 + α|∇u|2g + α2

4 u
2
)
dvg(∫

M
|u|2] dvg

) 2

2]

<
1

Kn

for all α > 0. Then, see Theorem 5.3 below, for any α > 0, there exists uα ∈ C4(M),
uα > 0 such that

∆2
guα + α∆guα +

α2

4
uα = λαu

2]−1
α with

∫
M

u2]

α dvg = 1 and λα ∈
(

0,
1

Kn

)
.

The proof is then a delicate description of the asymptotic behavior of uα when
α→ +∞. We refer to [Heb3] for the proof of this result. �
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5.2. The main result.

Theorem 5.2. Let (M, g) be a compact Riemannian manifold of dimension n ≥ 5.
Let A be a smooth symmetric (2, 0)−tensor field and let a, f ∈ C∞(M) such that
f > 0. Let Pg = ∆2

g−divg((∇·)#)+a and assume that Pg is coercive. Assume that

inf
u∈H2

2 (M)\{0}

∫
M

(
(∆gu)2 +A((∇u)], (∇u)]) + au2

)
dvg(∫

M
f |u|2] dvg

) 2

2]

<
1

(supM f)
2

2] Kn

. (47)

Then there exists u ∈ C4(M) such that u 6= 0 and Pgu = f |u|2]−2u. Moreover, u
can be chosen as a minimizer in (47).

When requiring positive solutions, one has the following result:

Theorem 5.3. Let (M, g) be a compact Riemannian manifold of dimension n ≥ 5.

Let a, α ∈ R such that a, α > 0 and a ≤ α2

4 . Let f ∈ C∞(M) such that f > 0. Let

Pg = ∆2
g + α∆g + a. Assume that

inf
u∈H2

2 (M)\{0}

∫
M

(
(∆gu)2 + α|∇u|2g + au2

)
dvg(∫

M
f |u|2] dvg

) 2

2]

<
1

(supM f)
2

2] Kn

. (48)

Then there exists u ∈ C4(M) such that u > 0 and Pgu = fu2]−1. Moreover, u can
be chosen as a minimizer in (48).

Proof of Theorem 5.3: As a preliminary remark, note that for any u ∈ H2
2 (M), one

has that ∫
M

(
(∆gu)2 + α|∇u|2g + au2

)
dvg ≥ a‖u‖2,

and therefore Pg is coercive. Since (48) holds, we apply Theorem 5.2 and we get a

function u ∈ C4(M) such that Pgu = f |u|2]−2u and u is a minimizer for (48). It
follows from Proposition 4.6 that Pg verifies the hypothesis of Proposition 3.1, and
then, with Proposition 3.1, u > 0 or u < 0. Up to multiplying by (−1), one gets

that u > 0 and Pgu = fu2]−1. �

Proof of Theorem 5.3: Since Pg is coercive, one gets that µ2](f) > 0 (see (28) in the
proof of Proposition 4.1). We let (ui)i∈N ∈ H2

2 (M) \ {0} be a minimizing sequence
for I2],f , that is

lim
i→+∞

Iq,f (ui) = µq(f). (49)

Without loss of generality, we can assume that∫
M

f |ui|2
]

dvg = 1 (50)

for all i ∈ N. Mimicking what was done in the proof of Proposition 2.2, we get that
there exists u ∈ H2

2 (M) such that there exists a subsequence (ui′) of (ui) such that

ui′ ⇀ u

weakly in (H2
2 (M))′ and strongly in H2

1 (M). Letting θi = ui − u ∈ H2
2 (M) for all

i ∈ N. We have that

µ2](f) =

∫
M

uPgu dvg +

∫
M

(∆gθi)
2 dvg + o(1) (51)
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where limi→+∞ o(1) = 0. Without loss of generality, we can assume that limi→+∞ θi(x) =
0 for a.e. x ∈M . We claim that

lim
i→+∞

∫
M

f |θi|2
]

dvg = 1−
∫
M

f |u|2
]

dvg. (52)

We prove the claim. Indeed, it follows from the equality (16) taken with q = 2]

and θ = 2 that there exists C > 0 such that∣∣∣∣∫
M

f |u+ θi|2
]

dvg −
∫
M

f |u|2
]

dvg −
∫
M

f |θi|2
]

dvg

∣∣∣∣
≤ ‖f‖∞

∫
M

∣∣∣|u+ θi|2
]

− |u|2
]

− |θi|2
]
∣∣∣ dvg

≤ C‖f‖∞
∫
M

(
|u|2

]−2|θi|2 + |u|2|θi|2
]−2
)
dvg. (53)

We need the following useful lemma (a proof can be found in [Heb1]):

Lemma 5.1. Let (ui)∈N ∈ Lp(M) such that ‖ui‖p ≤ C for all i ∈ N and such

that limi→+∞ ui(x) = 0 a.e in M . Then for any v ∈ Lp
′
(M), we have that

limi→+∞ uiv dvg = 0, where 1
p′ + 1

p = 1.

Proof. With Hölder’s inequality, we get that∣∣∣∣∫
M

uiv dvg

∣∣∣∣ ≤ ∫
M

1|ui|≤1|uiv| dvg +

∫
M

|ui|1|ui|≥1|v| dvg

≤
∫
M

1|ui|≤1|uiv| dvg + ‖ui‖p
(∫

M

1|ui|≥1|v|p
′
dvg

) 1
p′

.

We deal with the first integral of the right-hand-side. Since 1|ui|≤1|uiv| ≤ |v| ∈
Lp
′
(M) and since limi→+∞ uiv = 0 for a.e. x ∈ M , it follows from Lebesgue’s

theorem that the first integral of the right-hand-side goes to 0 when i → +∞.
We deal with the second integral of the right-hand-side. Since 1|ui|≤1|v|p

′ ≤ |v|p′ ∈
L1(M) and since limi→+∞ 1|ui|≤1|v|p

′
= 0 for a.e. x ∈M , it follows from Lebesgue’s

theorem that the second integral of the right-hand-side goes to 0 when i → +∞.
These two results prove the lemma. �

It follows from (53) and Lemma 5.1 that

lim
i→+∞

∫
M

f |u+ θi|2
]

dvg −
∫
M

f |u|2
]

dvg −
∫
M

f |θi|2
]

dvg = 0, (54)

and the claim is proved.

Let ε > 0. With the Sobolev inequality (42) and the strong convergence of θi in
H2

1 (M), we get that(∫
M

f |θi|2
]

dvg

) 2

2]

≤ ‖f‖
2

2]∞

(
(Kn + ε)

∫
M

(∆gθi)
2 dvg +Bε‖θi‖2H2

1

)
≤ ‖f‖

2

2]∞ (Kn + ε)

∫
M

(∆gθi)
2 dvg + o(1). (55)

With the definition of I2],f , we get that∫
M

uPgu dvg ≥ µ2](f)

(∫
M

f |u|2
]

dvg

) 2

2]

. (56)
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Plugging (55) and (56) into (51) and using (50) and (54), we get that

µ2](f) ≥ µ2](f)

(∫
M

f |u|2
]

dvg

) 2

2]

+

(
(Kn + ε)‖f‖

2

2]∞

)−1(∫
M

f |θi|2
]

dvg

) 2

2]

≥ µ2](f)

(∫
M

f |u|2
]

dvg

) 2

2]

+

(
(Kn + ε)‖f‖

2

2]∞

)−1(
1−

∫
M

f |u|2
]

dvg

) 2

2]

+ o(1).

letting i→ +∞, this last inequality then yields

µ2](f)(Kn + ε)‖f‖
2

2]∞

(
1−

(∫
M

f |u|2
]

dvg

) 2

2]

)
≥
(

1−
∫
M

f |u|2
]

dvg

) 2

2]

.

Since 1−Xp ≥ (1−X)p for all X ∈ [0, 1] and all p ≥ 1, we get that(
µ2](f)(Kn + ε)‖f‖

2

2]∞ − 1

)(
1−

(∫
M

f |u|2
]

dvg

) 2

2]

)
≥ 0

Now, hypothesis (47) implies that for ε > 0 small enough, we have that
∫
M
f |u|2] dvg ≥

1, and then with (50) and (54), we get that∫
M

f |u|2
]

dvg = 1.

As in the proof of Proposition (2.2), this last equality yields that limi→+∞ θi = 0
in H2

2 (M) and that u ∈ H2
2 (M) \ {0} is a minimizer for I2],f , and I ′2],f (u) = 0.

With Proposition 3.1, we get that u ∈ C4(M) and that there exists λ ∈ R such that

Pgu = λf |u|2]−2u. Multiplying by u and integrating, we get that λ = I2],f (u) =

λ2](f). Letting ũ = λ2](f)
n−4
8 , we get that ũ 6≡ 0 is a solution to Pgũ = f |ũ|2]−2ũ.

�

Exercise (Alternative proof): Assume here again that Pg is coercive. It follows
from (2.2) that for any q ∈ [2, 2]), there is a minimizer uq ∈ C4(M) for Iq,f such
that

∫
M
f |uq|q dvg = 1. Prove that under the assumptions of Theorem 5.2, we have

that, up to a subsequence, limq→+∞ uq = u in C4(M), where u ∈ C4(M) \ {0} is a
minimizer for I2],f .

5.3. An important remark. One is naturally interested in the validity of in-
equality (47). The following proposition actually says that it is ”not far” from
being true:

Proposition 5.1. Let (M, g) be a compact Riemannian manifold of dimension
n ≥ 5 and A, a, f, Pg as in Theorem 5.2. Then

µ2](f) ≤ 1

(supM f)
2

2] Kn

. (57)

Proof. Let u ∈ C∞c (Rn)\{0}. Let ε > 0 small such that uε ∈ C4(M) in (44) is well
defined. With the computations provided in Step 1 of the proof of Theorem 41, we
get that

lim
ε→0

I2],f (uε) =

∫
Rn(∆ξu)2 dx

f(x0)
2

2]
(∫

Rn |u|2
] dx

) 2

2]

.
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Since µ2](f) ≤ I2],f (uε), we get with the definition (38) of Kn that (57) holds. �

5.4. Some applications. We are then left with finding situations in which the
strict inequality (47) or the strict inequality (48) holds. The natural strategy is to
evaluate the functional I2],f at some good test-functions. Regarding to the role of
the best constant in the Euclidean Sobolev, the good test-functions will be pull-
back of the extremals for the Euclidean optimal inequality given by (40) via the
exponential map. Let x0 ∈M and define

uε(x) := η(x)

(
ε

ε2 + dg(x, x0)2

)n−4
2

= η(x)ε−
n−4
2 u1,1,0

(
exp−1

x0
(x)

ε

)
(58)

for all x ∈ M . Here, η ∈ C∞(M) is such that η ≡ 1 in Bδ(x0) and η ≡ 0 in

M \ B2δ(x0), where δ <
ig(M)

2 . With computations similar to Step 1 in the proof
of Theorem 41, one gets that

lim
ε→0

I2],f (uε) =
1

f(x0)
2

2]Kn

,

which does not give the strict inequality we want. We then take x0 such that
f(x0) = supM f , calculate a Taylor expansion of I2],f (uε) to go below the critical
level. These computations were done in [EsRo]. Letting

F (x0) = 8(n− 1)TrgA(x0) + (n− 6)(n+ 2)(n− 4)
∆gf(x0)

f(x0)
− 4(n2− 2n− 4)Rg(x0),

where TrgA = gijAij , we get that

I2],f (uε) =
1

Knf(x0)
2

2]

(
1 +

1

2n(n− 6)(n2 − 4)
F (x0)ε2 + o(ε2)

)
when n ≥ 7 and

I2],f (uε) =
1

Knf(x0)
2

2]

(
1 +

ω5

360ω6
F (x0)ε2| ln ε|+ o(ε2| ln ε|)

)
when n = 6. In particular, using Theorem 5.2, we get the following existence
theorem:

Theorem 5.4. Let (M, g) be a compact Riemannian manifold of dimension n ≥ 6.
Let A be a smooth symmetric (2, 0)−tensor field and let a, f ∈ C∞(M) such that
f > 0. Assume that the operator ∆2

g − divg(A(∇·)#) + a is coercive and that there
exists x0 ∈M such that f(x0) = supM f and

8(n− 1)TrgA(x0) + (n− 6)(n+ 2)(n− 4)
∆gf(x0)

f(x0)
− 4(n2 − 2n− 4)Rg(x0) < 0.

Then there exists u ∈ C4(M) such that u 6≡ 0 and ∆2
gu − divg(A(∇u)#) + au =

f |u|2]−2u.

Concerning positive solutions, we get the following corollary:

Theorem 5.5. Let (M, g) be a compact Riemannian manifold of dimension n ≥ 6.

Let α, a ∈ R such that α, a > 0 and a ≤ α2

4 . Let f ∈ C∞(M) such that f > 0.
Assume that there exists x0 ∈M such that f(x0) = supM f and

8n(n− 1)α+ (n− 6)(n+ 2)(n− 4)
∆gf(x0)

f(x0)
− 4(n2 − 2n− 4)Rg(x0) < 0.
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Then there exists u ∈ C4(M) such that u > 0 and ∆2
gu+ α∆gu+ au = fu2]−1.

Naturly, in case F (x0) = 0 (which is the case when Pg = Png , the geometric
Paneitz-Branson operator), we must push the development further to obtain infor-
mations on I2],f (uε). We refer to [EsRo] for the calculations to the next order.

The test-functions uε constructed above concentrate at x0: indeed, we have that
limε→0 uε(x0) = +∞ and limε→0 uε(x) = 0 for all x ∈ M \ {x0}. These test-
functions are efficient in dimension n ≥ 6, but not in dimension n = 5. Indeed, we
say that the L2−norm of the gradient concentrates at x0 if

lim
ε→0

∫
Bδ(x0)

|∇uε|2g dvg∫
M
u2
ε dvg

= 1

for all δ > 0. As easily checked, The L2−norm of the gradient concentrates iff
n ≥ 6: this is why the choice of the cut-off function η was not very important.
However, in dimension n = 5, the gradient does not concentrate, and we have to
consider the behavior of uε on the whole manifold, and it is not possible to use any
test-function η.

5.5. Invariance under isometries. We present here a result in dimension n = 5.
It involves test-functions in its proof, and, as discussed above, they must be defined
on the whole manifold. Since our initial test-functions above are the pull-back of
functions on Rn via a chart, they are only defined locally on the manifold, and this
is why we had to multiply by a cut-off function to define them everywhere. But on
the standard sphere, there is a chart that covers all of the sphere but one point:
this is how one can construct global test-functions on S5. In the sequel, we say that
a function ϕ is an isometry of Sn is ϕ?h = h, where h is the round metric of Sn.
We say that a function f is G−invariant if f ◦ σ = f for all σ ∈ G. We have the
following result, proved in [Rob]:

Theorem 5.6. Let G be a compact subgroup of isometries of the (S5, h), the stan-
dard 5−sphere endowed with its round metric. Let f ∈ C∞(S5) be a positive
G−invariant function. Assume that G acts without fixed point. Then there ex-

ists u ∈ C∞(M) such that u > 0 and P 5
hu = n−4

2 fu2]−1. In particular, the metric

g := u4h verifies Q5
g = f .

In the latest sections, we were mainly concerned with finding a way to make converge
sequences in H2

2 (M) that were not bound to converge due to the lack of compactness

of the embedding H2
2 (M) ↪→ L2](M). In a sense, this is satisfactory because we

could finally find solutions to an equation that did not necessary had one. In
another sense, it is not satisfactory because we have avoided the generic situation,
that is the lack of convergence. In the following two sections, we will tackle this
question, which is a much more intricate problem.

6. General H2
2 -theory

6.1. Palais-Smale sequences. Let (M, g) be a smooth Riemannian manifold of
dimension n ≥ 5, and let A be a smooth symmetric (2, 0)−tensor and a ∈ C6∞(M).
Let Pg = ∆2

g − divg(A(∇·)]) + a. We consider the functional

J(u) =
1

2

∫
M

uPgu dvg −
1

2]

∫
M

|u|2
]

dvg
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for all u ∈ H2
2 (M). Here,

∫
M
uPgu dvg is again defined in the distribution sense as

in (13). The functional J is well defined thanks to the Sobolev embedding (4) (see
also Theorem 1.3). As in Subsection 2.3, J ∈ C1(H2

2 (M)) and

J ′(u).ϕ =

∫
M

(
∆gu∆gϕ+A((∇u)], (∇ϕ)]) + auϕ

)
dvg −

∫
M

|u|2
]−2uϕdvg

for all u, ϕ ∈ H2
2 (M). With the regularity result of Proposition 3.1, one gets that(

u ∈ H2
2 (M) and J ′(u) = 0

)
⇔
(
u ∈ C4(M) and Pgu = |u|2

]−2u
)
.

A notion more general than the notion of critical point (that is J ′(u) = 0) is the
notion of Palais-Smale sequence:

Definition 6.1. Let (uk)k∈N ∈ H2
2 (M). The sequence (uk) is a Palais-Smale

sequence for the functional J if

(i) J(uk) = O(1) when k → +∞,
(ii) limk→+∞ J ′(uk) = 0 in (H2

2 (M))′.

In other words, there exists C > 0 and there exists (εk)k∈N ∈ R such that |J(uk)| ≤
C for all k ∈ N and |J ′(uk), ϕ| ≤ εk‖ϕ‖H2

2
for all ϕ ∈ H2

2 (M) and limk→+∞ εk = 0.

Palais-Smale sequences arise quite often in elliptic critical problems: the Moun-
tain Pass Lemma of Ambrosetti and Rabinowitz [AmRa] naturally produces these
sequences (see [EsRo] for an application to fourth order problems), and sequences

of solutions to equation Pgu = u2]−1 with uniformly bounded H2
2−norm are Palais-

Smale sequences for J . A simple behavior for a Palais-Smale sequence would be
convergence in H2

2 (M). Namely, does one have

(uk)k∈N Palais-Smale sequence for J ⇒ lim
k→+∞

uk = u in H2
2 (M)? (59)

(at least up to a subsequence). Actually this is not true in general, and here again,
this is due to the critical exponent and the lack of compactness of the embedding

H2
2 (M) ↪→ L2](M).

6.2. A non-converging Palais-Smale sequence. Let us consider the following
example. Let (xk)k∈N ∈ M be a converging sequence and let (µk)k∈N ∈ R such
that µk > 0 for all k ∈ N and limk→+∞ µk = 0. Let δ ∈ (0, ig(M)/2) and let
η ∈ C∞(Rn) such that η ≡ 1 in Bδ(0) and η ≡ 0 in Rn \B2δ(0). Define

uxk,µk(x) := αnηxk(x)

(
µk

µ2
k + dg(x, xk)2

)n−4
2

(60)

for all x ∈ M . Here, ηxk ∈ C∞(M) is defined by ηxk = η ◦ exp−1
xk

and verifies
then that ηk ≡ 1 in Bδ(xk), ηk ≡ 0 in M \ B2δ(xk). The constant αn is αn =(
n(n− 4)(n2 − 4)

)n−4
8 . Note that we have that

uxk,µk(x) = ηxk(x)µ
−n−4

2

k u

(
exp−1

xk
(x)

µk

)
(61)

for all x ∈M , where we have considered expx : B2δ(0)→ B2δ(xk) as a chart defined
on B2δ(0) (the Euclidean ball of Rn) and

u(x) = αn

(
1

1 + |x|2

)n−4
2
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for all x ∈ Rn. Note that u ∈ D2
2(Rn) is an extremal for the Sobolev inequality

(38) (see (40)) and that

∆2
ξu = u2]−1 in Rn. (62)

Then we have that

Proposition 6.1. Let (M, g) be a compact Riemannian manifold of dimension
n ≥ 5. Let (xk)k∈N ∈ M and (µk)k∈N ∈ R>0 two converging sequences such that
limk→+∞ µk = 0. Then (uxk,µk)k∈N ∈ C∞(M) is a Palais-Smale sequence for J .
More precisely, we have that (i) limk→+∞ J(uxk,µk) = 2

nK
−n4
n ,

(ii) limk→+∞ J ′(uxk,µk) = 0 in H2
2 (M)′,

(iii) uxk,µk ⇀ 0 weakly in H2
2 (M)′ when k → +∞

In particular, (uk)k∈N does not converge strongly in H2
2 (M), since otherwise, it

would converge to zero (with (iii)), a contradiction with (i). We prove the Proposi-
tion. We let (xk) and (µk) as in Proposition 6.1. For the sake of simplicity, we let
uk := uxk,µk . In the sequel, we define the metric gk := exp?xkg, which is defined on
B2δ(0), via the usual assimilation of TxkM to Rn. This metric satisfies that

(gk)ij(0) = δij and (Γk)pij(0) = 0 for all i, j,∈ {1, ..., n}, (63)

where we denote as (Γk)pij(x) the Christoffel symbols with index i, j, p associated
to the metric gk. In the sequel, we will often use that

dg(xk, expxk(x)) = |x|

for all k ∈ N and all x ∈ B2δ(0). This assertion is a consequence of (2) and the
isometric assimilation of TxkM to Rn discussed in 1.1.4 before formula (1).

6.2.1. Estimates of zeroth and first order. We claim here that

lim
k→+∞

‖∇uk‖2 + ‖uk‖2 = 0. (64)

Indeed, We get that∫
M

u2
k dvg =

∫
M

ηxk(x)2

(
µk

µ2
k + dg(x, xk)2

)n−4

dvg

≤ C

∫
B2δ(xk)

(
µk

µ2
k + dg(x, xk)2

)n−4

dvg

≤ C

∫
B2δ(0)

(
µk

µ2
k + |x|2

)n−4√
|gk|(x) dx

≤ Cµ4
k

∫
B

2δµ
−1
k

(0)

(
1

1 + |x|2

)n−4√
|gk|(µkx) dx = o(1)
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when k → +∞ (note that one must distinguish the case n > 8, the case n = 8 and
the case n < 8). Similarly,∫

M

|∇uk|2g dvg

=

∫
Bδ(xk)

|∇uk|2g dvg +

∫
M\Bδ(xk)

|∇uk|2g dvg

≤
∫
Bδ(0)

(gk)ij(x)∂i

((
µk

µ2
k + |x|2

)n−4
2

)
∂j

((
µk

µ2
k + |x|2

)n−4
2

)√
|gk|(x) dx+ Cµn−4

k

≤ µ2
k

∫
B
δµ
−1
k

(0)

(gk)ij(µkx)∂i

((
1

1 + |x|2

)n−4
2

)
∂j

((
1

1 + |x|2

)n−4
2

)√
|gk|(µkx) dx+ Cµn−4

k

≤ Cµ2
k

∫
B
δµ
−1
k

(0)

dx

1 + |x|2n−6
+ Cµn−4

k = o(1)

when k → +∞. Here again, one must differentiate the case n > 6, the case n = 6
and the case n < 6. Then (64) is proved.

6.2.2. Estimates of the L2]−norm. We claim that

lim
R→+∞

lim
k→+∞

∫
M\BRµk (xk)

u2]

k dvg = 0. (65)

Indeed, we have that∫
M\BRµk (xk)

u2]

k dvg

=

∫
Bδ(xk)\BRµk (xk)

(
µk

µ2
k + dg(x, xk)2

)n
dvg

+

∫
M\Bδ(xk)

ηxk(x)2]
(

µk
µ2
k + dg(x, xk)2

)n
dvg

=

∫
Bδ(0)\BRµk (0)

(
µk

µ2
k + |x|2

)n√
|gk|(x) dx+O(µnk )

=

∫
B
δµ
−1
k

(0)\BR(0)

(
1

1 + |x|2

)n√
|gk|(µkx) dx+O(µnk )

=

∫
Rn\BR(0)

(
1

1 + |x|2

)n√
|gk|(0) dx+ o(1) =

∫
Rn\BR(0)

u2] dx+ o(1)

when k → +∞. We have used (63). Then (65) is proved.

Concerning the behavior on BRµk(xk), we claim that∫
BRµk (xk)

u2]−1
k ψ dvg =

∫
BR(0)

u(x)2]−1µ
n−4
2

k ψ(expxk(µkx)) dx+o(1)‖uk‖2
]−1

2]
‖ψ‖2] ,

(66)
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where limk→+∞ o(1) = 0 uniformly in ψ ∈ C∞(M). We prove the claim:

∫
BRµk (xk)

u2]−1
k ψ dvg =

∫
BRµk (0)

uk(expxk(x))2]−1ψ(expxk(x))
√
|gk|(x) dx

=

∫
BRµk (0)

uk(expxk(x))2]−1ψ(expxk(x)) dx+ o(1)

∫
BRµk (xk)

u2]−1
k ψ dvg

=

∫
BR(0)

u(x)2]−1µ
n−4
2

k ψ(expxk(µkx)) dx+ o(1)‖uk‖2
]−1

2]
‖ψ‖2]

when k → +∞ (we have used (63)), and then (66) is proved.

6.2.3. Estimates of the second-order term. We claim that

lim
R→+∞

lim
k→+∞

‖∆guk‖L2(M\BRµk (xk)) = 0. (67)

∫
M\BRµk (xk)

(∆guk)2 dvg =

∫
Bδ(xk)\BRµk (xk)

+

∫
M\Bδ(xk)

=

∫
Bδ(0)\BRµk (0)

(
(gk)ij(x)

(
∂ij

(
µk

µ2
k + |x|2

)n−4
2

− (Γk)pij∂p

(
µk

µ2
k + |x|2

)n−4
2

))2√
|gk|(x) dx

+O(µn−4
k )

=

∫
B
δµ
−1
k

(0)\BR(0)

((gk)ij(µkx)

(
∂ij

(
1

1 + |x|2

)n−4
2

−(Γk)pij(µkx)∂p

(
1

1 + |x|2

)n−4
2

)
)2
√
|gk|(µkx) dx+ o(1)

=

∫
Rn\BR(0)

((gk)ij(0)∂ij

(
1

1 + |x|2

)n−4
2

)2
√
|gk|(0) dx+ o(1)

=

∫
Rn\BR(0)

(∆ξu)2 dx+ o(1)

when k → +∞ (here again, we have used (63) and the computations are different
depending on the dimension greater or smaller to 6), and then (67) is proved.

We claim that for all R > 0 and all function (Gk)k∈N ∈ C∞(M) such that
limk→+∞ supBRµk (0) |Gk − 1| = 0, there exists (εk(R))k∈N > 0 such that we have

that

‖(∆gψ) ◦ expxkGk −∆ξ(ϕ ◦ expxk)‖L2(BRµk (0)) ≤ εk(R)‖ψ‖H2
2

(68)
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for all k ∈ N and for all ψ ∈ C∞(M), with limk→+∞ εk(R) = 0. We prove the claim∫
BRµk

(
(∆gψ) ◦ expxkGk −∆ξ(ϕ ◦ expxk)

)2
dx

=

∫
BRµk (0)

((
(gk)ijGk − δij

)
∂ij(ψ ◦ expxk) +Gk(Γk)pij∂p(ϕ ◦ expxk)

)2
dx

≤ Cµk
∫
BRµk (0)

|∇2
ξ(ϕ ◦ expxk)|2 + |∇ξ(ϕ ◦ expxk)|2 dx

≤ Cµk
∫
BRµk (xk)

|∇2
gϕ|2g + |∇ϕ|2g dvg

here, we have used (63). This proves (68).

Exercise: prove the last inequality above..

We claim that∫
BRµk (xk)

∆guk∆gψ dvg =

∫
BR(0)

∆ξu∆ξ(µ
n−4
2

k ψ◦expxk(µkx)) dx+o(1)‖ψ‖H2
2
‖uk‖H2

2

(69)
where limk→+∞ o(1) = 0 uniformly for all ψ ∈ C∞(M). We prove the claim. Using

(68) alternatively with Gk ≡
√
|gk| or Gk ≡ 1, we have that∫

BRµk (xk)

∆guk∆gψ dvg =

∫
BRµk (0)

(∆guk) ◦ expxk(∆gψ) ◦ expxk

√
|gk| dx

=

∫
BRµk (0)

∆ξ(uk ◦ expxk)(∆gψ) ◦ expxk dx+ o(‖uk‖H2
2
‖ψ‖H2

2
)

=

∫
BRµk (0)

∆ξ(uk ◦ expxk)∆ξ(ψ ◦ expxk) dx+ o(‖uk‖H2
2
‖ψ‖H2

2
)

=

∫
BR(0)

∆ξu∆ξ(µ
n−4
2

k ψ ◦ expxk(µkx)) dx+ o(‖ψ‖H2
2
‖uk‖H2

2
)

and the claim is proved.

6.2.4. Proof that J(uk) is bounded. Taking ψ ≡ uk in (69) and (66) and using (67),
(65) and (64), we get that

lim
k→+∞

∫
M

(∆guk)2 dvg =

∫
Rn

(∆ξu)2 dx and lim
k→+∞

∫
M

u2]

k dvg =

∫
Rn
u2] dx,

and ‖uk‖H2
2

= O(1) when k → +∞. Then, we get that

J(uk) =
1

2

∫
Rn

(∆ξu)2 dx− 1

2]

∫
Rn
|u|2

]

dx+ o(1)

where limk→+∞ o(1) = 0. We compute explicitely the right-hand-side. Let R > 0.
Integrating by parts, we get that∫

BR(0)

(∆ξu)2 dx =

∫
BR(0)

u∆2
ξu dx+

∫
∂BR(0)

(u∂ν∆ξu− ∂ν∆ξu) dσ

=

∫
BR(0)

u2] dx+

∫
∂BR(0)

(u∂ν∆ξu− ∂νu∆ξu) dσ
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LettingR→ +∞ and using the explicit expression of u, on gets that
∫
Rn(∆ξu)2 dx =∫

Rn u
2] dx. Since u is an extremal for the Sobolev inequality (38), one gets that∫

Rn u
2] dx = K

−n/4
n , and then

lim
k→+∞

J(uk) =
2

n
K
−n4
n .

6.2.5. Proof that J ′(uk) goes to zero. Let ϕ ∈ C∞(M). Recall that we have that

J ′(uk).ϕ =

∫
M

(
∆guk∆gϕ+A((∇uk)], (∇ϕ)]) + aukϕ

)
dvg −

∫
M

u2]−1
k ϕdvg.

With (64), we have that

J ′(uk).ϕ =

∫
M

∆guk∆gϕdvg −
∫
M

u2]−1
k ϕdvg + o(1)‖uk‖H2

1
‖ϕ‖H2

2
,

where limk→+∞ o(1) = 0 independantly of ϕ. Let R > 0. With (65), (66), (67) and
(69), we get that

J ′(uk).ϕ =

∫
BR(0)

∆ξu∆ξϕk dx−
∫
BR(0)

u2]−1ϕk + εk(R,ϕ)‖ψ‖H2
2

+ o(1)‖ψ‖H2
2

(70)
where limk→+∞ εk(R,ϕ) = 0 uniformly in ϕ and

ϕk(x) = η(µkx)µ
n−4
2

k ψ ◦ expxk(µkx)

for all x ∈ Rn and k large enough. Note that ϕk ∈ C∞c (Rn). We have that∣∣∣∣∣
∫
Rn\BR(0)

∆ξu∆ξϕk dx

∣∣∣∣∣ ≤
(∫

Rn\BR(0)

(∆ξu)2 dx

) 1
2 (∫

Rn
(∆ξϕk)2 dx

) 1
2

≤ ε(R)‖ϕk‖D2
2(Rn) (71)

where limR→+∞ ε(R) = 0 (we have used here that ∆ξu ∈ L2(Rn)). Again with
Hölder’s inequality, we have that∣∣∣∣∣

∫
Rn\BR(0)

u2]−1ϕk dx

∣∣∣∣∣ ≤
(∫

Rn\BR(0)

u2] dx

) 2]−1

2]
(∫

Rn
ϕ2]

k dx

) 1

2]

≤ ε′(R)‖ϕk‖D2
2(Rn) (72)

where limR→+∞ ε′(R) = 0 (we have used here that u ∈ L2](Rn) and the Sobolev
inequality (38)). Now, one easily gets that there exists C > 0 such that

‖ϕk‖D2
2(Rn) ≤ C‖ϕ‖H2

2
(73)

for all k ∈ N and all ϕ ∈ C∞(M).

Exercise: prove (73).

Plugging (71) and (72) in (70), we get that

J ′(uk).ϕ =

∫
Rn

∆ξu∆ξϕk dx−
∫
Rn
u2]−1ϕk dx+ εk(R,ϕ)‖ϕ‖H2

2
+ o(1)‖ϕ‖H2

2
(74)



FOURTH ORDER EQUATIONS IN RIEMANNIAN GEOMETRY 41

where limR→+∞ limk→+∞ εk(R,ϕ) = 0 uniformly in ϕ. Integrating by parts and
using equation (62), one gets∫

Rn
∆ξu∆ξϕk dx =

∫
Rn

∆2
ξuϕk dx =

∫
Rn
u2]−1ϕk dx,

for all k ∈ N. Plugging this inequality in (74) and letting R → +∞, one gets that
there exists (εk)k∈N > 0 such that

|J ′(uk).ϕ| ≤ εk‖ϕ‖H2
2

for all k ∈ N and all ϕ ∈ C∞(M), with limk→+∞ εk = 0. Then J ′(uk) → 0
in H2

2 (M)′ when k → +∞ (we have used here that H2
2 (M) is the completion of

C∞(M) for ‖ · ‖H2
2

).

6.2.6. Conclusion and remark. Let ϕ ∈ C∞(M). We have that∣∣∣∣∫
M

∆guk∆gϕdvg

∣∣∣∣ ≤
∣∣∣∣∣
∫
BRµk (xk)

+

∫
M\BRµk (xk)

∣∣∣∣∣
≤ ‖∆guk‖2‖∆gϕ‖L2(BRµk (xk)) + ‖∆guk‖L2(M\BRµk (xk))‖∆gϕ‖2
≤ C‖∆gϕ‖L2(BRµk (xk)) + C‖∆guk‖L2(M\BRµk (xk)).

Since ϕ ∈ C∞(M), limk→+∞ µk = 0 and (67) holds, we get that

lim
k→+∞

∫
M

∆guk∆gϕdvg = 0

for all ϕ ∈ C∞(M). In particular, with (64), we get that uk ⇀ 0 weakly in H2
2 (M)

when k → +∞. To conclude, we have constructed a sequence (uk)k∈N ∈ H2
2 (M)

such that  (i) limk→+∞ J(uk) = 2
nK
−n4
n ,

(ii) limk→+∞ J ′(uk) = 0 in H2
2 (M)′,

(iii) uk ⇀ 0 weakly in H2
2 (M)′ when k → +∞

This proves Proposition 6.1.

This example shows that situations more subtle than (59) can happen. This is due
to the critical exponent 2].

Exercice: Let q ∈ [2, 2]) and let the functional Jq : u 7→ 1
2

∫
M
uPgu dvg −

1
q

∫
M
|u|q dvg for u ∈ H2

2 (M). Show that every Palais-Smale sequence for Jq con-

verges strongly in H2
2 (M) up to the extraction of a subsequence. It is recommended

to take inspiration from the proof ot Theorem 2.2.

Indeed, the lack of strong convergence of the Palais-Smale sequences for J can
be described by the functions uxk,µk above. Following standard terminology, we
denote the functions (uxk,µk)k∈N as bubbles. The following theorem shows how
fundamental they are for the description of Palais-Smale sequences.

6.3. The main result. The description of Palais-Smale sequences for critical func-
tionals goes back to Sacks-Uhlenbeck [Sac] and to Wente [Wen]. A very beautiful
and optimal description is due to Struwe [Str], where the Palais-Smale sequences for
a critical functional associated to a second order elliptic operator on an open subset
of Rn was provided. The result, due to Hebey and Robert [HeRo1] we present here
is the extension of Struwe’s result to the functional J , that is a functional associated
to a fourth order operator Pg on a Riemannian manifold.
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Theorem 6.1. Let (uk)k∈N ∈ H2
2 (M) be a Palais-Smale sequence for J . We

assume that uk ≥ 0 for all k ∈ N. Then there exists u∞ ∈ H2
2 (M), there exists N ∈

N, there exists N sequences of converging points (xk,1)k∈N ∈M , ..., (xk,N )k∈N ∈M ,
there exists N sequences of positive numbers (µk,1)k∈N ∈ R>0, ..., (µk,N )k∈N ∈ R>0

such that limk→+∞ µk,i = 0 for all i ∈ {1, ..., N} and such that

uk = u∞ +

N∑
i=1

Bk,i +Rk,

where limk→+∞Rk = 0 in H2
2 (M) and Bk,i := uxk,i,µk,i for all i ∈ {1, ..., N} and

all k ∈ N are bubbles. Moreover, the energy splits, that is

J(uk) = J(u∞) +

N∑
i=1

J(Bk,i) + o(1) = J(u∞) +

(
2

n
K
−n4
n

)
N + o(1)

where limk→+∞ o(1) = 0.

In other words, the lack of strong convergence of the sequence (uk) to its weak limit
u∞ is entirely contained in the functions (Bk,i)k∈N, and this lack of convergence
is quantified: the difference between the energy of uk and the energy of u∞ is a
multiple of a fixed threshold.

For the clarity of theses notes, we have taken uk ≥ 0. Actually, a similar decom-
position holds with bubbles defined as in (61), where u ∈ D2

2(Rn) ∩ C∞(Rn) is a

solution of ∆2
ξu = |u|2]−2u on Rn. We refer to [HeRo1] for this point.

In the following, we proove Theorem 6.1. Actually, we will not prove Step 4, which
the most complicated step, and we refer to [HeRo1] for the details. From now on,
we let (uk)k∈N ∈ H2

2 (M) be a Palais-Smale sequence for J . The idea of the proof
is as follows: we first prove that the Palais-Smale sequence converges weakly, and
we substract the weak limit to the sequence. We then obtain a new Palais-Smale
sequence (for a new functional). If this new sequence carry enough energy, we
substract a bubble and get another Palais-Smale sequence whose energy is lowered
by a quantum. We do this process again, and it must finish since we substract a
quantum at each step. Then the ultimate sequence has got enough small energy to
converge strongly.

6.4. Proof of Theorem 6.1: Step 1. We claim that there exists C > 0 such that

‖uk‖H2
2 (M) ≤ C (75)

for all k ∈ N. We prove the claim. Coimputing J ′(uk).uk and using that (uk) is a
Palais-Smale sequence, we get that∫

M

ukPguk dvg =

∫
M

|uk|2
]

dvg + o(1)‖uk‖H2
2
,

where limk→+∞ o(1) = 0. Since J(uk) is bounded, we get that{ ∫
M
|uk|2

]

dvg = O(1) + o(1)‖uk‖H2
2∫

M
ukPguk dvg =

∫
M
|uk|2

]

dvg = O(1) + o(1)‖uk‖H2
2

}
(76)

With Hölder’s inequality and the first equality on (76), we get that∫
M

u2
k dvg = O(1) + o(1)‖uk‖H2

2
. (77)
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The second equality of (76) yields that there exists C > 0 such that∫
M

(∆guk)2 dvg ≤ C
∫
M

|∇uk|2g dvg + C

∫
M

u2
k dvg +O(1) + o(1)‖uk‖H2

2
.

Using inequality (2.2) with ε = (2C)−1, and (77), we get that∫
M

(∆guk)2 dvg ≤ O(1)

∫
M

u2
k dvg +O(1) + o(1)‖uk‖H2

2
≤ O(1) + o(1)‖uk‖H2

2

when k → +∞. Taking (2.2) with ε = 1 and using (77), we get that

‖uk‖2H2
2

= O(1) + o(1)‖uk‖H2
2

when ε→ 0, which implies (75). This proves the claim.

It follows from the weak compactness of the unit ball of H2
2 (M) (see Theorem 1.2)

that, up to a subsequence, we can assume that there exists u∞ ∈ H2
2 (M) such that

uk ⇀ u∞ weakly in H2
2 (M) in lim

k→+∞
uk = u∞ strongly in H2

1 (M). (78)

In addition, still up to a subsequence, we can assume that limk→+∞ uk(x) = u∞(x)
for a.e. x ∈ M . Let ϕ ∈ C∞(M). Since J ′(uk).ϕ = o(1) when k → +∞, we have
that ∫

M

(
∆guk∆gϕdvg +A(∇u#

k ,∇ϕ
#) + aukϕ− |uk|2

]−2ukϕ
)
dvg = o(1)

when k → +∞. Since uk goes weakly to u∞ when k → +∞, we get that∫
M

(
∆gu∞∆gϕdvg +A(∇u#

∞,∇ϕ#) + au∞ϕ− |u∞|2
]−2u∞ϕ

)
dvg = 0

for all ϕ ∈ C∞(M). It then follows that u∞ is a weak solution to (E), and then,
by Proposition (3.1), u∞ ∈ C4(M) satisfies

∆2
gu∞ − divg(A∇u#

∞) + au∞ = |u∞|2
]−2u∞. (79)

Note that since uk goes to u∞ almost everywhere when k → +∞ and since uk ≥ 0,
we have that u∞ ≥ 0.

6.5. Proof of Theorem 6.1: Step 2. We let vk = uk − u∞, where u∞ ∈ H2
2 (M)

is the weak limit of (uk)k∈N defined in (78). In particular, we get that

lim
k→+∞

‖vk‖H2
1

= 0. (80)

We define I : H2
2 (M)→ R such that

I(u) =
1

2

∫
M

(∆gu)2 dvg −
1

2]

∫
M

|u|2
]

dvg

for all u ∈ H2
2 (M). We claim that{

(i) (vk)k∈N is a Palais-Smale sequence for I, and
(ii) limk→+∞ I(vk) = J(uk)− J(u∞).
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We prove the claim. We have that

J(uk) = J(u∞ + vk)

=
1

2

∫
M

(∆gu∞)2 dvg +

∫
M

∆gu∞∆gvk dvg +
1

2

∫
M

(∆gvk)2 dvg

+

∫
M

A(∇u#
k ,∇u

#
k ) dvg −

1

2]

∫
M

|u∞ + vk|2
]

dvg.

Since vk goes weakly to 0 in H2
2 (M) and strongly in H2

1 (M), we get that

J(uk) = J(u∞) + I(vk)− 1

2]

∫
M

(
|u∞ + vk|2

]

− |u∞|2
]

− |vk|2
]
)
dvg + o(1) (81)

when k → +∞. Then, as in (54), we get that

lim
k→+∞

I(uk) = J(uk)− J(u∞). (82)

Let ϕ ∈ C∞(M). We have that

J ′(uk).ϕ = J ′(u∞ + vk).ϕ

= J ′(u∞).ϕ+ I ′(vk).ϕ+

∫
M

A(∇v#
k ,∇ϕ

#) dvg +

∫
M

avkϕdvg

−
∫
M

(
|u∞ + vk|2

]−2(u∞ + vk)− |u∞|2
]−2u∞ − |vk|2

]−2vk

)
ϕdvg.(83)

With (79), we get that J ′(u∞).ϕ = 0. With Hölder’s inequality, we get that∣∣∣∣∫
M

A(∇v#
k ,∇ϕ

#) dvg +

∫
M

avkϕdvg

∣∣∣∣ ≤ C‖vk‖H2
1
‖ϕ‖H2

1
(84)

where C > 0 is independant of k and ϕ. The following inequality will be useful
here: for any q > 2, there exists C(q) > 0 such that∣∣|x+ y|q−2(x+ y)− |x|q−2x− |y|q−2y

∣∣ ≤ C(q)(|x|q−2|y|+|y|q−2|x|) for all x, y ∈ R.
(85)

With (85), we then get that∣∣∣∣∫
M

(
|u∞ + vk|2

]−2(u∞ + vk)− |u∞|2
]−2u∞ − |vk|2

]−2vk

)
ϕdvg

∣∣∣∣
≤ C

∫
M

(
|u∞|2

]−2|vk|+ |vk|2
]−2|u∞|

)
|ϕ| dvg

≤ ‖|u∞|2
]−2|vk|+ |vk|2

]−2|u∞|‖ 2]

2]−1

‖ϕ‖2] .

Since u∞ ∈ C4(M), it is bounded in L∞ and then∣∣∣∣∫
M

(
|u∞ + vk|2

]−2(u∞ + vk)− |u∞|2
]−2u∞ − |vk|2

]−2vk

)
ϕdvg

∣∣∣∣
≤ C

(
‖vk‖ 2]

2]−1

+ ‖|vk|2
]−2‖ 2]

2]−1

)
‖ϕ‖2] (86)

Pluging together (84) and (86) in (83) and using the Sobolev inequality (4), we get
that

|J ′(uk).ϕ− I ′(vk).ϕ| ≤ C
(
‖vk‖H2

1
+ ‖vk‖ 2]

2]−1

+ ‖|vk|2
]−2‖ 2]

2]−1

)
‖ϕ‖H2

2
(87)
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for all k ∈ N. Since vk ⇀ 0 weakly in H2
2 (M) when k → +∞ and since the

embeddings H2
2 (M) ↪→ Lq(M) is compact for 1 ≤ q < 2], and also with (80), we

get that

lim
k→+∞

(
‖vk‖H2

1
+ ‖vk‖ 2]

2]−1

+ ‖|vk|2
]−2‖ 2]

2]−1

)
= 0.

Then, since (uk) is a Palais-Smale sequence for J , we get with (87) that (vk)k∈N is
a Palais-Smale sequence for I. This last assertion and (82) prove the claim.

6.6. Proof of Theorem 6.1: Step 3. We let

β := lim
k→+∞

I(vk). (88)

We claim that

β <
2

n
K
−n4
n =⇒ lim

k→+∞
‖vk‖H2

2 (M) = 0 and β = 0.

We prove the claim. Definition (88) rewrites

1

2

∫
M

(∆gvk)2 dvg −
1

2]

∫
M

|vk|2
]

dvg = β + o(1) (89)

when k → +∞. Since (vk)k∈N is a Palais-Smale sequence for I, computing I ′(vk).vk,
we get that ∫

M

(∆gvk)2 dvg =

∫
M

|vk|2
]

dvg + o(1) (90)

when k → +∞. Equations (89) and (90) yield∫
M

(∆gvk)2 dvg =

∫
M

|vk|2
]

dvg + o(1) =
nβ

2
+ o(1) (91)

when k → +∞. The Sobolev inequality (42) and (80) yield(∫
M

|vk|2
]

dvg

) 2

2]

≤ Kn

∫
M

(∆guk)2 dvg + o(1)

when k → +∞. Plugging (91) in this inequality, and letting k → +∞, we get that(
nβ

2

) 2

2]

≤ Kn
nβ

2
.

This equality and nβ
2 < K

−n4
n yield β = 0. With (91) and (80), we get that

limk→+∞ ‖vk‖H2
2

= 0, and the claim is proved.

Exercice: Prove the claim using only (46) instead of (42).

6.7. Proof of Theorem 6.1: Step 4. We assume that β > 0. Then there exists
a converging sequence (xk)k∈N ∈ M , there exists a sequence (µk)k∈N ∈ R>0 such
that limk→+∞ = 0 such that, letting wk := vk − uxk,µk , we have that

(i) (wk)k∈N is a Palais-Smale sequence for I,

(ii) I(wk) = I(vk)− 2
nK
−n4
n + o(1) when k → +∞

(iii) wk ⇀ 0 weakly in H2
2 (M) when k → +∞.

This point is actually the crucial point: it says that with a certain amount of energy,
one can substract a bubble without changing the nature of the sequence. We refer
to [HeRo1] for the proof of this result.
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6.8. Proof of Theorem 6.1: Step 5. The conclusion of the proof goes through
an induction argument. Given p ∈ N?, We say that Hp holds if for any (vk)k∈N
Palais-Smale sequence for I such that (80) hold and

lim sup
k→+∞

I(vk) < p · 2

n
K
−n4
n

for all k ∈ N, then there exists N ∈ N bubbles (Bk,1)k∈N, ..., (Bk,N )k∈N such that

vk =

N∑
i=1

Bk,i +Rk,

where limk→+∞Rk = 0 in H2
2 (M). Moreover, the energy splits, that is

I(vk) =

N∑
i=1

I(Bk,i) + o(1) =

(
2

n
K
−n4
n

)
N + o(1)

where limk→+∞ o(1) = 0. We claim that Hp holds for all p ∈ N. Step 3 yields that
H1 holds. We let p ∈ N? such that Hp holds, and we let (vk)k∈N a Palais-Smale

sequence for I such that lim supk→+∞ I(vk) < (p + 1) · 2
nK
−n4
n for all k ∈ N. If

vk → 0 strongly in H2
2 (M), then we are done. Otherwise, it follows from Step 4

that there exists a bubble (Bk,1)k∈N such that wk := vk − B1,k is a Palais-Smale

sequence for I such that I(wk) = I(vk) − 2
nK
−n4
n + o(1) when k → +∞, and then

lim supk→+∞ I(wk) < p· 2nK
−n4
n . SinceHp holds, we get that there exists N bubbles

(Bk,2)k∈N, ..., (Bk,N+1)k∈N such that

wk =

N+1∑
i=2

Bk,i +Rk,

where limk→+∞Rk = 0 in H2
2 (M), and such that

I(wk) =

N∑
i=2

I(Bk,i) + o(1) =

(
2

n
K
−n4
n

)
N + o(1).

Coming back to vk, we get that Hp+1 holds. Theorem 6.1 follows from Step 2 and
Step 5.

7. Appendix: Proof of Theorem 3.2

We let A a smooth symmetric (2, 0)−tensor on M and a ∈ C∞(M). We assume
that the operator Pg = ∆2

g−divg(A(∇·)#)+a is coercive, that is there exists λ > 0
such that ∫

M

uPgu dvg ≥ λ
∫
M

u2 dvg (92)

for all u ∈ H2
2 (M).

7.1. Step 1. Let p > 1. We claim that there exists c > 0 such that

‖u‖p ≤ c‖Pgu‖p (93)

for all u ∈ Hp
4 (M). We prove the claim by contradiction and assume that for all

i ∈ N?, there exists ui ∈ Hp
4 (M) such that ‖ui‖p = 1 and ‖Pgui‖p ≤ i−1. It

follows from Theorem 1.7 that there exists C > 0 such that ‖ui‖Hp4 ≤ C. Since the

embedding Hp
4 (M) ↪→ Hp

2 (M) is compact (see [Ada]), there exists a subsequence
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(ui′) of (ui) such that limi→+∞ ui′ = u strongly in Hp
2 (M). We let fi := Pgui. For

any ϕ ∈ C∞(M), we have that∫
M

(∆gui′∆gϕ+A((∇ui′)#, (∇ϕ)#) + aui′ϕ) dvg =

∫
M

fi′ϕdvg.

Letting i → +∞, we find that Pgu = 0 in the weak sense. It then follows from
Theorem 1.8 that u ∈ C4(M). With (92), we get that u ≡ 0. A contradiction since
‖u‖p = limi→+∞ ‖ui′‖p = 1. This proves the claim.

7.2. Step 2. Let α ∈ (0, 1). We claim that for any f ∈ C0,α(M), there exists
u ∈ C4(M) such that Pgu = f . We prove the claim. We let the functional

F(u) =
1

2

∫
M

uPgu dvg −
∫
M

fu dvg

for all u ∈ H2
2 (M). Since Pg is coercive, we get that

F(u) ≥ λ‖u‖22 − ‖f‖2‖u‖2 ≥ −
‖f‖22
4λ

. (94)

Then µ := inf{F(u)/ u ∈ H2
2 (M)} > −∞ is defined. Let (ui) ∈ H2

2 (M) be a
minimizing sequence for µ, that is

lim
i→+∞

F(ui) = µ. (95)

With the first inequality of (94), we get that ‖ui‖2 ≤ C for all i ∈ N. With (95)
and Exercise [COER], we then get that ‖ui‖H2

2
= O(1) when i → +∞. It follows

from Theorem 1.2 that there exists a subsequence (ui′) ∈ H2
2 (M) and there exists

u ∈ H2
2 (M) such that ui′ ⇀ u weakly in H2

2 (M) when i→ +∞. Up to extracting
another subsequence, it follows from Theorem 1.6 that limi→+∞ ui′ = u strongly
in H2

1 (M). We then get through easy calculations that

F (ui) = F(u) +
1

2

∫
M

(∆g(ui′ − u))2 dvg + o(1) = µ+ o(1)

when i→ +∞. Since µ is the infimum, we get that µ ≤ F(u) and then

lim
i→+∞

∫
M

(∆g(ui′ − u))2 dvg = 0,

and then µ = F(u). Clearly F ∈ C1(H2
2 (M),R), and then F ′(u) = 0, that is

Pgu = f in the weak sense. It then follows from Theorem 1.8 that u ∈ C4(M), and
the claim is proved.

7.3. Step 3. Let p > 1. We claim that for any f ∈ Lp(M), there exists a unique
u ∈ Hp

4 (M) such that Pgu = f . We prove the claim. Let (fi)i∈N ∈ C∞(M) such
that limi→+∞ fi = f strongly in Lp(M). For any i ∈ N, let ui ∈ C4(M) such that
Pgui = fi (this is s consequence of Step 2). With Theorem 1.7 and the coercivity
of Pg, we get that for any i, j ∈ N

‖ui − uj‖Hp4 (M) ≤ C ·
(
‖fi − fj‖Lp(M) + ‖ui − uj‖p

)
≤ (1 + c)C‖fi − fj‖Lp(M).

Then (ui) is a Cauchy sequence for Hp
4 (M), and then there exists u ∈ Hp

4 (M) such
that limi→+∞ ui = u in Hp

4 (M). Clearly we have that Pgu = f . Assume that
v ∈ Hp

4 (M) satisfies Pgv = f , then Pg(u − v) = 0, and it follows from (92) that
u ≡ v. This proves the claim.
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The existence part of Theorem 3.2 is proved in Step 3 above. The apriori estimate
of Theorem 3.2 is a consequence of (93) and Theorem 1.7.
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