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1. BACKGROUND MATERIAL

1.1. Riemannian geometry. The reader is supposed to be familiar with basic
concepts in Riemannian geometry. We list below a few definitions and properties
that are needed in the sequel. This preliminary part is not supposed to be a course
in Riemannian geometry. The interested reader can consult some of the various
references available, for instance, we refer to [Chal, [DoC], [Hebl], [GHL], [Sak],
[Spi]. In the sequel, we consider M a smooth manifold of dimension n > 1 (in
particular, this is a topological space).

1.1.1. Tangent and cotangent spaces. Let x € M, and let ¢ : U — § a local chart
of M where x € U, U being an open subset of M and € is an open subset of
R™. We let C(M), denote the set of smooth functions defined in a neigborhood
of . The tangent vectors of M at x are the linear functions X : C(M), — R
such that X(f) = 0 in case the differential of f o »~! vanishes at o(x). This
notion is independant of th choice of the chart ¢. We denote as T, M the set
of tangent vectors at z: it is a linear space. For any i € {1,...,n}, we define

(a‘;’;i)x <%)£ € TxM by
0 (fop™")
(am) ()= =g (¢@)
for all f € C(M),. The space T, M is n—dimensional, and a basis is give, by
(( d ) ) { v In other words, any vector X € T, M can be written as
z/ie{l,...,n

ox;
*= ;X (3xi>x’

where the X¥’s are uniquely determined real numbers. We let (T, M)* be the dual
space of T, M, that is the space of linear forms on T, M. A possible basis of (T, M)*

is (dxl,...,dxz™) the dual basis of ((%) )ie{1,...n}- Therefore, any n € (T, M)* is

x
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uniquely written as

n= Znidl‘;’
i=1
where n; € R for all i € {1,...,n}.

1.1.2. Tensors on manifolds. Given v = (p,q), with p,q € N, we define the bundle
of (p, q)—tensors on M as follows

® M :={(z,L)/x e M, L: (T, M)? x (T,M)*)9 = Ris (p+q) — linear} .

(p.a)
The bundle of (p, ¢)—tensors has a natural structure of C°°—manifold of dimension
n 4 nPt4. We define II(, 4 : Qg M — M by Il ) (z, £) = « for all (z,L) €
& (p,q) M- A smooth field of (p, g)—tensors on M is a smooth function 7" : M —

(v.a) M such that I, 4 o T = Idy. Since T, M is canonically isomorphic to
(T, M)**, a vector field on M is interpretated as a (0,1)—tensor field on M. If T is
a smooth (p, ¢)—tensor field (which includes vector fields, as discussed above), we
can write T'(x) = (z, L), where L, is a (p+ ¢)—linear form: with a standard abuse
of notation, we will often refer to z — L, as the tensor field 7. Given a chart ¢
around o as above, for ii,...,i, € {1,...,n} and ji,....,j4 € {1,...,n}, we let the
coordinates of the tensor 1" as follows

1.0 0 3] . _
‘Zl”'qu = J1 Jq
T(x)zl.,.zp T(I‘) <<axil)x,--., <8(Eip>x’dxx ,...,dl‘x> .

In particular, if X1, ..., X, € T,M and n,...,n? € (T,,M)* are written in a chart

Xy = Z(Xk)z (é):r) and ny = Z(Uk)id33;7

i=1 1=1

then
T(I)(le ey va nla B3] 77q) = T(‘T)zll’f: (Xl)il T (Xp)ip ! (771)3'1 e (Uq)jq-

Here and in the sequel, we use Einstein’s summation convention: in the right-hand-
side term, we omitted the sum for i; = 1..n,..., j; = 1l..n. This summation is
independant of the choice of the chart. We will then often define a tensor through
its coordinates. For instance, let u € C'(M), let x € M and X € T, M and define
(Vu)(x)(X) = duy(X), where du, denotes the differential of w at x. Then Vu is a
(1,0)—tensor, and we denote by d;u(z) := (Vu)(z); = 0;(uop ™), () its coordinate
in the chart ¢.

1.1.3. Riemannian manifolds. Let (M, g) be a smooth Riemannian manifold of di-
mension n > 1. Here, g denotes the metric, that is a smooth field of positive
symmetric bilinear forms on the tangent bundle (that is a (2,0)—tensor field). The
linear space R™ is systematically endowed with its canonical Euclidean metric that
we will denote £&. We endow M with the Levi-Civita connection (denoted as V)
associated to the metric g, that is the only torsion-free connection M such that
Vg = 0. The Christoffel symbols of this connection in a chart are

1 m
F?j = 591@ (0igjm + 0jGim — Omij)
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where (g;;) denote the coordinates of the metric tensor in the chart, and (g%)
denote the coordinates of ¢g—!, the inverse of the metric tensor, in the same chart.
Note that ¢! is a (0,2)—tensor field. Let € M and X,Y, Z € T, M. We define

R(X,Y)(z).Z = VX(m)(Vf/Z) - V?(m)(vxz) - V[X,?](z)z
where X, Y, Z are vector fields on M such that X (z) = X, 17(?) =Y and Z(z) = Z.

This definition is independant of the choice of the extensions X,Y, Z. Givenx € M,
X,)Y,Z €T, M and n € (T, M)*, we define the curvature tensor as follows:

R(2)(X,Y. Z.n) = n(R(Y, Z)(x).X).

The function R is a smooth (3, 1)—tensor fields. Note that the definition varies from
one book to the other, however, two definitions differ only by the multiplication by
41 of the curvature tensor. The coordinates of R in a chart are given by

art. ort,
l 7 2 l a l e
R(x)ij, = ( 83;13» )aC - (895];@ )I + o (@) () — Ty (2)T5;

where the I‘fj are given above.

The Riemann tensor is the (4, 0)—tensor field Rm, whose coordinates in a chart are
Rijii = gu RSy, The Ricci tensor Ricgy is the symmetric (2,0)-tensor fields with
coordinates R;; := Rm»gjgaﬁ. The scalar curvature R, is the trace of the Ricci
tensor R, := g R;;.

1.1.4. Riemannian distance and geodesics. The distance between two points z,y €
M is, by definition

1
dg(z,y) = inf {/ 6(t)|g(e(e)) dt/ ¢ € C*([0,1], M) such that ¢(0) = z and ¢(1) = y} )
0

where for any ¢t € [0,1], é(t) € T,y M is such that é(t)(f) = d(ﬁc)t for all f €
C(M)ct), and where |¢(t)]g(c(r)) is the norm of é(t) for the scalar product g(c(t)).
The function d, is well-defined as a distance, and the topology induced by d, is the
topology induced by the structure of manifold of M. Given x € M and d > 0, we

define the geodesic ball
Bu(z) = {y € M/ dy(z,y) < d}.

Let us consider the exponential map. Let (M, g) be a complete Riemannian man-
ifold, and let x € M. The exponential map at x is defined on the tangent space
T.M by exp,(X) = v(1), where v : [0,2] — M is the unique geodesic such that
v(0) = x and 4(0) = X € T,M. The definition on the whole space T, M is
not trivial, and is a consequence of Hopf-Rinow’s theorem. A particularly im-
portant property is the following: given a complete Riemannian manifold, the
Riemannian distance between two points is always achieved, and the path be-
tween these two points that realizes the distance is a geodesic. Omne then de-
fines the injectivity radius as iy(z) = inf{p,(u)/u € TuM, |u|ym) = 1}, where
pz(u) = inf{T > 0 such that ¢ — exp,(tu) is minimizing on [0,T]}. The injectiv-
ity radius is i4(M) = inf{is(z)/x € M}. When M is compact, then i,(M) > 0.
Note that when i4(M) > 0, for any « € M, the restriction of exp, to {X €
T M/ |X|g@) < ig(M)} induces a diffeomorphism onto B, (ar)(z). Assimilating
(T. M, g(z) to (R, £) isometrically, one can then consider exp, as a local chart
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around the point z. We will refer to this chart as the exponential chart, and, with
a standard abuse of notations, we will sometimes consider exp, as defined on an
open subset of R™. We will often use the following useful result: let 29 € M and
consider the exponential map at xo. Then, in the chart exp, , we have that

gij(z0) = 8;5 and Ffj(aio) =0 for all 4,5,k € {1,....,n}, (1)

where d;; is the Kronecker symbol: that is §;; = 1 if ¢ = j and 0 otherwise. Let us
conclude this part with the following important relation between the Riemannian
distance and the exponential map:

dg (2, exp, (X)) = | X]g(a) (2)
for all x € M and all X € T, M such that [X|,) < i4(M).

1.1.5. Miscellaneous tools in Riemannian geometry. eScalar product for ten-
sors. Given T, T’ two (p,q)—tensor, we define their scalar product as follows:

/ _ il.“ip ) ) jlll ]l kl...k)p
(TvT )q - le.,‘quulm  Gipky, " 9 gt qulmlq .

Indeed, defining |T'|, = /(T,T)4, we get a smooth family of norms on (p, g)—tensors.

eThe musical isomorphism. Let x € M. We let # be the musical isomorphism
between T, M and (T, M)* defined as follows:

#:. T,M — (T,M)*

.M — R
{ Y = (X, Y)g)

This isomorphism is nothing but the canonical identification of a Euclidean space
with its dual space. We let X# the image of X via #, and n* the image of
n € (TyzM)* via the inverse of #. This definition extends naturally to vector
field (that is (0,1)—tensor fields) and to (1,0)—tensor fields. If X is a vector
field and n is a (1,0)—tensor fields, the coordinates of their images in a chart

are X; := (X#); = g;; X7 and ' := (n*)* = g¥n;. Clearly (X#)# = X and
#\F

(n*)" =n.

eRiemannian element of volume. Given (M, g) a Riemannian manifold of

dimension n > 1, we let dv,y be its Riemannian element of volume. Given ¢ : U —
Q C R™ a local chart of M in U C M, we have that

(™) dvg)(2) = Vlgl(x)dzs A - A day,

where |g|(z) = det(gi; (¢~ *(z))), and the g;;’s are the coordinates of the metric
tensor in the chart ¢, and dzi A --- A dz, is the determinant in the canonical basis
of R™. This element of volume induces a Riemannian measure and a Riemannian
integral on M. The volume of the manifold is defined as

Voly (M) := / dv,.

M
Note that this volume can be infinite. However, Voly(M) < oo as soon as M is
compact.
eDivergence. Let 1 be a smooth (1,0)—tensor on M. The divergence of 7 is
defined as divy(n) := g (Vn)i; = g (din; — L), which is an expression inde-
pendant of the chart.
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eLaplace-Beltrami operator. The Laplace Beltrami operator of a function u €
C?(M) is given in a chart by

(Agu)(z) = —divy(Vu) = —g" (2) (8;5(u o ™)) — T5 (@) (uo ™)) -
Note that we use here the minus sign convention. When g = £ the Euclidean metric,
one has that Ag =", 0i;.

eThe divergence theorem. Let us conclude this part with the following state-
ment that we will use intensively:

Theorem 1.1. Let (M,g) be a compact Riemannian manifold without boundary.
Let 1 be a smooth (1,0)—tensor. Then we have that

/ divg(n) dvg = 0.
M

In particular, given u,v € C*(M), we have that

/ uAgvdvg:/ (Vu, V), dog
M M

1.2. Sobolev spaces. Here, we refer systematically to Hebey [Hebl, Heb2].

1.2.1. Definition. Let (M,g) be a compact Riemannian manifold with the Rie-
mannian element of volume dv,. For any p > 1, we define LP(M) as the LP—space
of M with the measure dvy, endowed with the LP—norm:

1
P
HUHLP(M) = (/ |ul? d”g) ) ”uHLOO(M) 1= supess;|u| when p = oo
M

for w € LP(M). Then (LP(M),| - ||z»(ar)) is a Banach space. When there is no
ambiguity, we let || - ||, = || - [[z»(ar)- For & € N and p > 1, we define the Sobolev
space H} (M) as the completion of C*°(M) in LP(M) for the norm ||- || 7 (ary defined

as follows:
k

||“HH,’;(M) = Z ||Vku||p
i=1
for u € C*° (M), where

1

95l = [ 19uly v,

for all w € C°°(M). This definition naturally extends to v € Hf(M). When there
is no ambiguity, we will write |- ||z := || - [ 7 (ar). Recall that we have the Hélder
inequality for the LP—space: Let p,q > 1 such that 1/p+1/q = 1. Let u € LP(M)
and v € LY(M). Then uv € L'(M) and we have that

Jwvlly < flullpl|vllg- 3)

1.2.2. Weak compactness. Let (E,|| - ||) be a Banach space. Let (z;);eny € E and
x € E. We say that (z;) converges weakly to z if lim;_, . ¢(z;) = ¢(z) for all
¢ € E', where E’ denotes the continuous linear forms of E. In this case, we write
x; — x weakly in B’ when i — +o00. In the case of the space H3(M), we can rewrite
this definition as follows: if (u;);en € H3(M) converges weakly to u € H3(M), then
we have that

L1r+n (AguiAgp + (Vui, V)g + uip) dug = / (Agulgp + (Vu, Vo), + up) dug
i=rtoo Jy M
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for all ¢ € H3(M). Actually, since H3(M) is a Hilbert space when endowed with
a suitable scalar product (see Subsection 2.4), this last statement is equivalent to
the weak convergence.

Theorem 1.2. Let (M, g) be a compact Riemannian manifold. Let k € N and
let p > 1. Then the unit ball of HY (M) is weakly compact. In other words, for
any sequence (u;)ien € Hp (M) such that [uillzr < C for all i € N, there exists
a subsequence (uy)ien € Hy (M) and there exists uw € HY (M) such that uy — u
weakly in HY (M) when i — +00.

1.2.3. Sobolev embeddings and inequalities.

Theorem 1.3. Let (M, g) be a compact Riemannian manifold of dimension n > 1.
Letp > 1 and let 0 < m < k two integers such that n > p(k —m). Then H; (M) is
embedded in HY, (M), where é = %— kam Moreover, this embedding is continuous.
In other words, there exists C' > 0 such that for all w € H. (M), then v € HZ (M)
and

[l zzg, < Cllulap-

m

In this notes, we will intensively use the following Sobolev inequality: Given
(M, g) a manifold of dimension n > 5, then H3(M) — L7#-1(M) continuously. In
other words, there exists A > 0 such that

HUHL%(M) < Allullaz(ar (4)
for all uw € H3(M).

Theorem 1.4. Let (M, g) be a compact Riemannian manifold of dimension n > 1.
Letp > 1 and let 0 < m < k two integers such that n = p(k —m). Then HY (M)
is embedded in HL, (M) for all ¢ > 1. Moreover, this embedding is continuous. In
other words, for any q > 1, there exists C(q) > 0 such that for all w € H} (M),
then w € HI (M) and

[l

mz, < Cla)llullar-

Given a € (0,1], we say that v € C%*(M) if there exists C' > 0 such that
lu(x) —u(y)| < Cdy(x,y)* for all z,y € M. The space C%*(M) is a Banach space
when equiped with the norm

|u(z) — u(y)|
Ul|coe(pr) = ||Uljoo + SUP ——F———
Iulonaan = o +_sup HEE
Theorem 1.5. Let (M, g) be a compact Riemannian manifold of dimension n > 1.
Let p > 1 and let k > 1 an integer such that kp > n. Then Hi(M) is embedded
in C%*(M) for all « € (0,1) such that o < k — % Moreover, this embedding is

continuous and there exists C(a) > 0 such that
[ull o ary < Cla)llullmz )
for all w e HY (M).

Note that there is a slight (but standard) abuse of notation in the above statement.
Indeed, for all uw € H}, (M), kp > n, there exists a continuous representative for the
class of win LP(M). Since it is unique, we identify the class u to this representative.
There are other embedding results for H} (M): for the sake of simplicity, we do not
write them here, and we refer to Gilbarg-Trudinger [GiTr] or Adams [Ada].
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1.2.4. Compact embeddings. In the sequel, we say that an application T': £ — F
between two Banach spaces is compact is for any sequence (z;);ey € E uniformly
bounded for the norm of E, then there exists y € F, there exists a subsequence
(2;) such that lim;_, o, T'(2;/) = y strongly in F. For the sake of simplicity, we do
not state the compact embeddings in Sobolev space in all their generality, but we
restrict to the case of H2(M) that will be of interest in the sequel. The following
theorem is esentially due to Rellich and Kondrakov. Here again, we refer to [Ada]
and to [GiTr].

Theorem 1.6. Let (M, g) be a compact Riemannian manifold of dimension n >
1. Then the embedding H3(M) — HZ(M) is compact. In case n > 5, then the
embedding HZ (M) < Li(M) is compact for all g € [1,-2%).

' n—4

Indeed, the recurent problem we will have to face will be that the embedding
H2(M) — L¥ (M ) is not compact. And these notes are mainly concerned with
this issue.

1.3. Regularity theorems. The main references here are Agmon-Nirenberg [DoNi],
Agmon-Douglis-Nirenberg [ADN] and the celebrated [GiTr] by Gilbarg and Trudinger
and the distribution theory [Sch] by L.Schwartz. We present here the statement of
two regularity results in the context of Riemannian manifolds. Here, the references
are [Aub2], [Hebl] and [EsRo]. Let (M, g) be a smooth compact Riemannian man-
ifold. We let A be a smooth symmetric (2,0)—tensor on M and a € C*°(M). We
let the operator P, := A2 — divy(A(V-)#) + a defined as

Pyu = Agu - divg(A(Vu)#) + au (5)

for all u € C°°(M). Here, A(Vu)# is the (1,0)—tensor whose coordinates in a
chart are (A(Vu)#); = A;;((Vu)#)? = A;;g’%(Vu). Concerning terminology, we
say that u € H3(M) is a weak solution of Pyu = f, where f € L'(M), if

/ (Agulgp + A(Vu®, V') + aup) dvg = / fedog
M M

for all p € C°°(M). In the sequel, given k € N, we define the norm

[ullenary = Z V¥ ulloo,

for all w € C*(M). In particular |[ulco(ary = [Jull Lo (ar) for all u € CO(M). Note
that this definition of the C* —norm extends to tensors.

1.3.1. LP theory.

Theorem 1.7. Let (M,g) be a compact Riemannian manifold. Let a € C*(M)
and let A be a smooth symmetric (2,0)—tensor on M. Let f € HI(M). Let
u € H3(Q) be a weak solution of Pyu = f.Then u € HY ,(M). Moreover, we have
that

lallnz. .oy < € (1 azoan + Nullznan) )
where C = C(M,g,K) and

llallcrrary + | Allerrzary < K.
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1.3.2. Schauder theory.

Theorem 1.8. Let (M, g) be a compact Riemannian manifold. Let a € C*(M)
and let A be a smooth symmetric (2,0)—tensor on M. Let oo € (0,1) and let
f e C%(M). Let u € H(Q) be a weak solution of Pyu = f.Then u € CH*(M).
Moreover, we have that

lullcaary < C (I fllcowary + llullcoan)
where C' = C(M,g,K) and

laller+rary + 1Al orra ) < K.

Convention: in these notes, C' will denote a positive constant independant of the
various indices and variables, unless the dependance is precised. The constant C'
may vary from one line to the other, and even in the same line. The notation
C(a,b,...) means that the constant C' depends only on (M, g), a,b, ...

2. MOTIVATIONS
2.1. The geometric operator and its conformal invariance properties.

2.1.1. The case of dimension four. Let (M*,g) be a Riemannian manifold. In 1983,
Paneitz [Pan] introduced the fourth order operator Py : C*(M) — C°(M) defined

as follows: given u € C*(Q), we have that

2
Pju = Alu — div, <<3Rgg - 2Rz’cg) (vu)#> .

Actually, this operator enjoys some nice conformal invariance properties. Namely,
let ¢ € C°(M) and let § = e*#g be a metric conformal to g. We have that

Pl = e~ioph, (6)

Associated to this operator is a notion of Q—curvature, a curvature that also enjoys
some nice conformal properties: namely, let

1 .
Qg = 5 (AgRy — 3| Ricy|; + RY) .

Passing from Q; to Q;% is easy through the following formula:

4 4 _ 4 4

Plo+ Qb = Q™. ™)

A possible survey on the questions raised by the Paneitz operator in dimension four
is [ChYa].

2.1.2. The case of dimension n > 5. In these notes, we will not be concerned
with the four-dimensional case, but with the generalization of this operator to the
dimensions n > 5. This generalization is due to Branson [Bra]. Let (M, g) be a
Riemannian manifold of dimension n > 5, and define the operator P)' : C*(M) —
C°(M) by

. . n—4 .
Plu:= Aiu —divy ((anRyg + bpRicy) (Vu)#) + Tqu, (8)

where
(n—2)%+4 4

= o T and by =
TS Dm—2 ™" n_2
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and . )
QZ: 1 AgRngnféln + 16n — 16 2 2
2(n—1) 8(n—22n-2)2 9 (n-2)
is the Q—curvature in dimension n > 5. Note that one recovers the Paneitz operator
when n = 4. This operator also enjoys nice conformal invariance properties: indeed,
let w € C*°(M), u > 0 and consider the metric § = uﬁg which is conformal to g.
Given ¢ € C*(M), we have that

5 |Ricg|§

n —ntd o
Pl =u" =3P} (up). (9)
In particular, taking ¢ = 1, one gets the equation
n n—4 n ntd
Plu= 5 Qfun=7, u> 0. (10)

2.1.3. The conformal Laplacian and the Yamabe problem. Actually, all this frame-
work is very similar to the framework involved with the conformal Laplacian. More
precisely, let (M2, g) a 2-dimensional Riemannian manifold. Let ¢ € C°°(M?) and
consider the metric § = e?#¢ conformal to g. One gets that

Ag = 6_290Ag.

In addition, the scalar curvature is a natural invariant associated to this operator.
Indeed, the scalar curvature of g and the scalar curvature for g are related as follows:

1 1
AgS@ + iRg = §R§e2¢.

These relations are very similar to the relations (6) and (7) enjoyed by the Paneitz
operator. This analogy extends to the higher dimensional case. Let (M,g) be
a Riemannian manifold of dimension n > 3, and define the conformal Laplacian
n .2 0
Ly : C*(M) — C°(M) by
n—2
4(n—1)
for all y € C?(M). Let v € C°°(M) such that v > 0 and consider the metric
g = v%g conformal to g, then we have that

L;"u = Agu+ Ryu

n —nt2 oy
Lg‘P =v niZLg (USD)
for all p € C*°(M), and then, taking ¢ = 1 yields

n—2 nt2

L;U = mRQ’U"72 . (11)
In particular, these properties are similar to the properties (9) and (10) enjoyed by
the Paneitz-Branson operator. The Paneitz operator can then be seen as an exten-
sion of the conformal Laplacian. Note that in [GIMS], Graham and al. constructed
operators of order 2k on manifold of dimension, with the restriction n > 2k in case
n is even. The principal part of these operators is A’;: when k = 1, they recover
the conformal Laplacian, and when k = 2, they recover the Paneitz operator.

In the conformal class of a metric, is there a metric that is nicer than the other
ones? Indeed, it happens that the good idea is to find a metric with constant scalar
curvature. For justifications of this assertion, we refer to [Bes] or to the survey
[LePa]. What is now refered to the Yamabe problem is the following:
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The Yamabe Problem: given (M,g) a compact Riemannian manifold of di-
mension n > 2 without boundary, is there a metric ¢ conformal to g such that
R; = cst?

In dimension n > 3, the problem can be reformulated as follows:

The Yamabe Problem, pde aspect for n > 3: given (M, g) a compact Rie-
mannian manifold of dimension n > 2 without boundary, is there a function
v € C>(M) such that v > 0 and Lyv = ev%, where € € {—1,0,+1}?

The resolution of this problem was quite a long history. Let us just mention that
Yamabe’s initial proof [Yam] was not complete and that the final resolution of the
problem is due to Aubin [Aubl] and Schoen [Sch1]. The classical reference for this
problem is the very nice survey of Lee and Parker [LePal. The two-dimensional
problem was also answered positively, but the resolution is completely different:
in particular, it is related to the topology of the manifold and the uniformization
theorem.

The answer to the Yamabe problem in dimension n > 3 is also positive. How-
ever, the answer hides the specificity of the sphere for which the Yamabe invariant
achieves its maximum possible value (here again, we refer to [LePa]). Schoen raised
the question of the compactness of metrics with constant scalar curvature and con-
jectured the following;:

Conjecture (Schoen): let (M, g) be a compact Riemannian manifold without
boundary of dimension n > 3 with positive Yamabe invariant. Then the set of
metrics § conformal to g such that R; = 1 is compact in the C?—topology if (M, g)
is not conformally equivalent to the sphere equiped with its round metric.

Note that in the case of the standard sphere, the set of conformal metrics with
constant scalar curvature is not compact for the C%2—topology. Schoen proved this
conjecture when (M, g) is locally conformally flat [Sch2] and when n = 3 [Sch3].
O.Druet [Dru] proved the conjecture in dimension n = 4,5, F.Marques [Mar| proved
it in dimensions n = 6,7 and Y.-Y.Li-M.Zhu [LiZh] in dimension n = 8,9. Recently,
the final (and positive) answer to the conjecture was given by Khuri and Schoen
[KhSc].

The question of compactness happens to be very rich. Indeed, the Yamabe problem
consists in saying that a certain set is nonempty, and the compactness issue amounts
to consider its structure, to know whether it is compact or not. When dealing with
multiplicity questions and degree theory for the Yamabe equation, the compactness
is a crucial point, see for instance Schoen and Zhang [ScZh] or Li and Zhu [LiZh)].

2.2. The model equation. These questions of existence and compactness nat-
urally extend to the fourth order setting. Let (M, g) be a compact Riemannian
manifold of dimension n > 5. Let A be a smooth symmetric (2, 0)—tensor field and
a,f € C®°(M). We consider here function u € C*(M) solutions to the following
model equation:

Azu — divy (A(Vu)#) + au = fu2n_1, u >0, (E)
where 2! = 2% Note that when the operator Py := A2 — divy(A(V-)#) + a is
P} (the Paneitz-Branson operator), equation (£) means that the Q—curvature of

the metric g = wnea g verifies that ”T_‘ng = f. Following the preceding discussion
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about the Yamabe equation, we address in these notes the following questions:
(Q1): is there a solution u € C*(M) to (E)?

(Q2): is the set of functions u solutions to (F) compact in the C*—topology?
2.3. A possible strategy for existence. From now one, we let f € C*° (M) such

that f > 0. We let A be a smooth symmetric (2,0)—tensor field and a € C*>* (M),
and we let the operator

Py = A2 — divy(A(V)#) +a.
Given g € [2,2F], we consider the functional I, s : H3(M)\ {0} — R such that

(Agu)? 4+ A(Vu)¥, (Vu)b) + au?) dv

Iq,f(u) = Ju ( 5 2 ) . (12)
(Jar Flul® dvg)®

for all u € H2(M)\{0}. This functional is well defined since the Sobolev embedding

H2(M) < L9(M) is continuous (see Theorem 1.3). With a standard abuse of

notation, we define

/ uPyv dug ::/ ngudvg/ (AguAgv—l—A((Vu)ﬁ,(Vv)ﬂ) + auv) dvg  (13)
M M M

when u,v € H2(M). This definition is relevant since A is symmetrical and Theorem
1.1 holds. We then say that [, , uPyv dv, is defined in the distributional sense. Note
that it follows from Theorem 1.1 that when u € C*(M), [,, uPyudvg and coincides
with (13).

2.3.1. Differentiability of the functional I, s.

Lemma 2.1. The functional 1, ¢ is differentiable in H3(M) \ {0} and for any
u € H3(M), we have that

I p(u).p =2 /M (Agulgp + A(Vu)*, (Vo)) + aup — )\q(u)f|u|q_2ugp) dvy,
(14)

. fM uPgu dvg
Jar flul?dvg *

Before proving this lemma, let us see why it is useful in our framework: take u €

C*(M) a solution to (E), and assume that Aoz (u) > 0 and let @ := Ay (u))7ﬁ
We then get with Theorem 1.1 that

Ty i)ip =2 [ (8,380 + AU, (V) + aiip = s (0) i 20 oy

for all ¢ € H3 (M), where A\y(u)

=200 () 5 [ (80850 + ATUF (Vo)) +aup — fu ) oy
=2 (A (u))_ﬁ /M (@A?]u — divy (A((Vu)*) ¢ + aup — fu2ﬁ71<p> dvg

—9 (Am(u))—ﬁ/ (oPyu— 12 ~10) duy =0
M
for all ¢ € HF(M). Then I, ,
Proof of Lemma 2.1: Indeed, let w € H3(M) and ¢ € H3 (M) such that ||¢|| gz (ar) <
%||u||H§(M). Clearly, we have that u + ¢ € HZ(M) \ {0}, and I, ¢(u + ¢) is well-
defined. We have that

(u) = 0 and u is a critical point for Ios ;.
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/ (u+ ) Py(u + ¢) dug

M

= / uPudvg + 2/ (Agulgo + A(Vu), (Vo)) + aup) dvg + / @Py dvg
M M M

— [ wpuds, +2 [ upypdv, + Ol (15)
M M

where |O(1)| < C for all ¢ € H3(M) such that lell zzan < %||u||H22(M). Note here
that we have used that A is symmetric. Concerning the denominator of I, f, we
need the following estimate: for all ¢ > 2 > 6 > 0, there exists C(q,6) > 0 that
depends only on ¢ and # such that

||z +y|? = || — qlz|*22y| < Cg,0) (2T ly|” +|y|?) for all 2,y € R (16)
This inequality is straightforward. Using (16) and Holder’s inequality, we get that

‘/ Jlu+ o|?dv, —/ flul® dv, —q/ flul "2 up dog
M M M

< C(0.2)fll ( [ ool g + |soqdvg)
M M
< Cla. D oVoly )3 ([l el + el )

Since u, p € H3(M), it follows from the Sobolev inequality (4) that

\ [ slut gty = [ ooy~ [ e 2upds,
M M M
< @, lull g, 1 oo Vol (M) - 16155

as soon as ||l gzary < %HuHHg(M). Since [}, flu|?dvy # 0, we then get that

( / fIU+<p|qdvg> “
M

-2 I~200 d
= (f i) (14 HEETE oot

_ q “ 2 [oy Flul?Pugp dvg 2
(f, )" (1= M2 ol ) )

where |O(1)| < C for all ¢ € H3(M) such that [|¢ gz < %HuHHQz(M). Plugging
(15) and (17) in (12), one gets that

Ls(ut @) = I s(u)- (1 2 [ (@guyp AT (Vo) +aup) do,

2 [}, uPyudv, / ) )
—— e | ST updug + O()]|||
Jar flultdvg Jy ! 1z
In particular, I, ¢ is differentiable at u and we get (14). This ends the proof of the
lemma. L.

Exercise: prove that I, ; € C2(H3(M),R).
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Definition 2.1. Let (M, g) be a compact Riemannian manifold of dimensionn > 5.
Let A be a smooth symmetric (2,0)—tensor field and let a, f € C(M) such that
f>0. Let g € [2,2%]. Let u € H2(M). We say that u is a weak solution of

Agu — divg(A(Vu)*) + au = flu|?%u (Eq)
if we have that

/ (Agulgp + A((Vu)t, (Vo)) + aup) du, :/ Flul??up dv,
M M

for all ¢ € H3(M).

In particular, u is a critical point for I, iff v is a weak solution to Pyu =
() flu|?"2u. We are now in position to suggest a strategy to obtain solutions to
(E):

2.3.2. Step 1: minimization of I ;. Find (if possible) u € H3 (M) \ {0} such that
Iyt ¢(u) = inf {I, y(v)/v € HF(M)\{0}}. Since Iy ¢(Au) = Ipu(, for all X # 0,
up to multiplicating by a positive constant, one can assume that [, Flul? dvg = 1.

In this case, Ags (u) = Iy: f(u). Such a function u then verifies I3, ((u) = 0, that is

[ (Bsugp+ AT (70) + auphdog = Lt [ 7l 2 )
M M
for all o € HZ(M). It is then a weak solution of Pyju = Izu’f(u)f|u|2n_2u.

2.3.3. Step 2: find a nonnegative minimizer. In other words, can we choose the
function u € H2(M) above such that u > 0 a.e.?

2.3.4. Step 3: regularity of weak solutions. Prove that when u € HZ(M) is a weak
solution to Pyu = Iznvf(u)f|u|2u*2u, then u € C*(M). In this situation, we have
that

/ (Pgu - 12u7f(u)f|u|2u72u) pdvg =0

M

for all ¢ € H3(M), and then Pyu = Igu,f(u)f\u|2u_2u in the usual sense.

2.3.5. Step 4: find a positive solution. With Steps 1 to 3, we have a function u €
C*(M) \ {0} such that u > 0 and Pyu = Izu’f(u)fuﬂ_lz prove that v > 0 indeed.
At this stage, if Ayt (u) > 0, we have that Ign,f(u)_ﬁu is a solution to (E).
Unfortunately (or fortunately...), each of these steps involves some particular diffi-

culties, either due to the exponent 2% or due to the bi-harmonic operator Ag.

2.4. A suitable norm for H3(M). It is standard here to use an equivalent norm
for H3(M) more suitable to functional I, ;. On H3(M), we define the following
norm

lullzz ary = 1Bgull2 + [Vl + [lull2

for all w € H3(M). This norm will be very convenient in this notes, and it is
relevant thanks to the following proposition:

Proposition 2.1. The norms | - ||gz and || - ||’H§ are equivalent.
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Proof. The main tool here is the Bochner-Lichnerowitz-Weitzenbock formula. In-
deed, we have that

/ (Agu)? dv, = / V20 dv, + / Ricy(Vu)*, (Vu)#) do,
M M M

for all u € H3(M). In particular, we have that
IV2ull3 + IVull3 + [lully

= [ Agull3 - /M Ricy(Vu)*, (Vu)#) dvg + [[Vull3 + [[ull3

< 1Agull3 + ClIVul3 + [Jull3

for all u € H3(M), and then there exists C > 0 such that || - ez < I o2
The reverse inequality goes the same way, and we get that the two norms are
equivalent. [l

In particular, from now on, we will use this new norm, and we will write in the
sequel

lullzzary = [Agullz + [Vullz + [lull2 (18)
for all u € H3(M).
2.5. The main difficulties one encounters.
2.5.1. The critical exponent (1): minimization. Let q € [2,2¢] and define

pq(f) = inf {Io,p(u)/ u € HF (M) \ {0}} .

Proposition 2.2. Let (M,g) be a compact Riemannian manifold of dimension
n > 5. Let A be a smooth symmetric (2,0)—tensor field and let a, f € C*°(M) such

that f > 0. Let q € [2,2%). Then u,(f) is finite and achieved. In other words,
pq(f) € R and there existe u € H3(M)\ {0} such that I f(u) = pg(f).

Proof. We first prove that p,(f) > —oo. Let u € H3(M)\ {0}. Since A is smooth,
there exists C' > 0 such that

/A((Vu)#,(Vu)#)dvg §C/ \Vu|§dvg
M M

for all u € H3(M). Tt is there convenient to control the L?—norm of the gradient
by the L?—norm of the laplacian:

Lemma 2.2. Let (M,g) be a compact Riemanian manifold. Then for any € > 0,
there exists C(€) > 0 such that

Vullz < €l Agullz + Cle)]|ull2
for allu € HZ(M).
Proof of Lemma 2.2: The proof goes by contradiction. Let € > 0. We assume that
for all i € N*, there exists u; € H2(M) such that
IVuill2 > el Aguillz 4 il|uill2 and [|Vug]|2 = 1. (19)
It then follows from (19) that
1Aguillz + [Vullz + [lulls < €7 +1+47"

for all ¢ € N*. Then there exists C' > 0 such that [[u; || zz(a) < C for all i € N* (we
used the norm defined in (18)). It follows from the compactness of the embedding
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H2(M) — H?(M) (see Proposition 1.6) that there exists a subsequence (u;/) and
there exist u € H2(M) such that lim; o uy = u strongly in HZ(M). With (19),
we get that ||Vullz = 1 and that |jul|z = 0: a contradiction, and Lemma 2.2 is
proved. [

With Lemma 2.2, we have that there exists C’ > 0 such that
[ At 0
M

for all u € H2(M). Using this inequality, the fact that f > 0 and Holder’s inequal-
ity, we get that

1
< 5/ |Vu|3 dug +C’/||u||§
M

Tt — Pt
(Sar Flul? dvg) ®
Y (Agu)? + A((Vu)#, (Vu)#) dvg + au?) du,
(Sor flule dvg)%
o 2 Ju(Bgw)? dug — (C" + lallo ) [ull3
i (ol dog)*
S G e P . -
(fo fluld dug) @ (infar )7 flull?
o Ju(@qw?dvy (€4 Jall) Vo, (M)TE o
(fas flul® dvg)® (infar £
for all w € H3(M) \ {0}. This proves that u,(f) > —oc and then p,(f) € R.
Let (u;)ien € H3(M) \ {0} be a minimizing sequence for I, 7, that is
lim Ig ¢(ui) = pg(f). (21)

1—+00

Without loss of generality, we can assume that

/ flus|?dvg =1 (22)
M
for all ¢ € N. With (20) and (21), we get that there exists C' > 0 such that

/M(Agui)2 dvy < C

for all i € N. Since f > 0, we get with Holder’s inequality and (22) that

1

Vol (M)? ™4
(infar f)7
for all i € N. With Lemma 2.2 and the definition (18), we then get that there exists

C > 0 such that

1_1
[uill2 < Volg (M) 7 ||uslly <

[uillgz < C

for all ¢+ € N. It then follows from the weak compactness of the unit ball (see
Theorem 1.2) that there exists u € H3(M) such that there exists a subsequence
(u;r) of (u;) such that

Uyr — U
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weakly in (H3(M))" when i — 4oo. Without loss of generality, we can assume
that the convergence actually holds for the initial sequence (u;);en. Since the
embedding H2(M) — H?(M) is compact (see Theorem 1.6), we can assume that
lim; 400 u; = win HZ(M). Since 2 < ¢ < 2* and the embedding H3 (M) — L(M)
is compact (see Theorem 1.6), we can assume that lim; . u; = u in LI(M).
Consequently, we get that

lim / f\ui\qdvg:/ flu|?dvy =1, (23)
M M

1—+00

and then u # 0. We let §; = u; —u € H3(M) for all i € N. We have that
/ u; Pyu; dug
M
= / uPyudv, + 2/ (Agulg0; + A((Vu)?, (d8;)*) + aub;) dv,
M M
+/ ((Ag0:)* + A((d0;)*, (d6:)*) + ab}) duvg
M
Since §; — 0 in (H3(M))" and u; — u in H?(M) when i — +o00, we get that

/ u; Pyu; dug :/ ngudvg—l—/ (Ay0;)? dvy + o(1)
M M M

where lim;_, » 0(1) = 0. Plugging this equality in I, s(u;), one gets that

we(f) = / uPyudvg + / (Ay0;)? dvy + o(1) (24)

M M
when i — +o00. Since u # 0, we have that I r(u) > pe(f). With (23), we get that
wa(f) < /M uPyu dvy. (25)

Plugging (24) and (25) together, we get that

we(f) = / uPjudvg = Iy ¢(u) and lim (Ay0;)? dvy = 0.
M

11— 400 M
In particular, the infimum p,(f) is achieved at u € HZ(M). O

One crucial point in the preceding proof is the compactness of the embedding
H2(M) — Li(M) for 2 < q < 2. For ¢ = 2% the embedding is continuous,
but not compact, and the above variational method does not work. This lack of
compactness is actually fundamental: there are obstructions to the existence of
critical points for I5: ¢, as proved in [DHL]. In the following statement, the first
spherical harmonics are the eigenfunctions of A, for the eigenvalue n, the first
nonzero eigenvalue of A, (see Subsection 4.4). The following was proved in [DHL]:

Theorem 2.1. Let (S™, h) be the standard n—dimensional sphere equiped with its
round metric h. Let u, f € C*°(S™) such that

# ,
Plu= fu* ' u>0inS"

Here, P} denotes the Paneitz-Branson operator on the sphere. Then for first spher-
ical harmonic ¢ € C*°(M), we have that

/ (Vf, V<p)qu’1 dvp, = 0.
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In particular, there is no solution to Ppu = (1 + ego)u2n_1 for all e > 0 and all ¢
first spherical harmonic.

2.5.2. The critical exponent (2): reqularity and compactness. Here again, a regu-
larity result holds for the subcritical case, but fails in the critical case:

Proposition 2.3. Let (M,g) be a compact Riemannian manifold of dimension
n > 5. Let A be a smooth symmetric (2,0)—tensor field and let a, f € C*°(M) such
that f > 0. Let u € H3(M) be a weak solution to (E,;). Then u € C*(M) and is a
solution to (E,) in the usual sense.

Proof. The proof is quite standard and is now refered to a bootstrap argument.
Let

po =max{p > 1/u € LP(M)}.

It follows from the Sobolev embedding (see also Theorem 1.3) that py > 2¢. Assume
that pp < 400 and let p € (2,pg). Then w € LP(M), and then

flul"2u € L7 (M),
Since Pyju = f|u|9"%u, it then follows from regularity theorems (see Theorem 1.7)

that v € H, 4"% (M). It then follows from Sobolev’s embedding theorem (see Theo-
rems 1.3, 1.4 and 1.5) that we are in one of the following cases:

(i) If % — 2 <0, then u € C°(M), and then u € L"(M) for all r > 1 and then
po = +00, a contradiction.

(i) If qp%l — 4 =0, then u € L"(M) for all 7 > 1 and then py = +oo0, a
contradiction.

(iii) If % — % > 0 then u € L" (M), where % = % — %, and then py > r > p,
so that we have improved the order integrability of w. Since this is valid for all
p € (2,p0), letting p go to pg, we get that

1L_a-l 4 -
Po Po n 4

< 2F (26)

since ¢ < 2%, a contradiction since py > 2.

This proves that py = +o0o, and then that v € LP(M) for all p > 1. Then, Pyu €
LP(M) for all p > 1. It then follows from regularity theory (see Theorem 1.7) that
u € HY (M) for all p > 1, and then from Sobolev’s embedding theorem (see Theorem
1.5), that u € C%*(M) for all o € (0,1). We then get that f|u|?"?u € C**(M),
and by regularity theory (see Theorem 1.8), one gets that u € C*(M). O

Actually, the preceding bootstrap can be applied to obtained C*—bounds from
L¥ —bounds for u. Of course, still in the subcritical case:

Proposition 2.4. Let (M,g) be a compact Riemannian manifold of dimension
n > 5. Let A be a smooth symmetric (2,0)—tensor field and let a, f € C°°(M) such
that f > 0. Let q € [2,2))]. Then for any A > 0, there exists Cy(A,q) > 0 such
that for any u € C*(M) solution to (E,), we have that

lullor < A= |ullcaary < Co(A, q).

Exercise: Prove this proposition using the proof of the regularity of solutions to
the subcritical problem and the regularity theorems.
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The reader will have pointed out that the subcritical exponent ¢ < 2% in (26) is
crucial in this proof. Actually, in the critical case, one could start with p = 2,
and one would obtain r» = 2f! So that there would be no improvement of the
integrability. On the other hand, still in the case ¢ = 2¢, assume that there exists
p > 2f such that u € LP(M): in this situation, the bootstrap works and one recovers
that u € C*(M).

Exercise [EXO]: Let u € H3(M) be a weak solution to (E). Prove that if there
exists p > 2% such that u € LP(M), then u € C*(M).

Trudinger [Tru] was able to prove that a weak solution u € H (M) of Aju+ au =

fu% (a weak solution to this equation is a function u such that

/ (Vu, V), + aup) dog :/ fu%godvg
M M

for all p € H2(M)) is actually in C?(M). But this proof does not easily extends to
the bi-harmonic operator.

2.5.3. The bi-harmonic operator (1): positivity. Another problem is to recover posi-
tive solutions to our equation. A natural approach would be to consider a minimizer
u of Iy y and then to see whether |u| has a chance to be another minimizer. This
approach is very fruitful for second-order problems, here is how:

Let r € [2,-2%), and let

' n—2

. S (IVul2 4 av?) do,
(fM flul” dvg)

=
—

S

for all u € HF(M) \ {0} (note that this is well defined thanks to the Sobolev
embedding of Theorem 1.3). Assume that there exists a minimizer v € HZ(M)\ {0}
for I, such that I.(u) > 0, and assume that Joy flul"dvy = 1. We have that
lu| € H(M) and |V|u||; = |Vul, (see for instance [GiTr], Theorem 7.8, or [Heb1]).
Therefore, one gets that I.(Ju|) = I,.(u) also minimizes I,. As in Proposition
2.3, we get that |u| is a weak solution to Agylu| + alu| = L.(Ju])flu["~'. With a
bootstrap argument, one gets that |u| € C?*(M). With K > 0 large enough such
that a+ K — I.(Ju|) flu|"=2 > 0, one gets that Ay|u|+ (a4 K — I (Ju]) flu|"~2)|u| =
K|u| > 0, and then |u| > 0 by the strong comparison principle (see for instance
[GiTr], Theorem 3.5 or [Hebl]). In particular, the initial function u is either positive
or negative and, up to multiplying by a nonzero constant we have recovered a
positive solution to the equation Aya + at = fa" .

This strategy doe not apply to the fourth-order setting for (at least!) one good
reason: there exists u € H2(M) such that |u| ¢ H3(M). A very simple illustration
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of this fact is on R™, actually. In the distributional sense, one has

(Alzil, @y = /R j2:| A da

/ riApdr — / x; Apdr
{z;>0} {z; <0}

/ (Aa:z)cp dx + / (—Jﬂz‘aﬁ/) + (8uxz)‘p) do
{z;>0}

8{I1>0}
—/ ;i Apdx
{z;<0}

2/ pdo
{z;=0}

here, 9, denotes the normal outer derivative. In particular, Alz;| ¢ L7 (R™) for
all p > 1. As we will see, there are situations in which the minimizers of I, ; (when

they exist) change sign, contrary to the second-order case

3. CONCERNING REGULARITY

As already mentioned, the strategy of Trudinger for second-order operators does
not adapt nicely to the fourth-order case. Note that Sandeep [San] could perform a
De Giorgi-Nash-Moser scheme for fourth-order equations, a technique that is very
close to Trudinger’s technique.

In these notes, we adapt the techniques developed by Van der Vorst [VdV] for
fourth-order problems (see also Djadli-Hebey-Ledoux [DHL] and Esposito-Robert
[EsRo] for the context of Riemannian manifolds). We prove the following:

Proposition 3.1. Let (M,g) be a compact Riemannian manifold of dimension
n > 5. Let A be a smooth symmetric (2,0)—tensor field and let a, f € C®°(M) such
that f > 0. Let uw € H2(M) be a weak solution to (E). Then u € C*(M) and is a
solution to (E) in the usual sense.

In particular, the question of the regularity of weak solutions is completely solved
for our problem. The proof of Proposition 3.1 uses the notion of coercivity:

3.1. Coercivity.
Definition 3.1. We say that P, as above is coercive if there exists A > 0 such that
/ (Agu)* + A(Vu)#, (Vu)#) + au?) dv, > )\/ u? do,
M M

for all w € H3(M).
Exercise [COER]: Prove that the following assertions are equivalent:

(i) P, is coercive

(ii) there exists A > 0 such that

/M ((Agu)? + A((Vu)#, (Vu)#) + au?) dvg > Aul3,

for all u € HZ(M).
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(iii) there exists A > 0 such that
/ ((Agw)? + A(Va)#, (Vu)#) + au?) dv, > Mful%s
M

for all uw € H3(M).

An important Corollary of the coercivity is the following existence result. The proof
is postponed to the Appendix.

Proposition 3.2. Let (M, g) be a compact Riemannian manifold. Let a € C*(M)
and let A be a smooth symmetric (2,0)—tensor on M. Assume that the operator
Py = A2 — divg(A(V-)#) + a is coerciv. Then for any f € H} (M), there exists a
unique u € Hf+k(M) such that Pyu = f. Moreover, we have that
lullzz,  ary < C- 1 a2y
where C = C(M,g,K) and
lallctan) + [[Aller+2ary < K.

3.2. Proof of Proposition 3.1: We prove the proposition in the case the operator
P, is coercive. Let p > 1. Let R > 0 to be chosen later. Let v € LP(M). It follows

from Hélder’s inequality that f|u|2n_21‘u|ZRU € L"(M) with 1 = % + 2 and that
' i
11l 7?1z rolle < I lolllul® 1wzl 2 0]lp-

It follows from regularity theory that there exists a unique w € Hj (M) such that
Py = f|u\2ﬁ’21|u|2Rv. Moreover, there exists C' = C(p,r,n) > 0 such that

n
4

#_
lwll gy < C -1 flul® Lz roll-

It follows from Sobolev’s embedding in Theorem 1.3 that H} (M) is embedded

continuously in LI(M), where 2 =1 — 2 = 1 Then w € LP(M) and there exists
¢ r np

C=C((M,g),p,r,n) > 0 such that

#_
lwlizean < C - Ifloolllul® =L el 2 0]l

We define the operator T, g : LP(M) — LP(M) such that for any v € LP(M),
T, r(u) = w where w is as above. It follows from the above discussion that T}, g is
a continuous linear map and that its norm satisfies

4
1Ty gllo—ir < Coyrm) - [l ( / fuf? dvg> _
{lu|>R}

Therefore, since u € LQn(M), there exists Ry = R((M,g),p,r,n) > 0 such that
| Ty rllLr—r» < %, and then, we get that Idr» — T, g : LP(M) — LP(M) is linear
continuous with linear continuous inverse.

Since f|u|2u*2u1|u‘§R € L>(M), we have by Proposition 3.2 that for all p > 2f,
there exists & € Hf (M) such that P,a = f|u|2ﬁ_2u1|u‘§R. We let © = (Idpr —
T, r) (@) € LP(M). We have that

. .
Pyu= flul* uliysp + flul> ulj,<gr

_ i
Py(u— i) = flul? 21|u\2RU
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and then u — @ = Ty g(u), which yields (Id . —Tos g)u =1 = (Idpr — Ty r)(U) =
(Id,»: — Ty g)() since p > 2¢ and u, @ € L% (M). Since the operator (Id; 2 —To: g
is invertible, we get that u = @ € LP(M) for all p > 2f. The bootstrap argument
and Exercise [EXO] then yields that u € C*(M).

We consider now the case when P, is not coercive. We let K > 0 such that P+ K
is coercive, and therefore invertible. We define the map T}, g : LP(M) — LP(M)
by T, r(v) = (P, + K)_l(f|u|2n_21|u‘23v) for all v € LP(M). This maps is well-
defined. We let p > 2% such that u € LP(M) and as above, we get that u € LI(M)
for some ¢ > 2f. The conclusion of the proposition then follows. O

Exercice: Complete the last part of the preceding proof. That is prove Proposition
3.1 in case P, is not coercive.

4. CONCERNING POSITIVE SOLUTIONS

4.1. The main result. As mentioned, finding positive solutions minimizing I, f
is not so easy... and can sometimes be impossiblel We present here a technique
that permits in some situations to recover positive minimizers.

Proposition 4.1. Let (M,g) be a compact Riemannian manifold of dimension
n > 5. Let A be a smooth symmetric (2,0)—tensor field and let a, f € C*°(M) such
that f > 0. We assume that P, verifies the two following properties:

(i) Py is coercive

(ii) for all w € C*(M) such that Pyu > 0, then uw >0 or u = 0.

Let ¢ € [2,2%] and assume that w € H3(M) is a minimizer for I, ;. Then
u € C*(M) and either u >0 or u < 0.

Proof. We keep the same notations as in section 3. The regularity u € C*(M) is
just Proposition 3.1 above. Therefore, there exists p € R such that

Pyu= pflul?u in M.
With the definition of I, (u), we get that

w=mn)x ([ If|u|deg)31. (21)

We claim that p,(f) > 0. Indeed, since P, is coercive, we get that there exists
A > 0 such that

/ uPjudvg > )\||u||3
M
for all u € H3(M). We then get that

Iq f(u) = fM ngu dUg 5 > A (28)
| (fM J'"|U‘qdvg)E  (supy f)

for all u € H3(M) \ {0}, and therefore p,(f) > A(sup,, f)_% > 0. This proves the

claim.

We let v € H3(M) such that Pyv = |Pyu| in M. The existence is a consequence
of Proposition 3.2. Since |Pyu| € C%!(M), one gets with Theorem 1.8 that v €
C*(M). Then, we have that Py(v +u) > 0, and then v +u > 0 with point (ii).
Then v > |u| and v # 0 (otherwise u = 0). Since Pyv > 0, we then get with point
(ii) that v > 0. Let us compute I, ¢(v):

Qo
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Iis(v) = Ju 00 dvy | el v
(fM f‘”|qd”9)a (fM f|v\qdvg)5

Su(F0) - (Flul) T do,

< 2

(fM f|U|q dUg) !

94 d o
< u (IM Jv (vq) (fM f|)u| Uq) with Holder’s inequality
I flvlqdvg ’
T o) 5 2
< u (fM Slul Ug <y </ flul? dvg> since v > |u]
(f5 foadog)®

< pg(f) with (27)

Since the minimum is p,(f), one gets that I, r(v) > pq(f), and then I, ¢(v) =
tq(f), and the minimum is achieved at v. There are then equalities everywhere
above, and in particular one gets |u| = v > 0. Since u is continuous, we get
therefore that either u > 0 everywhere or u < 0 everywhere. |

Point (ii) of Proposition 4.1 is the crucial point. Concerning terminology, we define
the pointwise maximum principle as follows:

Definition 4.1. We say that the operator P, verifies the pointwise comparison
principle if for any uw € C*(M) such that Pyu > 0, then either u > 0 or u = 0.

4.2. The Rayleigh quotient and the first eigenfunction. Given an operator
P, as in Proposition 3.1, we define the first eigenvalue of P; as follows:
Pyud
M(P)= g JuFerdvy (20)
ueHZ(MO\{0} [, u? dvg
It follows from Propositions 2.2 and 3.1 that A;(P,) is achieved by functions in
C*4(M). We let
Ei(Py) = {u € C*HM)/ Pyu= X\ (Py)u}.

Clearly, u € H3(M) is a minimizer for (29) iff u # 0 and u € E;(P,). Under the
hypothesis of Proposition 4.1, we have more informations:

Proposition 4.2. Let (M,g) be a compact Riemannian manifold of dimension
n > 5. Let A be a smooth symmetric (2,0)—tensor field and let a, f € C°°(M) such
that f > 0. We assume that P, verifies the two following properties:

(1) Py is coercive

(i1) Py satisifies the pointwise comparison principle.
Then every nonzero eigenfunction for A1 (Py) does not change sign and the eigenspace
E.\(Py) is one-dimensional.

Proof. Let u € H3(M) \ {0} be a minimizer for the Rayleigh quotient. With
Propositon 3.1, u € C*(M) and, up to multipliying by (—1), one can assume that
u is positive somewhere. It follows from Proposition 4.1 that actually v > 0. Let
v € E1(P,). Let zg € M and let t = v(zo)u(zo)~'. Then v — tu € E1(P,). In
case v — tu #Z 0, then v — tu is a minimizer for the Rayleigh quotient and then
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either v — tu > 0 everywhere or v — tu < 0 everywhere; a contradiction since
(v —tu)(zg) = 0. Then v = tu € Ru, and F;(Py) is one-dimensional. O

4.3. A short detour to second-order equations. While considering second-
order operators, coercivity is equivalent to the pointwise comparison principle.
Namely we have the following

Proposition 4.3. Let (M,g) be a compact Riemannian manifold of dimension
n>5. Let a € C®°(M). We say that A, + a is coercive on HE (M) if there exists

A > 0 such that
/ (|Vu|$27 +au2) dvg > )\/ u? dvy
M M

for allu € HX(M). Then the two following assertions are equivalent:
1
(1) Ay + a is coercive
(ii) for all w € C*(M) such that Agu+ au >0, then u >0 or u = 0.

Proof. (i)=-(ii): Let u € C?*(M) such that Lyu > 0. Let u_ := max{—u,0}.
Then (see for instance [GiTr|, Theorem 7.8, or [Hebl] for the Riemannian setting),
u_ € Hf(M) and Vu_ = —1g,<o} Vu. We have that

0 < /u,Lgudvg:/ ((Vu, Vu_)g + auu_) dog
M M
< —/ (|Vu_|§+au2,) dvg < —A|u—||2
M

and then u_ = 0, which implies u > 0. Then we have that Aju + (a + |la||s)u >
|la]|cow > 0. Tt then follows from the strong comparison principle (see for instance
[GiTr], Theorem 3.5 or [Hebl] for the Riemannian setting) that either v > 0 or
u=0.

(ii)=>(i) Let w € HZ(M)\ {0} be a minimizer for the Rayleigh quotient

S (IVul2 + au?) dog
Joy u? dug

We let 1 € R the value achievd by this minimizer. Following discussion of the proof
of Proposition 4.2 above, we can assume that « € C?(M) and that u > 0 in M and
verifies Aju + au = pu. Assume that g < 0. Then Ayj(—u) + a(—u) > 0, and it

follows from (ii) that either —u > 0 or —u = 0. A contradiction since w > 0. Then
> 0and Ay + a is coercive. O

Such a result does not extend to the fourth-order setting:
4.4. A situation where the minimizer changes sign.

Proposition 4.4. Let us consider the unit sphere (S™,h), n > 1, where h is the
round metric. Let a,a € R such that a € (n,2n) and a > %2. Then P, =
A? — alAp + a is coercive and Ey(Py) is the (n + 1)—dimensional space of first

spherical harmonics, that is
Ey(P) ={uecC*(S")/ Apu=nu} ={loi/l: R"™" = R is linear},

wher i : S — R is the canonical embedding of the sphere into R" 1. In partic-
ular, the minimizers for the Rayleigh quotient change sign.
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Proof. Let u € Ey(P,). In particular u € C*(S™). Since u € L?(S™), we decompose
it along the eigenvalues of the Laplacian. This requires some notations: the eigen-
values of Ay, on S™ are of the form \; = i(i +n — 1) for all ¢ € N, and we denote
as E;(Ay) the eigenspace associated to \; for all ¢ € N, each of the E;(Ay)’s being
finite-dimensional. Note that here, the first eigenvalue of the Laplacian is 0 and
is denoted by Ag. We refer to [BGM] for a proof of these results. It follows from
spectral theory that we can write

u= i i, (30)
=0

where (a;)ien< € R and (¢;);en+ are such that

(i) p € Ei(Ap) for all i e N

(ii) [, @iv; dvg = 65, the Kronecker symbol, for all 7, j € N.

(iil) Yooy af < oo.
Here, the sum (30) must be understand in the L?—sense, that is limy oo |Ju —
ZlN:O a;pilla = 0. Let i € N. We have that ¢; € C°(M) and Prp; = po(\i)i,
where po(X) = X2 — aX + a. In particular, integrating by parts, one gets

Al(Ph)/ up; dvp, = / piPrudoy, = / uPpp; duy, :Po()\i)/ wp; dop. (31)
Sn Sn n Sn
With (30) and (31), one gets that

(M(Pr) — po(Ai))a; = 0. (32)

Since u # 0, there exists jo € N such that «;, # 0, and therefore po(Aj,) = A1 (Pr).
In particular, since pg(};) is an eigenfunction for P}, for all j € N, one gets that
A1 (Py) = inf{po(};)/j € N}.

Since pg is a quartic, there are two possibilities:

(i) either po(A;) # A1 (Pp) for all j # jo

(ii) or there exists ji # jo such that po(\;) = A\ (Pr) iff j € {Jo, 1}
In case (i), one gets with (32) that «; = 0 for all j # jo and then E1(Py,) = Ej,(Ay).

In case (ii), one gets with (32) that a;; = 0 for all j & {jo, 71} and then Eq(FPy) =
Ej, (An) @ Ejy (An).

Since po(X) = X? —aX +a, one gets that py is increasing on (§,+00), and since
a € (n,2n), po is increasing on [n, +00). Since \; = i(i +n — 1) for all ¢ € N, one
gets that po(A;) > po(A1) = po(n) for all i > 2. Moreover, po(Ag) = po(0) < po(A1)
since @ > n. Then \;(Py) = po(\1) = po(n) = n? — an + a and

Ei(Py) = E1(Ap) = {u € C*(S™)/ Apu = nu},

which is exactly the linear space of restrictions of linear forms of R"*! to the sphere
(here again, we refer to [BGM]). Note that the condition a > a?/4 implies that
A1 (Pr) = po(n) > 0, and then P, is coercive. O

A consequence of this result is that the operator Py does not satisfy the pointwise
comparison principle, despite it is coercive: an important difference with second-
order operators. Actually, there are similar situations situations in the Euclidean
case: there are simply connected, and even convex domains for which there exists
smooth functions such that A%y > 0, v = d,u = 0 on the boundary, but u is
not positive on the domain. These remarks seem to go back to Hadamard [Had].
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Note that the situation is particularly surprising for annuli in dimension two: if
D, = {x € R*/e < |z| < 1}, then A? can verify or not the above comparison
principle depending on the value of € € (0,1). We refer to [CDS] for discussions and
results about this fact. These propertie are deeply related to the Green’s function:
indeed, the operator P, verifies the pointwise comparison principle if and only if its
Green’s function is positive. We do not intend to discuss on the Green’s function
here and we refer to Grunau-Sweers [GrSw], for instance, for considerations about
it. It is now important to know in which situations the operator P, satisfies the
pointwise comparison principle.

4.5. When does P, satisfy the pointwise maximum principle? We begin
with the following simple, but crucial remark:

Proposition 4.5. Let a,a’ € C*°(M) such that A+a and Ay +a’ are coercive on
HZ(M) (as defined in Proposition 4.3). Then the operator Py = (Ag+a)o(Ay+a’)
satisfies the pointwise maximum principle.

Proof. Let u € C*(M) such that (A, + a) o (A, +a’)u > 0. It follows from
Proposition 4.3 that (Ag+a’)u > 0, and then applying Proposition 4.3 again yields
u>0oru=0 0

We are now interested in knowing which of the operators P, = A2—div,(A(V)#)+
a are product of two second-order operators.

Proposition 4.6. Let (M,g) be a compact Riemannian manifold of dimension
n > 1. Let A be a smooth symmetric (2,0)—tensor and a € C>°(M). Then P, is
the product of two second order operators as in Proposition 4.5 if and only if there
exists f € C°(M) such that

A= fgand f? — 2Ayf — 4a is a nonnegative constant.

Proof. We first proove the ”only if” part of the proposition. Let aj,as € C°(M)
such that P, = (Ag+a) o (Ay+a’). Writing P, in two different ways, we get that

Pyou = Agu — Aijviju — ViAijVju + au
= Agu — (a1 + ag)gijviju — 2V'ayVu + (Agas + araz)u.

Identifying these terms, and using that A is symmetric, we get that

A" = (a1 + as)g" for all i, j (33)
V;AY = 2Va, for all j (34)
a=Agas +aras (35)

Letting f := a1 + a2, we then get with (33) that A = fg. Since A = (a1 + a2)g,
(34) yields (Vi(a1 + a2))g"” = 2Viay = 2¢9*V,;az for all j, and then V;a; = V;as
for all 7. In other words, there exists K € R such that as = a; + K, and then, since
a1+ az = f, we get with (34) that

f24+2A,f —da = K? € Rxy,
and the ”only if” part of the proposition is proved. The ”if” part follows from the
preceding proof. O

There are two interesting corollaries to this result:
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Corollary 4.1. Let (M, g) be a compact Riemannian manifold of dimension n > 1.
Let a,a € R. Then the operator Ay + alg+a is a product of two elliptic operators
as in Proposition 4.5 if and only if 4a < o?.

Corollary 4.2. The Paneitz-Branson operator is the product of two second-order
operators if and only if the metric is Finstein. In this situation, the Paneitz-
Branson operator has constant coefficients.

Proof. Let n > 4 and assume that P7 is a product of two second-order operators.
It follows from Proposition 4.6 and the definition (8) of P}’ that there exists f €
C*>°(M) such that

(n—2)2+4 4 )
———R,g — —— Ric, = fg.
A1) —2) w9 " gt =19
We then get that there exists f € C*°(M) such that Ric, = fg. Since n > 4, we
then get that there exists A € R such that Ricy = Ag, and then g is Einstein. ]

5. THE MINIMIZATION TECHNIQUES

We have now enough material to perform some of the steps we mentioned in the
strategy we would like to apply. Indeed, with Theorem 3.1, we are left with proving
the existence of a minimizer. Actually the minimizers do not necessarily exist, and
even solutions to (E). Let us recall that this is due to the lack of compactness of
the embedding H3 (M) — L2n(M). A possiblity to recover compactness is to use
the best constants in Sobolev inequalities.

5.1. The optimal Sobolev inequality. Recall that it follows from (4) (see also
Theorem 1.3) that there exists A, B > 0 such that

lull < AlAgull3 + BllullZ ar) (36)

for all u € H3(M). We address here the question of the optimality of the different
constants A and B. More precisely, we will be interested in taking A as small as
possible.

5.1.1. Preliminary discussion: the Euclidean setting. In R™, there exists A > 0
such that

ol gy <A [ (Aew)da (37)

for all uw € C2°(R™), the set of smooth compactly supported functions in R™ and &
is the Euclidean metric on R™. Define

1 . (Agu)?d
1y te(Betdr (39)
Kn  ueDi®m)\{0} (Jan |uf?? dar) 2
Here,
D2(R™) = { Completion of C2°(R™) for the norm |[ul| pz(rn) = HAEU”Q} (39)

It follows from Sobolev’s theorem that the constant K,, > 0 is well-defined. It
has been computed by Lieb [Lie|, Lions [Lio], Edmunds-Fortunato-Jannelli [EFJ],
Swanson [Swa] and we have that
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where w,, is the volume of (S™, h), the standard unit sphere of R"*! endowed with its
round metric. Moreover, the extremals for the optimal inequality (that is functions
in D3(R") that achieve the infimum in (38)) are known and are of the form

n—4

2
) for all z € R, (40)

B A
U im0 (T) = B m

where u # 0, A > 0 and zg € R™ are arbitrary.

5.1.2. Best first constant in the Riemannian setting. Let us consider the Riemann-
ian setting. The following optimal result concerning the best constant A is due to
Djadli-Hebey-Ledoux [DHL] for the first part, and to [Heb3] for the second:

Theorem 5.1. Let (M, g) be a compact Riemannian manifold of dimension n > 5.
Then
K, = inf{A/3B € R such that (36) holds Yu € H3(M)}. (41)

Moreover, the infimum is achieved, that is there exists By > 0 such that

o
(/ |u|2“ dvg> <K, | (Ayu)?du, + BO/ (|Vu|§ +u?) du, (42)
M M M

for alluw € HZ(M).

Proof. We let Ay be the right-hand-side of (41). The proof proceeds in three steps:
Step 1: We claim that Ag > K,,. Let A > Ay. By the definition of Agy, we get
that there exists A < K,, and B > 0 such that (36) holds for all u € H3(M). The
idea is then to prove that in this situations, the optimal Sobolev inequality (37)
holds with the constant A, which implies that A > K,,. let us prove this claim. let
xg9 € M and consider a local chart of M around zg, namely let U C M an open
subset such that g € U, let Q2 be an open subset of R" and ¢ : U — Q) be a chart
around xo. Without loss of generality, we can assume that there exists § € (0,1)
such that

o(zg) =0, Q = B;s(0) and g;;(xo) = d;;for all 4,5 € {1,...,n}

here, ¢;; denotes the Kronecker symbol. For instance, see (1)), one can take ¢
as the exponential map. From now on, with a standard abuse of notation, when
z € Bs(0) C R", we define g;;(x) as gij(¢~*(z)) (this last notion was defined in
1.1.2). In particular, with this convention, one has that

9:(0) = 0;; and T'¥,(0) = 0 for all 4,5,k € {1,...,n}. (43)

Let u € CF(R™). Let R > 0 such that supp u C Bg/2(0). Let € € (0, R719),
and consider

uc(z) = € 2u <S0(:C)> if x € U and uc(z) = 0 elsewhere. (44)
€

Clearly w € C*°(M) is well defined. With the Sobolev inequality (36), we get that

]
</ |u€|211 dvg> < A/ (Ague)2 dvg JrB/ (\Vue|£27 Jruf) dvg (45)
M M M
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for all € > 0 small enough. We get that

2
/ u? dug
M

/ |Vu6|§ dvg
M

/B o (e )2 gl () de = 64/ w(x)?\/|g(ex) da,

/ gl (x)aiu(e_lx)aju(e_lm) \/E(x) dx

Bs(0)

62/71 g% (ex)dyu(z)du(z)/|g|(ex) dz

/ e_"u(e_lx)zﬁ \/@(x) dx :/ u(m)zn\/ﬁ(ex) dz,
Bs(0) n

/ €76 Ouu ) T () V) do
/n (9% (ex) (O3ju(z) — eFfj (ex)aku(m)))Q Vgl(ex) da.

Letting ¢ — 0 and using (43), and plugging these terms in inequality (45), we get

that

2
oF
(/ |u\2‘i dx) ’ < A/ (Agu)? dx
n Rn

for all u € C2°(R™). With the definition (39) of D3(R") and the definition (38) of
K, we get that A > K,,. Since this is valid for all A > A, one gets that A > K,
and the claim is proved.

Step 2: We claim that Ag < K,. The proof uses the following idea: in the
neighborhood of any point of M, we can choose a chart such that this neighborhood
is isometric to an open subset of R™ with a metric ”close” to the Euclidean metric.
Using the optimal Sobolev inequality (38), we get that for any € > 0, there exists
B > 0 such that (36) holds with A = K, + € for all smooth function with compact
support in the considered neighborhood. With a finite covering of the manifold,
one finally finds that there exists B! such that

lull3e < (Kn + Nl Agull3 + Bllullfzar, (46)

for all u € H2(M), and then Ay < K,,. We omit the proof and refer to [DHL]. The
proof if detailed in Appendix 2.

Step 3: We claim that Ag = K, is achieved. Actually this is the difficult part.
The argument goes by contradiction, and we assume that the infimum Ag = K, is
not achieved. This is equivalent to say that

inf

Iy ((Agu)2 +o|Vul2 + a;zﬂ) dv,

ue HZ(M)\{0} (fy [l dvg)fﬁ K,

for all &« > 0. Then, see Theorem 5.3 below, for any a > 0, there exists u, € C*(M),

e > 0 such that

Agua + alAguq +

1
a—ua = /\au?j*l with / u?j dvg =1 and A, € (0, ) .
M K

2

4

n

The proof is then a delicate description of the asymptotic behavior of u, when
a — +00. We refer to [Heb3] for the proof of this result. O
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5.2. The main result.

Theorem 5.2. Let (M, g) be a compact Riemannian manifold of dimension n > 5.
Let A be a smooth symmetric (2,0)—tensor field and let a, f € C°(M) such that
f>0. Let Py = A2 — divg((V-)#)+a and assume that Py is coercive. Assume that

Jar ((Agu)? + A((Vu)?, (Vu)*) + au?) do, _ 1
ueH3(A\{0} (fyr Slul? dog)# (supy; )% K.,

Then there exists u € C*(M) such that u # 0 and Pyu = f\u|2n_2u. Moreover, u
can be chosen as a minimizer in (47).

(47)

When requiring positive solutions, one has the following result:

Theorem 5.3. Let (M, g) be a compact Riemannian manifold of dimension n > 5.
Let a, € R such that a,a > 0 and a < 0‘72. Let f € C>°(M) such that f > 0. Let
P, = Ag +alg + a. Assume that

" Jor (Agu)? + a|Vul2 + au?) du, _ 1
in = z -
we€HZ(M)\{0} (fy Flul? dvy) 7 (sup,; f)2F K,

(48)

Then there exists u € C*(M) such that u > 0 and Pyu = fu2u_1. Moreover, u can
be chosen as a minimizer in (48).

Proof of Theorem 5.3: As a preliminary remark, note that for any v € HZ(M), one
has that

/M (Agu)® + a\Vu|§ + au?) dvg > alluf2,

and therefore P, is coercive. Since (48) holds, we apply Theorem 5.2 and we get a
function u € C*(M) such that Pyu = f|u\2n*2u and v is a minimizer for (48). It
follows from Proposition 4.6 that P, verifies the hypothesis of Proposition 3.1, and
then, with Proposition 3.1, « > 0 or u < 0. Up to multiplying by (—1), one gets
that u > 0 and Pyu = fu -1, O

Proof of Theorem 5.3: Since P, is coercive, one gets that pios(f) > 0 (see (28) in the
proof of Proposition 4.1). We let (u;);en € H3(M) \ {0} be a minimizing sequence
for Iy y, that is

lim Iy r(u;) = pe(f). (49)

1—>+00

Without loss of generality, we can assume that
/ T dvg =1 (50)
M

for all ¢ € N. Mimicking what was done in the proof of Proposition 2.2, we get that

there exists u € H2(M) such that there exists a subsequence (u;) of (u;) such that
U;r — U

weakly in (H2(M))" and strongly in H2(M). Letting 6; = u; — u € H2(M) for all

1 € N. We have that

pot (f) = /M uPyudvg + /M(Agé’i)2 dvg + o(1) (51)
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where lim;_, o, 0(1) = 0. Without loss of generality, we can assume that lim;_,, » 8;(x) =
0 for a.e. x € M. We claim that

lim / f|9i|2“dvg:1_/ Flul* dv,. (52)
M M

1—+o00

We prove the claim. Indeed, it follows from the equality (16) taken with ¢ = 2F
and 6 = 2 that there exists C' > 0 such that

# £ #
/ flu+6;]? dvg—/ fluf® dvg_/ F16:* dvg
M M M

# # #
<l [ [l o ful? — [0, v,
M

< Ol flloe / (1221612 + Jul2l6:[*'~2) d,. (53)
M
We need the following useful lemma (a proof can be found in [Hebl]):

Lemma 5.1. Let (u;)eny € LP(M) such that ||uill, < C for all i € N and such
that lim; oo ui(x) = 0 a.e in M. Then for any v € L”l(M), we have that
lim; 4 oo w;v dvg = 0, where i + % =1.

Proof. With Hoélder’s inequality, we get that
‘/ uiv dvg| < / Ly, <1 luiv| dvg +/ |wil 1, 21 [0] dvg
M M M
1

’ Pl
< [ tugealusld + ul ([ gl as,) "
M M

We deal with the first integral of the right-hand-side. Since 1,,|<1|uv| < |v] €
)i (M) and since lim;, oo uv = 0 for a.e. x € M, it follows from Lebesgue’s
theorem that the first integral of the right-hand-side goes to 0 when i — +oo.
We deal with the second integral of the right-hand-side. Since 1‘ui|§1|v|p/ < |vP e
L'(M) and since lim; _, 4 o0 L}y, 1<1 [u]P" = 0 for a.e. € M, it follows from Lebesgue’s
theorem that the second integral of the right-hand-side goes to 0 when i — +oo.
These two results prove the lemma. ([

It follows from (53) and Lemma 5.1 that
im [ flu+ 6, du, 7/ Flul* dv, f/ F10:%" dvg =0, (54)
it S M M

and the claim is proved.

Let € > 0. With the Sobolev inequality (42) and the strong convergence of 6; in
HZ(M), we get that

3 .
([ s a0, )™ < 11 (6040 [ @ as, + B16NE)
< IAE U +0) [ (007 du, +o(1). (55)

With the definition of Iy ;, we get that

/ uPgudvg > pg: (f) (/ f|u|2u dvg) > (56)
M M

pAS
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Plugging (55) and (56) into (51) and using (50) and (54), we get that
lﬁ

0 f|u|2“dvg)2” + (240l ) ([ no aw,)°
) ([ g1l v, ;
+ (0 ralnd ) (1= [ s d) +o(1).

letting ¢ — 400, this last inequality then yields

pas (F) (K + )| 112 <1— (/ fluf® dvg> )2 (1—/ fluf® dvg>;u-

Since 1 — X? > (1 — X)? for all X € [0,1] and all p > 1, we get that

(ke + N1E 1) (1 (s d)) >0

Now, hypothesis (47) implies that for € > 0 small enough, we have that [, f Ju)?’ dvg >
1, and then with (50) and (54), we get that

/Mf|u|2m dvg = 1.

As in the proof of Proposition (2.2), this last equality yields that lim; , ., 6; =0
in H3(M) and that u € H3(M) \ {0} is a minimizer for I f, and I}, 4(u) =0,

With Proposition 3.1, we get that u € C*(M) and that there exists A € R such that
Py = /\f|u|2ﬁ_2u. Multiplying by v and integrating, we get that A = I f(u) =
Aot (f). Letting a = Agu(f)%, we get that @ # 0 is a solution to Pyu = f|&\2u_21l.
(Il

pot (f)

Y%

%

Exercise (Alternative proof): Assume here again that P, is coercive. It follows
from (2.2) that for any g € [2,2%), there is a minimizer u, € C*(M) for I, ; such
that [}, fluq|? dvy = 1. Prove that under the assumptions of Theorem 5.2, we have
that, up to a subsequence, lim,_, ;oo uy = u in C*(M), where u € C*(M)\ {0} is a
minimizer for Ios f.

5.3. An important remark. One is naturally interested in the validity of in-
equality (47). The following proposition actually says that it is "not far” from
being true:

Proposition 5.1. Let (M,g) be a compact Riemannian manifold of dimension
n>5 and A, a, f, P, as in Theorem 5.2. Then

1
pos(f) € ——————. (57)
(supys f) 2 Ky,
Proof. Let u € C°(R™)\ {0}. Let € > 0 small such that u, € C*(M) in (44) is well
defined. With the computations provided in Step 1 of the proof of Theorem 41, we
get that

. fRn (Aéu)z dx
611_1%12”,)‘(“5): Z

f(xo)Q% (fon [ul? dx)>
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Since pios (f) < Ios f(ue), we get with the definition (38) of K, that (57) holds. [

5.4. Some applications. We are then left with finding situations in which the
strict inequality (47) or the strict inequality (48) holds. The natural strategy is to
evaluate the functional I5: ; at some good test-functions. Regarding to the role of
the best constant in the Euclidean Sobolev, the good test-functions will be pull-
back of the extremals for the Euclidean optimal inequality given by (40) via the
exponential map. Let zg € M and define

wlo) =10 (7 e e T (Zl) )

(w,20)?
for all x € M. Here, n € C°(M) is such that n = 1 in Bs(zg) and = 0 in

M \ Bas(xo), where § < w With computations similar to Step 1 in the proof

of Theorem 41, one gets that
1
lim Ios ¢(ue) = ——,
e—0 ’f( ‘ f(xO)Z%Kn
which does not give the strict inequality we want. We then take xy such that

f(xo) = supy, f, calculate a Taylor expansion of Iy ;(uc) to go below the critical
level. These computations were done in [EsRo]. Letting

F(zg) =8(n—1)TryA(xzo) + (n—6)(n+2)(n— 4)Afg{(x)0) —4(n* —2n — 4)Ry(x0),
o
where TryA = g A;;, we get that
1

Kol (ro) (1 T o =6 —4)

IQu’f(ue) = F(fCo)EQ + 0(62))

when n > 7 and

1 ws 9 5 )
I Ue) = 1+ F(xg)e“|Ine| 4+ o(e*| Ine
2uff< ) an<:1;0)22ﬁ ( 360(&)6 ( O) | | ( | D

when n = 6. In particular, using Theorem 5.2, we get the following existence
theorem:

Theorem 5.4. Let (M, g) be a compact Riemannian manifold of dimension n > 6.
Let A be a smooth symmetric (2,0)—tensor field and let a, f € C(M) such that
f > 0. Assume that the operator Ag — divg(A(V-)#) + a is coercive and that there
exists xo € M such that f(x¢) = sup,, [ and

8(n—1)TryA(zo) + (n—6)(n+2)(n — 4)%@;) —4(n® —2n — 4)R,(z0) < 0.
0
Then there exists u € C*(M) such that u # 0 and A2u — divg(A(Vu)#) + au =

Flul?=2u.
Concerning positive solutions, we get the following corollary:

Theorem 5.5. Let (M, g) be a compact Riemannian manifold of dimension n > 6.

Let a,a € R such that a,a > 0 and a < O‘;. Let f € C°(M) such that f > 0.
Assume that there exists g € M such that f(xg) = sup,, f and
8n(n —1a+ (n—6)(n+2)(n— 4)A}]{(x)0> —4(n® — 2n — 4)Ry(zo) < 0.
Zo
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Then there exists u € C*(M) such that u > 0 and AZu + aAgu+ au = fu -1,

Naturly, in case F'(xg) = 0 (which is the case when P, = P, the geometric
Paneitz-Branson operator), we must push the development further to obtain infor-
mations on Io: ¢(uc). We refer to [EsRo] for the calculations to the next order.

The test-functions u. constructed above concentrate at zg: indeed, we have that
lime_, uec(zg) = +oo and lim.,ouc(x) = 0 for all x € M \ {zp}. These test-
functions are efficient in dimension n > 6, but not in dimension n = 5. Indeed, we
say that the L2—norm of the gradient concentrates at zg if

2
im fBg(wo) [Vuelg dvg

li
2
=0 [, utdv,

for all § > 0. As easily checked, The L?—norm of the gradient concentrates iff
n > 6: this is why the choice of the cut-off function 1 was not very important.
However, in dimension n = 5, the gradient does not concentrate, and we have to
consider the behavior of u. on the whole manifold, and it is not possible to use any
test-function 7.

5.5. Invariance under isometries. We present here a result in dimension n = 5.
It involves test-functions in its proof, and, as discussed above, they must be defined
on the whole manifold. Since our initial test-functions above are the pull-back of
functions on R™ via a chart, they are only defined locally on the manifold, and this
is why we had to multiply by a cut-off function to define them everywhere. But on
the standard sphere, there is a chart that covers all of the sphere but one point:
this is how one can construct global test-functions on S°. In the sequel, we say that
a function ¢ is an isometry of S™ is ¢*h = h, where h is the round metric of S™.
We say that a function f is G—invariant if f oo = f for all ¢ € G. We have the
following result, proved in [Rob]:

Theorem 5.6. Let G be a compact subgroup of isometries of the (S°,h), the stan-
dard 5—sphere endowed with its round metric. Let f € C™(S®) be a positive
G—invariant function. Assume that G acts without fized point. Then there ex-
ists u € C>°(M) such that u > 0 and Ppu = %fuﬂ_l. In particular, the metric

g := u*h verifies Q5 = f.

In the latest sections, we were mainly concerned with finding a way to make converge
sequences in H2 (M) that were not bound to converge due to the lack of compactness
of the embedding HZ(M) < L% (M). In a sense, this is satisfactory because we
could finally find solutions to an equation that did not necessary had one. In
another sense, it is not satisfactory because we have avoided the generic situation,
that is the lack of convergence. In the following two sections, we will tackle this
question, which is a much more intricate problem.

6. GENERAL H2-THEORY

6.1. Palais-Smale sequences. Let (M, g) be a smooth Riemannian manifold of
dimension n > 5, and let A be a smooth symmetric (2,0)—tensor and a € Céoo(M).
Let Py = A2 — divy(A(V-)?) + a. We consider the functional

1 1
J(u) = 3 /M uPyudvg — 5 /M |u|211 dvg
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for all u € H3(M). Here, [,, uPyuduv, is again defined in the distribution sense as
in (13). The functional J is well defined thanks to the Sobolev embedding (4) (see
also Theorem 1.3). As in Subsection 2.3, J € C*(H3(M)) and

J'(u).o = /M (Agulgp + A(Vu), (Vo)) + aup) dvg — /M \u|2u_2u<p dv,

for all u,p € H3(M). With the regularity result of Proposition 3.1, one gets that

(v € HF (M) and J'(u) = 0) & (u € C4Y(M) and Pju = |u|2”—2u) .

A notion more general than the notion of critical point (that is J'(u) = 0) is the
notion of Palais-Smale sequence:

Definition 6.1. Let (ux)ren € H3(M). The sequence (uy) is a Palais-Smale
sequence for the functional J if

(i) J(u) = O(1) when k — 400,

(ii) img— 1 00 J'(ug) =0 in (HQQ(M))/
In other words, there exists C > 0 and there exists (€x)ren € R such that |J(ug)| <
C for allk € N and |.J' (ux), ¢| < exllpllgz for all p € H3 (M) and limy,, 4 o €, = 0.

Palais-Smale sequences arise quite often in elliptic critical problems: the Moun-
tain Pass Lemma of Ambrosetti and Rabinowitz [AmRa] naturally produces these
sequences (see [EsRo| for an application to fourth order problems), and sequences
of solutions to equation Pyu = u?* =1 with uniformly bounded H3 —norm are Palais-
Smale sequences for J. A simple behavior for a Palais-Smale sequence would be
convergence in H3(M). Namely, does one have

(ur)ren Palais-Smale sequence for J = khrf up = u in H3(M)? (59)
— 400

(at least up to a subsequence). Actually this is not true in general, and here again,
this is due to the critical exponent and the lack of compactness of the embedding
H2(M) — L*(M).

6.2. A non-converging Palais-Smale sequence. Let us consider the following
example. Let (zx)reny € M be a converging sequence and let (ug)ren € R such
that pp > 0 for all £ € N and limp_ 0o i = 0. Let § € (0,i4(M)/2) and let
n € C*°(R") such that n =1 in Bs(0) and n =0 in R™ \ Bgs(0). Define
n—4
i 2
. = ‘ —_— 60
Uy, () 7= QT (T) (Mﬁ T dg(a:,xk)z) (60)
for all z € M. Here, n,, € C*°(M) is defined by 7,, = noexp,! and verifies
then that nx = 1 in Bs(xg), nx = 0 in M \ Bas(zk). The constant v, is «, =

(n(n —4)(n* —4)) 5. Note that we have that

exl%kl(z)> (61)

22

for all z € M, where we have considered exp,, : Bas(0) — Bas(zx) as a chart defined
on Bys(0) (the Euclidean ball of R™) and

_n—4
o (&) = M (), u(
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for all z € R™. Note that u € D3(R") is an extremal for the Sobolev inequality
(38) (see (40)) and that

A?u =2~ in R". (62)
Then we have that

Proposition 6.1. Let (M,g) be a compact Riemannian manifold of dimension
n > 5. Let (zr)reny € M and (ug)ren € Rso two converging sequences such that
limp oo e = 0. Then (Ug, py )ken € C°(M) is a Palais-Smale sequence for J.
More precisely, we have that

(Z) hmk—H—oo J(ul'lmluc) = %K?;Za
(i) lmg—stoo J (Ugy ) = 0 in H3(M)',
(491) Uz, — O weakly in H3 (M) when k — 400

In particular, (ug)ken does not converge strongly in H2 (M), since otherwise, it
would converge to zero (with (iii)), a contradiction with (i). We prove the Proposi-
tion. We let (xy) and (ux) as in Proposition 6.1. For the sake of simplicity, we let
Uk i= Ug,, .- In the sequel, we define the metric gy := expj, g, which is defined on
Bss(0), via the usual assimilation of T, M to R™. This metric satisfies that

(gk)z](o) = 57;j and (Fk)fj(()) =0 for all 7, 5, € {1, ...,TL}, (63)

where we denote as (Fk)fj(x) the Christoffel symbols with index 4, 7, p associated
to the metric g. In the sequel, we will often use that

dg(k, expy, () = |z|

for all k € N and all 2 € Bysy. This assertion is a consequence of (2) and the
isometric assimilation of T, M to R™ discussed in 1.1.4 before formula (1).

6.2.1. Estimates of zeroth and first order. We claim here that

lim [ Vugls + s = 0. (64)
k— oo

Indeed, We get that

n—4
2 2 Mk
uz dv = 2 (T —_—— dv
/M R /Mn () (ui+dg(w,xk)2) !

Mk n—4

< C () N

Bas(zk) we + dg(x, )2 g

n—4
Kk
< C e ]
- B25(0) (ui + |x|2) |gx| (z) d
n—4
1
< c/ﬁi/ <12) onl (i) da = o(1)
B,s,—1(0) + |z
k
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when k — 400 (note that one must distinguish the case n > 8, the case n = 8 and
the case n < 8). Similarly,

/ \Vuk|g dvy

—/ |Vuk|g dvg + / |Vuk|§ dvg
Bs(zy) MN\Bs ()
i Pk = Kk =

oo {(a2n) ) ()

[y @@ ( irer) ) \aer

. 1 nT74 1

SMQ/ )" (1) 0; <) 0; <) Vgl (prx) de + Cul ™

r B, —1(0)( ) 1+ [z[? PANT+ 2 el

H

dx
<Cui / — Ot = 0(1)
*Js _i(0) L+ [Pt g

) Vgrl(z) de + Cpj™

Hi

when k£ — +o00. Here again, one must differentiate the case n > 6, the case n = 6
and the case n < 6. Then (64) is proved.

6.2.2. Estimates of the L2 —norm. We claim that

lim  lim uin dvg = 0. (05)
R—400 k—+00 M\Bry,, (z1)

Indeed, we have that

/ uiu dvg
M\BR;Lk(ZEk)
Kk "
= G B e aa— dv
/Bé(xk)\BRuk (zk) (N% + dg(z7xk)2) g
# M "
L (et Y
M\Bs(z) (i + dg(z, wp)? g

= \/de +O(up

/Bs<o>\BM<o> (Mk + Il’2> )

:/ (1 2> L9k (pez) dz + O(u})
B, 1 (O\Br(0) \1+ 2]

:/ <1 2> Vgk|(0)dx + o / u2udx+0(1)
R\ Br(0) \ 1+ || R™\Br(0)

when k — +00. We have used (63). Then (65) is proved.

Concerning the behavior on Bry, (), we claim that

[ g1 n=4 f_
/ 2N o, = / (@) T (expy, () dr-o(L)|uxl| %~ ]l
BR;A;C(EIC) BR(O)
(66)
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where limy_; 4 o0 0(1) = 0 uniformly in ¢p € C°>°(M). We prove the claim:

_ f_
/ N dvy = / wilexpa, (2))2 " (exp, (2))v/ [0l @) da
Bryy, (zr) Bry,, (0)

- / wi(expy, (2)) d(exp,, (2)) dz + o(1) / 21 do,
BRuk (0)

BRMk (zk)

g1 n=4 t_
- /B o M T e () e+ o) 7
r(0

when k — 400 (we have used (63)), and then (66) is proved.

6.2.3. Estimates of the second-order term. We claim that

hm hm ||A Uk||L2 M\BRuk(xk)) = 0 (67)

R—+00 k—+o0

/ (Agug)® dvg :/ +/
M\BRpy,, (k) Bs(21)\BRy,, (Tr) M\Bs(zk)

n—4

n—4 2
ij L 2 bk =
_ i) (05 (22 )  —@no () =
/B(sw)\BRuk(o) <(gk) ( )< ’ <u2+wl2> )% \ 2y e )) l961()

+O(up™)

. 1 nz
- (9) (1) a()
/Ba,ll<0>\BR<o> PAL+ af?
'k

_(Fk)fj (1px)0p (1> 2) 2V |9k | () dz + o(1)

1+ |22

:/ ((gx)"7 (0)0s <1)2)2 |gx|(0) dx + o(1)
R\ B (0)

1+ |z]?
= / (Agu)? dz + o(1)
R™\BR(0)

when k& — 400 (here again, we have used (63) and the computations are different
depending on the dimension greater or smaller to 6), and then (67) is proved.

We claim that for all R > 0 and all function (Gg)geny € C(M) such that
limg s oo SUPR,,, (0) |G, — 1] = 0, there exists (ex(R))ren > 0 such that we have
that

[(Ag¢) 0 exp,, Gr — Ac(p 0 expy, ) L2(Br,, (0)) < (R[] 2 (68)



FOURTH ORDER EQUATIONS IN RIEMANNIAN GEOMETRY 39
for all k € N and for all ¢p € C°° (M), with limg_, 4 o €x(R) = 0. We prove the claim

/B ((Ag®) 0 exp,, G — Aglp o exp,, ))” da

Ry,

ii id 2
_ /B o, (@76 =) 30 0 ex,) + a0 o)’ o
< O / IV2(p 0 expy, ) + [Ve(p o exp,, )2 da
Bryu, (0

<O / V20]2 + [V l2 du,
BRy, Tr)

here, we have used (63). This proves (68).
Exercise: prove the last inequality above..

We claim that

n—4
[ dunguduy = [ AcubeluT voep,, () dotof) 9] e
BRM;C (zr)

Br(0)
(69)
where limy_, 1 o, 0(1) = 0 uniformly for all ¢ € C*°(M). We prove the claim. Using
(68) alternatively with Gy = v/|gx| or Gy = 1, we have that

[ agubgpdn = [ (@) oo, (Agw) o expy, Vg do
BRuk (wk)

BRuk (O)

— [ At oo, )Ag) o expy, do -+ ol unln 4]
BRuk (O)

= [ Acumoexpe)Aelv oexpy, ) do + ol ualgllvle)
BR#k (0)

n—

n_4
= [ euselp ™ v o exp, ) do + o [0 el )
Br(0)
and the claim is proved.

6.2.4. Proof that J(uy) is bounded. Taking 1) = uy, in (69) and (66) and using (67),
(65) and (64), we get that

. 2 o 2 . ot o of
kgrfoo M(Aguk) dvg—/n(Agu) dz and kginoo y uj, dvg —/nu dz,

and [lug||gz = O(1) when k — +00. Then, we get that

1 1
J(ug) = 3 /R(Agu)2 dx — o /Rn |u|2m dx 4+ o(1)

where limg_, 4+ 0(1) = 0. We compute explicitely the right-hand-side. Let R > 0.
Integrating by parts, we get that

/ (Agu)’dz = / uAgu dx + / (w0, Agu — 0, Agu) do
Br(0) Br(0) 9Br(0)

/ u? da + / (udy Agu — Oy uleu) do
Br(0) 9Br(0)
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Letting R — +00 and using the explicit expression of u, on gets that [, (A¢u)? dz =
Jan u?" dz. Since u is an extremal for the Sobolev inequality (38), one gets that
fRn u? dr = K{n/4, and then

2 _n
lim J(ug)=—-Kp*.
n

k— 400

6.2.5. Proof that J'(uy) goes to zero. Let ¢ € C°(M). Recall that we have that
J (ug).0 = /M (AgupAgp + A((Vup), (Vo)?) + aupp) dvg — /M uin_lcpdvg.
With (64), we have that
Ty = [ Agudgodo, = [ uF' e doy+ o0l el

where limy_, 1 0(1) = 0 independantly of ¢. Let R > 0. With (65), (66), (67) and
(69), we get that

#_
Nsz/ Awmwm</ W op + e (R, @) 160 2 + oD 12
Br(0) BRr(0)

(70)
where limy_, o0 €4 (R, ) = 0 uniformly in ¢ and

n—4
(@) = n(uw)py” ¥ o expy, (1)
for all x € R™ and k large enough. Note that ¢ € C°(R™). We have that

/ Aculepy dx / (Agu)? dx (/ (Agpr)? dx)
R\ Br(0) R™\Br(0) "

G(R)HSOICHDg(Rn) (71)

where limp_, 0 €(R) = 0 (we have used here that Agu € L?(R™)). Again with
Hoélder’s inequality, we have that

/ u2n_1<pk dzx
R\ Br(0)

2

IA

IN

211;1 N
2 of
< / u? d (/ Qpin d:c) ’
R"\Br(0) "
< Rkl pzem (72)

where limp_, 4o € (R) = 0 (we have used here that u € LQu(R") and the Sobolev
inequality (38)). Now, one easily gets that there exists C' > 0 such that

AN

lekllpzeny < Clielmz (73)
for all k € N and all ¢ € C*>(M).
Exercise: prove (73).

Plugging (71) and (72) in (70), we get that

#_
J'(ug).p = s AguAgsDkdx—/ u? op dr + e (R, @)l 2 + oDl gz (74)
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where limp_, 4 oo limg— 1 o0 €x(R, ) = 0 uniformly in ¢. Integrating by parts and
using equation (62), one gets

/ AguAgapkdx:/ Agugakdx:/ u? Loy de,
R'I‘l, RTI, n

for all k£ € N. Plugging this inequality in (74) and letting R — 400, one gets that
there exists (ex)gen > 0 such that

[T (ur) o] < exllopll iz

for all k € N and all ¢ € C*°(M), with limg_ o€ = 0. Then J'(u;) — 0
in H3(M)" when k — +o0 (we have used here that H2(M) is the completion of
(M) for || - ||z )-

6.2.6. Conclusion and remark. Let ¢ € C°°(M). We have that

‘/ AgurpAgpdug / +/
M Bry, (z1) M\BRy., (zx)

< Agukll2lAgellz2(Bry, () T 1AgukllL2(an\ B, (@) [ DgPll2

<

Ruy,

< CllAgollr2(B,, @) + CllAgukllL2(a\ Bay, (24))-
Since ¢ € C°(M), limg_ 1o st = 0 and (67) holds, we get that

kgr_{loo /M AgupAgpdug =0
for all ¢ € C°°(M). In particular, with (64), we get that ux — 0 weakly in H3(M)
when k — 4o00. To conclude, we have constructed a sequence (uy)ren € Ha(M)
such that .

(i) limpoqoo J(ur) = 2K, 1,

(ii)  limp_y o0 J'(ug) = 0 in HZ(M)',

(iii) ur — 0 weakly in H3(M)" when k — +o0
This proves Proposition 6.1.

This example shows that situations more subtle than (59) can happen. This is due
to the critical exponent 2°.

Exercice: Let ¢ € [2,2%) and let the functional J; : u — 3 [, uPyudv, —
%fM |u|? dv, for uw € H3(M). Show that every Palais-Smale sequence for .J; con-

verges strongly in H2 (M) up to the extraction of a subsequence. It is recommended
to take inspiration from the proof ot Theorem 2.2.

Indeed, the lack of strong convergence of the Palais-Smale sequences for J can
be described by the functions u, ., above. Following standard terminology, we
denote the functions (ug, ., )ken as bubbles. The following theorem shows how
fundamental they are for the description of Palais-Smale sequences.

6.3. The main result. The description of Palais-Smale sequences for critical func-
tionals goes back to Sacks-Uhlenbeck [Sac| and to Wente [Wen]. A very beautiful
and optimal description is due to Struwe [Str], where the Palais-Smale sequences for
a critical functional associated to a second order elliptic operator on an open subset
of R™ was provided. The result, due to Hebey and Robert [HeRol] we present here
is the extension of Struwe’s result to the functional J, that is a functional associated
to a fourth order operator P, on a Riemannian manifold.
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Theorem 6.1. Let (up)pen € H3(M) be a Palais-Smale sequence for J. We
assume that uy > 0 for all k € N. Then there exists us, € H3(M), there exists N €

N, there exists N sequences of converging points (xi1)ken € M, ..., (Tr,N)reny € M,
there exists N sequences of positive numbers (Mk,l)keN € Ryg, ...y (,uk’N)keN € Ryg
such that limy_, 4o s = 0 for all i € {1,..., N} and such that

N

U = Uoo + ZB’W + Ry,
i=1
where limy_, 4o Ry = 0 in H3 (M) and By; := Uq, , ., for alli € {1,..,N} and
all k € N are bubbles. Moreover, the energy splits, that is

N -
J(up) = J(uoo) + ZJ(Bk,i) +0(1) = J(uw) + (nKn4> N +0(1)

i=1
where limy_, 1o, 0(1) = 0.

In other words, the lack of strong convergence of the sequence (uy) to its weak limit
Uso 18 entirely contained in the functions (By;)ken, and this lack of convergence
is quantified: the difference between the energy of u; and the energy of uy, is a
multiple of a fixed threshold.

For the clarity of theses notes, we have taken u; > 0. Actually, a similar decom-
position holds with bubbles defined as in (61), where u € D3(R"™) N C*°(R") is a
solution of AZu = [u|2*~2u on R™. We refer to [HeRol] for this point.

In the following, we proove Theorem 6.1. Actually, we will not prove Step 4, which
the most complicated step, and we refer to [HeRol] for the details. From now on,
we let (ug)ren € H3(M) be a Palais-Smale sequence for J. The idea of the proof
is as follows: we first prove that the Palais-Smale sequence converges weakly, and
we substract the weak limit to the sequence. We then obtain a new Palais-Smale
sequence (for a new functional). If this new sequence carry enough energy, we
substract a bubble and get another Palais-Smale sequence whose energy is lowered
by a quantum. We do this process again, and it must finish since we substract a
quantum at each step. Then the ultimate sequence has got enough small energy to
converge strongly.

6.4. Proof of Theorem 6.1: Step 1. We claim that there exists C' > 0 such that
k)l gz < C (75)

for all £ € N. We prove the claim. Coimputing J'(uy).ur and using that (uy) is a
Palais-Smale sequence, we get that

#
/ wp Pyug dvy — / g% dvg + o(1) k| 1,
M M
where limy_, 4o 0(1) = 0. Since J(uy) is bounded, we get that
#
{ Jur lual”* dvg = O(1) + o1 3 } (76)

Jag uk Py dvg = [y [k dvg = O(1) + o(1)|ux |
With Hélder’s inequality and the first equality on (76), we get that

| utde, = 0) + o(1) . (77)
M



FOURTH ORDER EQUATIONS IN RIEMANNIAN GEOMETRY 43

The second equality of (76) yields that there exists C' > 0 such that

/ (Ayup)? dv, < c/ |Vuk\§dvg—|—0/ u? dvy + O(1) + o(1) | 12-
M M M

Using inequality (2.2) with e = (2C)~!, and (77), we get that

/ (Agur)? duy < O(1) / W dvg + O(1) + o(1)[[ull 2 < O(1) + o1k 12
M M

when k — 4o00. Taking (2.2) with e = 1 and using (77), we get that
lurllzz = O(1) + o(1) k| 3
when e — 0, which implies (75). This proves the claim.

It follows from the weak compactness of the unit ball of H5(M) (see Theorem 1.2)
that, up to a subsequence, we can assume that there exists us, € H3(M) such that

Up — Uso weakly in Ha(M) in  lim wup = us strongly in HZ(M). (78)

k——+oo

In addition, still up to a subsequence, we can assume that limg_, 4o ug () = teo ()
for a.e. x € M. Let ¢ € C°°(M). Since J'(uy).o = o(1) when k — 400, we have
that

/ (AgukAggo dvg + A(Vul , Vo) + aupp — |uk|2ﬁ_2uk<p) dv, = o(1)
M
when k& — +00. Since uy, goes weakly to us, when k — +o00, we get that
/ (AgumAgg) dvg + A(VuZ, V') + ausp — |uoo|2ﬁ’2uoocp> dvg =0
M

for all ¢ € C*°(M). It then follows that us is a weak solution to (F), and then,
by Proposition (3.1), us, € C*(M) satisfies

Aguoo — divy (AVUZ) + aue, = |uoo|2n_2uoo. (79)
Note that since uj goes to us, almost everywhere when k — 400 and since uy > 0,

we have that us, > 0.

6.5. Proof of Theorem 6.1: Step 2. We let v = uy, — too, where uo, € H3 (M)
is the weak limit of (uy)ren defined in (78). In particular, we get that

im el = 0. (80)

We define I : H3(M) — R such that

1 1 #
1) =5 [ (B vy =g [ fuP v,

for all w € H3(M). We claim that

{ (¢)  (vk)ken is a Palais-Smale sequence for I, and
(13)  limp—qo0 [(vg) = J(ur) — J (Uoo)-
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We prove the claim. We have that
J(ug) = J(Uoo + k)
1 1
= 3 /M(Aguoo)2 dvg + /M Ao Aguy dvg + 3 /M(Aguk)2 dvg
1
+/ AVul, Vi) do, — —/ oo + v|* dvy.
M 28 Jur
Since vy goes weakly to 0 in H2(M) and strongly in HZ(M), we get that
1
J(ur) = J(use) + I (vg) — @/ (oo + vl = ool = [ox]*") dug +0(1) (81)
M

when k — 4o00. Then, as in (54), we get that

lim I(ug) = J(ur) — J(uso)- (82)
k—+o00
Let ¢ € C*°(M). We have that
J(ur)p = J'(uso + i)

= J'(uso)-p + I'(vi).0 Jr/ A(VUZE,V@#) dvg +/ avip dvg
M M
i i _
[l 0P+ ) PP = o) )
M
With (79), we get that J'(us).¢0 = 0. With Holder’s inequality, we get that

/A(Vv,f,Vga#)dvg—l—/ avip dug
M M

where C' > 0 is independant of k and . The following inequality will be useful
here: for any g > 2, there exists C'(¢) > 0 such that

||z +y 7 (@ +y) — 2|72z — [y|"y| < Cg)(Jx|*?|y|+]y|T7?[2]) for all 2,y € R.

< Cllokllmz el a2 (84)

(85)
With (85), we then get that
:
‘/ (|u°° +vk‘2n72(u00 +vk) — |u00|2ﬁizuoo - |Uk|2 721}1“) P dug
M
' '
<C [ (sl 2lonl + o2 e ) el oy
M
' i
< oo * 2 ore] + vkl 2 o 2 [l 25 -
28 —1
Since u € C*(M), it is bounded in L and then
' . '
/ (|uOo + 02 T2 (Uoo F UR) — [too]® " Htoe — U |? zvk) @ dug
M
i
<0 (ol g+l 20 ) (56)
2f —1 2f 1

Pluging together (84) and (86) in (83) and using the Sobolev inequality (4), we get
that

f_
IJ'(Uk)-soI'(vk)-WISC<||vkH§+|Ivkll25nl+lllvkl2 2l _as >||90||H22 (87)

281
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for all K € N. Since v, — 0 weakly in H3(M) when k& — +oo and since the
embeddings HZ(M) < L9(M) is compact for 1 < ¢ < 2% and also with (80), we
get that

. o _9o .
i (ol + ol g+ =2l ) =0,

28 -1 28 -1

Then, since (uy) is a Palais-Smale sequence for J, we get with (87) that (vg)ren is
a Palais-Smale sequence for I. This last assertion and (82) prove the claim.

6.6. Proof of Theorem 6.1: Step 3. We let
B = kgrfoo I(vg). (88)
We claim that

2 _=n .
B8 < EKn t = kEI-sI-loo vkl 2y = 0 and B = 0.

We prove the claim. Definition (88) rewrites
1 1 #
3 Gy =g [ 10wl oy = 3+ o1 (9)

when k — 400. Since (vg)ren is a Palais-Smale sequence for I, computing I’ (vg). v,
we get that

/ (Agug)? dvg = / |Uk|2jj dvg + o(1) (90)
M M
when k — +o00. Equations (89) and (90) yield
[ @gn?avg = [l oy +01) = 2 + o) (1)
M M 2

when k& — 4o00. The Sobolev inequality (42) and (80) yield

oF
(/ |Uk|2u d”g) < Kn/ (Ag“k)2 dvg + o(1)
M M

when k — +o00. Plugging (91) in this inequality, and letting k& — 400, we get that

(w); Sk
2 - 2

This equality and %2 < K, * yield 8 = 0. With (91) and (80), we get that
limy— 4 oo [|vk|[zrz = 0, and the claim is proved.

Exercice: Prove the claim using only (46) instead of (42).

6.7. Proof of Theorem 6.1: Step 4. We assume that 8 > 0. Then there exists
a converging sequence (Zr)reny € M, there exists a sequence (ug)reny € Rso such
that limy_, ;o = 0 such that, letting wy, := v, — Uz, u,, We have that

(1)  (wk)ken is a Palais-Smale sequence for I,
(i)  I(wi) =1I(vi) — 2K, * + o(1) when k — +00
(iit) wg — 0 weakly in H3(M) when k — +oo0.
This point is actually the crucial point: it says that with a certain amount of energy,

one can substract a bubble without changing the nature of the sequence. We refer
to [HeRol] for the proof of this result.
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6.8. Proof of Theorem 6.1: Step 5. The conclusion of the proof goes through
an induction argument. Given p € N*, We say that 7, holds if for any (vi)ren
Palais-Smale sequence for I such that (80) hold and

2 _n
limsupI(vy) <p-—Kp*
k— o0 n

for all k € N, then there exists N € N bubbles (B 1)ken, ..., (Bk n)ken such that

N
v = ZBk,i + Rk,

i=1

where limy,_, oo R = 0 in H3(M). Moreover, the energy splits, that is

—_n
4

N
T = 3" I(Bis) +o(1) = (iKn ) N +o(1)
=1

where limy_, 1o 0(1) = 0. We claim that #, holds for all p € N. Step 3 yields that
1 holds. We let p € N* such that H, holds, and we let (vy)ren a Palais-Smale

sequence for I such that limsup,_, . I(vx) < (p+ 1) - %K;% for all k € N. If
v — 0 strongly in H3(M), then we are done. Otherwise, it follows from Step 4
that there exists a bubble (B 1)ken such that wy := v — By i, is a Palais-Smale

sequence for I such that I(wg) = I(vg) — %K;% + o(1) when k — +o00, and then
lim supy,_, 4 o I (wr) < p- %K,:%. Since H,, holds, we get that there exists N bubbles
(Bk,Q)k€N7 ey (Bk,N+1)kEN such that

N+1

wy = Z By + Ry,

i=2
where limy,_, oo Ry = 0 in H3(M), and such that

N
I(wy) = ZI(Bk,i) +o(1) = (iK{Z> N +o(1).
i=2

Coming back to vy, we get that H,; holds. Theorem 6.1 follows from Step 2 and
Step 5.
7. APPENDIX: PROOF OF THEOREM 3.2

We let A a smooth symmetric (2,0)—tensor on M and a € C*°(M). We assume
that the operator Py = A2 —divy(A(V-)#)+a is coercive, that is there exists A > 0

such that
/ uPyudvg > /\/ u? dvy (92)
M M
for all u € H3(M).
7.1. Step 1. Let p > 1. We claim that there exists ¢ > 0 such that
l[ull, < el Pyull, (93)

for all w € HY(M). We prove the claim by contradiction and assume that for all
i € N*, there exists u; € HJ(M) such that [|u;|l, = 1 and ||Pyull, < it It
follows from Theorem 1.7 that there exists C' > 0 such that ||u;[ zr < C. Since the
embedding HY (M) < HY(M) is compact (see [Adal), there exists a subsequence
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(uir) of (u;) such that lim;_, 4o u; = u strongly in HY(M). We let f; := P,u;. For
any ¢ € C*>°(M), we have that

/ (At Ay + A((Vur ) #, (Vo)#) + aupp) du, = / For 0 dvg.
M M

Letting i+ — +o00, we find that Pju = 0 in the weak sense. It then follows from
Theorem 1.8 that u € C*(M). With (92), we get that u = 0. A contradiction since
llu|lp = limy; 4 o0 ||uir||, = 1. This proves the claim.

7.2. Step 2. Let a € (0,1). We claim that for any f € C%%(M), there exists
u € C*(M) such that P,u = f. We prove the claim. We let the functional

F(u) = %/M uPyudvg — /M fudvg

for all w € H3(M). Since P, is coercive, we get that
(w) 2 Allullz = [Ifll2llull2 = === (94)

Then p = inf{F(u)/u € H3(M)} > —oo is defined. Let (u;) € H3(M) be a
minimizing sequence for p, that is

lim F(u,) = p. (95)

1—+o0
With the first inequality of (94), we get that ||u;||2 < C for all ¢ € N. With (95)
and Exercise [COER], we then get that [u| gz = O(1) when i — +oc. It follows
from Theorem 1.2 that there exists a subsequence (u;) € H3(M) and there exists
u € H3(M) such that uy — u weakly in H3(M) when i — +oo. Up to extracting
another subsequence, it follows from Theorem 1.6 that lim; . u;y = w strongly
in HZ(M). We then get through easy calculations that

1

; /M(Ag(ui/ ) du, + o(1) =+ o(1)

when ¢ — 4o00. Since p is the infimum, we get that p < F(u) and then

F(Ui) = .F(u) +

z—1>l+moo M(Ag(W/ ) v, =0,
and then p = F(u). Clearly F € C'(H3(M),R), and then F'(u) = 0, that is
Pyu = f in the weak sense. It then follows from Theorem 1.8 that u € C*(M), and
the claim is proved.

7.3. Step 3. Let p > 1. We claim that for any f € LP(M), there exists a unique
uw € H{(M) such that Pyu = f. We prove the claim. Let (f;);en € C°°(M) such
that lim;_, o fi = f strongly in LP(M). For any i € N, let u; € C*(M) such that
Pyu; = f; (this is s consequence of Step 2). With Theorem 1.7 and the coercivity
of P,, we get that for any ¢,7 € N

i = uillgroary < C - (i = Fill ey + llwi = ujllp) < (4 )CIfi = fill Loany-

Then (u;) is a Cauchy sequence for HY (M), and then there exists v € HY (M) such
that lim; 400 u; = u in HY(M). Clearly we have that P,u = f. Assume that
v € HY (M) satisfies Pjv = f, then Py(u — v) = 0, and it follows from (92) that
u = v. This proves the claim.
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The existence part of Theorem 3.2 is proved in Step 3 above. The apriori estimate
of Theorem 3.2 is a consequence of (93) and Theorem 1.7.
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