ON THE EQUIVALENCE OF THE KAZDAN-WARNER AND THE POHOZÃEV IDENTITIES

OLIVIER DRUET AND FRÉDÉRIC ROBERT

Abstract

In this very short note, we enlighten a strong relation between the Kazdan-Warner identity on the standard sphere and the Pohozãev identity on the Euclidian space. As far as we know, such a relation has never been explicitly stated.

Let Ω be a smooth bounded open subset of \mathbf{R}^{n} with $n \geq 3$ and let $\tilde{f} \in C^{\infty}(\bar{\Omega})$. If $\tilde{v} \in C^{\infty}(\bar{\Omega}), \tilde{v}>0$ verifies

$$
\begin{equation*}
\Delta_{\xi} v=\tilde{f} v^{2^{*}-1} \quad \text { in } \Omega \tag{1}
\end{equation*}
$$

where ξ is the Euclidean metric, $\Delta_{\xi} v=-\partial_{i}^{i} v$ denotes the Euclidean Laplacian with the minus sign convention and $2^{*}=\frac{2 n}{n-2}$, the Pohozãev identity [2] asserts that

$$
\begin{align*}
\frac{n-2}{2 n} \int_{\Omega}(x, \nabla \tilde{f})_{\xi} v^{2^{*}} d v_{\xi}= & \int_{\partial \Omega}(x, \nu)_{\xi}\left(\left(\frac{\partial v}{\partial \nu}\right)^{2}-\frac{|\nabla v|_{\xi}^{2}}{2}+\frac{n-2}{2 n} \tilde{f} v^{2^{*}}\right) d \sigma_{\xi} \\
& +\frac{n-2}{2} \int_{\partial \Omega} v \frac{\partial v}{\partial \nu} d \sigma_{\xi} \tag{P}
\end{align*}
$$

where ν denotes the outer normal vector of $\partial \Omega$. Independently, let (S^{n}, h) be the standard unit sphere of \mathbf{R}^{n+1} and let $f \in C^{\infty}\left(S^{n}\right)$. If $u \in C^{\infty}\left(S^{n}\right), u>0$ verifies

$$
\begin{equation*}
\Delta_{h} u+\frac{n(n-2)}{4} u=f u^{2^{*}-1} \tag{2}
\end{equation*}
$$

where $\Delta_{h} u=-\operatorname{div}_{h}(\nabla u)$, the Kazdan-Warner identity [1] asserts that for any $\psi \in C^{\infty}\left(S^{n}\right)$ a first eigenfunction of Δ_{h},

$$
\begin{equation*}
\int_{S^{n}}(\nabla f, \nabla \psi)_{h} u^{2^{*}} d v_{h}=0 \tag{KW}
\end{equation*}
$$

As it is well known, the first eigenvalue of Δ_{h} is $\lambda_{1}=n$ and any eigenfunction associated to λ_{1} is, up to a constant scale factor, of the form $\psi=\left(x_{0}, x\right)$ where $x_{0} \in S^{n}$ and $\left(x_{0}, x\right)$ denotes the scalar product in \mathbf{R}^{n+1}.

We prove here that $(K W)$ is strictly equivalent to the limit of (P) as $\Omega \rightarrow \mathbf{R}^{n}$. For that purpose, we let as above f and $u \in C^{\infty}\left(S^{n}\right)$ verifying (2). We let also $x_{0} \in S^{n}$ and $\psi(x)=\left(x_{0}, x\right)$. Then, by $(K W)$,

$$
\int_{S^{n}}(\nabla f, \nabla \psi)_{h} u^{2^{*}} d v_{h}=0
$$

Date: September 1999.

Let now $\pi: S^{n} \rightarrow \mathbf{R}^{n}$ be the stereographic projection of north pole x_{0}. We set $\tilde{f}=f \circ \pi^{-1}, \tilde{u}=u \circ \pi^{-1}$ and $\tilde{\psi}=\psi \circ \pi^{-1}$. Since $\left(\pi^{-1}\right)^{*} h=4\left(1+|x|^{2}\right)^{-2} \xi$, we get

$$
\int_{\mathbf{R}^{n}}(\nabla \tilde{f}, \nabla \tilde{\psi})_{\xi}\left(1+|x|^{2}\right)^{2-n} \tilde{u}^{2^{*}} d v_{\xi}=0
$$

A simple computation gives

$$
\tilde{\psi}(x)=\frac{|x|^{2}-1}{1+|x|^{2}}
$$

so that

$$
\nabla \tilde{\psi}(x)=4\left(1+|x|^{2}\right)^{-2} x
$$

The identity $(K W)$ then becomes

$$
\begin{equation*}
\int_{\mathbf{R}^{n}}(\nabla \tilde{f}, x)_{\xi}\left(1+|x|^{2}\right)^{-n} \tilde{u}^{2^{*}} d v_{\xi}=0 \tag{KWP}
\end{equation*}
$$

We claim now that $(K W P)$ is the limit of the Pohozãev identity (P) as we let Ω go to \mathbf{R}^{n}. Indeed, since u and f verify (2), if we set

$$
v=\left(\frac{2}{1+|x|^{2}}\right)^{\frac{n}{2}-1} \tilde{u}
$$

we have that v and \tilde{f} verifies (1). So, by (P), for any $R>0$,

$$
\begin{aligned}
\frac{n-2}{2 n} \int_{B(0, R)}(x, \nabla \tilde{f})_{\xi} v^{2^{*}} d v_{\xi}= & \int_{\partial B(0, R)}(x, \nu)_{\xi}\left(\left(\frac{\partial v}{\partial \nu}\right)^{2}-\frac{|\nabla v|_{\xi}^{2}}{2}+\frac{n-2}{2 n} \tilde{f} v^{2^{*}}\right) d \sigma_{\xi} \\
& +\frac{n-2}{2} \int_{\partial B(0, R)} v \frac{\partial v}{\partial \nu} d \sigma_{\xi}
\end{aligned}
$$

Now, since

$$
|v(x)| \leq C|x|^{2-n} \quad \text { and } \quad|\nabla v(x)| \leq C|x|^{1-n}
$$

the right-hand side term above goes to 0 and the left-hand side term is absolutely convergent as we let R go to $+\infty$ so that we obtain

$$
\int_{\mathbf{R}^{n}}(\nabla \tilde{f}, x)_{\xi} v^{2^{*}} d v_{\xi}=0
$$

which is exactly $(K W P)$. The above claim is proved.

References

[1] Jerry L. Kazdan and F. W. Warner, Scalar curvature and conformal deformation of Riemannian structure, J. Differential Geometry 10 (1975), 113-134.
[2] S. I. Pohožaev, On the eigenfunctions of the equation $\Delta u+\lambda f(u)=0$, Dokl. Akad. Nauk SSSR 165 (1965), 36-39.

Université de Cergy-Pontoise, Département de Mathématiques - Site Saint-Martin,
2, Avenue Adolphe Chauvin, 95302 Cergy-Pontoise Cedex, France
E-mail address: druet@u-cergy.fr
E-mail address: Frederic.Robert@math.u-cergy.fr

