ON THE EQUIVALENCE OF THE KAZDAN-WARNER AND
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ABSTRACT. In this very short note, we enlighten a strong relation between the
Kazdan-Warner identity on the standard sphere and the Pohozaev identity
on the Euclidian space. As far as we know, such a relation has never been
explicitly stated.

Let © be a smooth bounded open subset of R™ with n > 3 and let f € C=(Q).
If 5 € C(Q2), © > 0 verifies

Acv=fo> "1 inQ (1)

where ¢ is the Euclidean metric, Agv = —d!v denotes the Euclidean Laplacian with
the minus sign convention and 2* = %7 the Pohozaev identity [2] asserts that
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where v denotes the outer normal vector of 9. Independently, let (S™,h) be the
standard unit sphere of R"™! and let f € C°°(S™). If u € C°°(S™), u > 0 verifies

Apu + n(n4— 2)

where Apu = —divy (Vu), the Kazdan-Warner identity [1] asserts that for any
P € C°(S™) a first eigenfunction of Ay,

uw= fu* ! (2)

[ (9596, du =0 (W)

As it is well known, the first eigenvalue of Ay is A\; = n and any eigenfunction
associated to A is, up to a constant scale factor, of the form ¢ = (z¢,x) where
2o € S™ and (z0, ) denotes the scalar product in R"1.

We prove here that (KW) is strictly equivalent to the limit of (P) as Q@ — R™.
For that purpose, we let as above f and u € C°°(S™) verifying (2). We let also
xo € 8™ and ¢¥(x) = (zo,x). Then, by (KW),

/ (V£, V), u? dvy, =0
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Let now 7 : S — R"™ be the stereographic projection of north pole xy. We set
f=for a=uortand ¢ =¢ont Since (n~1) h=4(1+ |x|2)72 &, we
get

[ (R0 (14 o) @ due =0

A simple computation gives
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so that ~ )
Vip(z) =4 (14 |z?) "z
The identity (KW) then becomes
[ R ) i v =0 (KWP)

We claim now that (KW P) is the limit of the Pohozaev identity (P) as we let Q
go to R™. Indeed, since u and f verify (2), if we set

2 \*'.
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we have that v and f verifies (1). So, by (P), for any R > 0,
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Now, since

[v(@)] < Clz*™ and  |[Vu(z)| < Claf' ™"
the right-hand side term above goes to 0 and the left-hand side term is absolutely
convergent as we let R go to +o00 so that we obtain

/ (Vf,2)ev? dve =0
which is exactly (KW P). The above claim is proved.
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