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HOMOTOPY INVARIANCE OF COHOMOLOGY AND SIGNATURE OF

A RIEMANNIAN FOLIATION

GEORGES HABIB AND KEN RICHARDSON

Abstract. We prove that any smooth foliation that admits a Riemannian foliation struc-
ture has a well-defined basic signature, and this geometrically defined invariant is actually
a foliated homotopy invariant. We also show that foliated homotopic maps between Rie-
mannian foliations induce isomorphic maps on basic Lichnerowicz cohomology, and that the
Álvarez class of a Riemannian foliation is invariant under foliated homotopy equivalence.
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1. Introduction

One of the interesting problems of the theory of foliations is to compute the basic index
of a transverse Dirac-type operator in terms of topological invariants, a generalization of the
Atiyah-Singer theorem. This question, which was first addressed by A. El Kacimi (see [8,
Problem 2.8.9]) and by F.W. Kamber and J. Glazebrook (see [10]) in the 1980’s, has attracted
significant attention by researchers during the last decades and was open for many years.
In order that such an index be well defined and finite, we restrict to the class of foliations
where the normal bundle is endowed with a holonomy-invariant Riemannian structure, the
setting of Riemannian foliations; these were first defined in [24], and good information on
these foliations and their analytic and geometric properties can be found in [25] and [18].
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2 G. HABIB AND K. RICHARDSON

On any such Riemannian foliation, a so-called bundle-like metric can be chosen on the whole
manifold that restricts to the given transverse metric on the normal bundle. For such a
metric, the leaves of the foliation are locally equidistant.

We are particularly interested in the basic signature operator, a transversal version of
the ordinary signature operator on even-dimensional manifolds. Several results have been
obtained in this direction. J. Lott and A. Gorokhovsky in [11] state a formula under some
conditions involving the stratification and leaf closures of the foliation. As a special case,
they get an application to the basic signature operator, showing that the basic signature
of the foliation is the same as the signature of the space of leaf closures of maximal orbit
type, again under various conditions. In the paper [6] of J. Brüning, F.W. Kamber and K.
Richardson, the authors obtain a general formula of the basic index of a transversally elliptic
operator on a Riemannian foliation. Using these previous results, it is clear that the basic
signature operator is defined as a Fredholm operator on the space of basic sections of a foliated
vector bundle, and thus its index is dependent only on the homotopy class of the principal
transverse symbol of the operator. However, this type of homotopy invariance, which is used
in Proposition 3.5, is a weaker special case of foliated homotopy equivalence, which is simply
a homotopy equivalence between foliations where leaves get mapped to leaves. In this paper
we discuss a much more transparent description of the general homotopy invariance of the
basic signature of a Riemannian foliation.

In what follows, we remark that we are studying properties of operators on basic forms,
those differential forms that in a sense are constant on the leaves of the foliation. The basic
forms are forms in the transverse variables alone when restricted to distinguished foliation
charts. The exterior derivative maps basic forms to themselves, and from this differential
we construct the basic cohomology groups. The basic signature pairing is a pairing on
the half-dimensional cohomology, similar to the case of the ordinary signature of smooth
manifolds.

In [5], M. Benameur and A. Rey-Alcantara proved directly that a foliated homotopy equiv-
alence between two closed manifolds M and M ′ endowed respectively with taut Riemannian
foliations F and F ′ implies that the corresponding basic signatures are the same. The
tautness assumption (also called homologically orientable in some places) means that there
exists a metric for which the leaves are immersed minimal submanifolds. One main idea of
the proof was that any such equivalence induces an isomorphism between the corresponding
basic cohomology groups of M and M ′. One important observation is that in order to make
this standard version of basic signature on cohomology well-defined, the tautness assumption
is required, because in general the corresponding de Rham operator does not map self-dual
to anti-self-dual basic forms. On a Riemannian manifold (M, g) endowed with a Riemannian
foliation where the leaves are not necessarily minimal, the authors in [13] defined the basic
signature operator in terms of the index of the so-called twisted Hodge – de Rham operator
and the twisted basic Laplacian. These latter operators are formed using the twisted exte-

rior differential d̃ = d− 1
2
κb∧, where κb is the projection of the mean curvature one-form to

basic forms (see Section 2 for details). From [2] it is well-known that κb is always closed and

determines a class [κb] (the Álvarez class) in basic cohomology that is independent of the
bundle-like metric and of the Riemannian foliation structure. We point out here that our
definition was not possible for the ordinary basic Laplacian since it does not commute with
the transverse Hodge star operator. What is interesting here is that the whole bundle-like
metric is used to form these operators and cohomology groups and classes, but as we will
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soon see, the dimensions and indices coming from these groups and operators do not depend
on the metric choices. In this paper, our aim is to understand and elucidate properties of
the basic signature on all Riemannian foliations on closed manifolds, in fact on all foliations
admitting such structures.

The paper is organized as follows. We first introduce the terminology concerning Riemann-
ian foliations, basic cohomology, twisted basic cohomology and basic signature in Section 2.
We discuss known results from [5] concerning the homotopy invariance of ordinary basic
cohomology and the homotopy invariance of basic signature in the case of taut Riemannian
foliations.

Several new ideas are presented in Section 3.1. In Theorem 3.1 we prove that there is a

well-defined pairing in twisted basic cohomology H̃r(M,F) × H̃s(M,F) → H
q−r−s
d (M,F)

given by ([α] , [β]) 7→ ∗ [α ∧ β], and this feature allows us to define a signature pairing when
r = s = q

2
:

([α] , [β]) 7→

∫

M

α ∧ β ∧ χF .

Neither of these pairings would make any sense in ordinary basic cohomology unless (M,F)
is taut, but by using twisted basic cohomology, the pairing is well-defined on all Riemannian
foliations. Note that the definitions of both twisted basic cohomology and the signature
pairing require use of a given bundle-like metric, but in Proposition 3.5 we show that the
invariants of the signature pairing are actually smooth foliation invariants. In [13] it was
shown already that the dimensions of the twisted basic cohomology groups are independent
of the metric or transverse structure of the foliation.

In Section 3.2, we prove properties of basic Lichnerowicz cohomology, which was studied
previously in [26], [4], [15], [1], [21] and only uses the smooth structure of the foliation.
Given a closed basic one-form θ, the map d + θ∧ acts as a differential on basic forms and
thus yields cohomology groups H∗

d+θ∧ (M,F). The twisted basic cohomology discussed above
is a special case of this with θ = −1

2
κb. In Corollary 3.10, we show that foliated homotopies

induce equivalent maps on basic Lichnerowicz cohomology — by “equivalent” we mean the
same map up to multiplication by a positive basic function. In Proposition 3.11, we prove
that foliated homotopy equivalences induce isomorphisms on basic Lichnerowicz cohomology.
The importance of using the Lichnerowicz cohomology is that we are able to use all possible
closed one forms at once, and this insight leads to the results in Section 3.3.

In Proposition 3.12 we immediately use the Lichnerowicz cohomology to prove easily that
the codimension and dimension of a foliation are foliated homotopy invariants. In Proposition
3.13, we show that for a transversely oriented Riemannian foliation (M,F) of codimension q,
basic Lichnerowicz cohomology satisfies twisted Poincaré duality, namely that for 0 ≤ k ≤ q,

Hk
d−θ∧ (M,F) ∼= H

q−k

d−(κb−θ)∧ (M,F) .

We note that the twisted duality discovered by F. W. Kamber and Ph. Tondeur in [16]
and the Poincaré duality for twisted basic cohomology, proved by the authors in [13], are
the special cases θ = 0 and θ = 1

2
κb, respectively. Using this duality, we are able to

prove in Proposition 3.16 that a foliated homotopy equivalence between transversely oriented
Riemannian foliations (M,F) and (M ′,F ′) pulls back the Álvarez class [κ′b] ∈ H1

d (M
′,F ′)

to the Álvarez class [κb] ∈ H1
d (M,F). We remark that it has been shown previously by H.

Nozawa in [19], [20] that the Álvarez class is continuous with respect to smooth deformations
of Riemannian foliations. Finally, in Theorem 3.19, we show that up to a sign depending
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on orientation, the basic signature, now defined on all foliations admitting a Riemannian
foliation structure, is a foliated homotopy invariant.

2. Preliminaries

2.1. Riemannian foliations. In this section, we will recall some basic facts concerning
Riemannian foliations that could be found in [25].

Let (M,F) be a closed Riemannian manifold of dimension n endowed with a foliation
F given by an integrable subbundle L ⊂ TM of rank p, with n = p + q. The subbundle
L = TF is the tangent bundle to the foliation. Let Q ∼= TM�L denote the normal bundle,
and let gQ be a given metric on Q. The foliation (M,F , gQ) is called Riemannian if
LXgQ = 0 for any section X ∈ Γ(L). In this paper, we will assume that we have chosen a
metric g on M that is bundle-like, meaning through the isomorphism Q ∼= L⊥, gQ = g|L⊥.
Such bundle-like metrics always exist. One can show that there exists a unique metric
connection ∇ (with respect to the induced metric) on the Q, called transverse Levi-

Civita connection, which is torsion-free. Recall here that the torsion on Q is being defined
as T (X, Y ) = ∇Xπ(Y )−∇Y π(X)− π([X, Y ]), where X and Y are vector fields in Γ(TM)
and π : TM → Q is the projection. Such a connection ∇ can be expressed in terms of the
Levi-Civita connection ∇M on M as

∇XY =





π([X, Y ]), ∀X ∈ Γ(L) ,

π(∇M
X Y ), ∀X ∈ Γ(Q).

One can also show that the curvature R∇ associated with the connection ∇ satisfies XyR∇ =
0 for all X ∈ ΓL, where the symbol “y” denotes interior product.

Basic forms are differential forms on any foliation (M,F) that locally depend only on
the transverse variables. That is, they are forms α ∈ Ω(M) satisfying the equations Xyα =
Xydα = 0 for all X ∈ Γ(L). Let us denote by Ω (M,F) ⊂ Ω (M) the set of all basic forms. In
fact, one can easily check that Ω (M,F) is preserved by the exterior derivative, and therefore
one can associate to d the so-called basic cohomology groups H∗

d (M,F) as

Hk
d (M,F) =

ker dk
image dk−1

with

dk = d : Ωk (M,F) → Ωk+1 (M,F) .

The basic cohomology groups are finite-dimensional for Riemannian foliations, in which case
they satisfy Poincaré duality if and only if the foliation is taut. Recall here that a foliation
is said to be taut if there exists a metric on M so that the mean curvature of the leaves is
zero. Given a bundle-like metric on (M,F), the mean curvature one-form κ is defined by

κ# =

p∑

i=1

π
(
∇M

fi
fi
)
,

where (fi)1≤i≤p is a local orthonormal frame of TF . The orthogonal projection κb = Pκ of κ,

with P : L2 (Ω (M)) → L2 (Ω (M,F)), is a closed one-form whose cohomology class, called

the Álvarez class, in H1
d (M,F) is independent of the choice of bundle-like metric (see [2]).
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Finally, we denote by δb the L
2-adjoint of d restricted to basic forms (see [25], [2], [22]).

Then, for transversely oriented Riemannian foliations one has

δb = Pδ = ±∗d∗+ κby = δT + κby,

where δT is the formal adjoint of d on the local quotients of the foliation charts and ∗ is the
pointwise transversal Hodge star operator defined on all k-forms γ by

∗γ = (−1)p(q−k) ∗ (γ ∧ χF) , (2.1)

with χF being the leafwise volume form (or the characteristic form) and ∗ is the ordinary
Hodge star operator.

2.2. Twisted basic cohomology. In this section, we shall review some results proved in
the paper [13], where also the definitions of some of the terms below are given.

Given a bundle-like metric on a Riemannian foliation (M,F) and a basic Clifford bundle
E →M , the basic Dirac operator is defined as the restriction

Db =

q∑

i=1

ei · ∇
E
ei
−

1

2
κ
♯
b·,

to basic sections of E, where {ei}i=1,··· ,q is a local orthonormal frame of Q. The basic Dirac
operator preserves the set of basic sections and is transversally elliptic. From the expression
of the basic Dirac operator applied to the basic Clifford bundle Λ∗Q∗, one may write on basic
forms

Dtr = d+ δT = d+ δb − κby : Ωeven (M,F) → Ωodd (M,F)

Db =
1

2
(Dtr +D∗

tr)s = d−
1

2
κb ∧+δb −

1

2
κby. (2.2)

In [12], we showed the invariance of the spectrum of Db with respect to a change of metric
onM in any way that leaves the transverse metric on the normal bundle intact (this includes
modifying the subbundle Q ⊂ TM , as one must do in order to make the mean curvature
basic, for example). That is,

Theorem 2.1. (In [12]) Let (M,F) be a compact Riemannian manifold endowed with a
Riemannian foliation and basic Clifford bundle E → M . The spectrum of the basic Dirac
operator is the same for every possible choice of bundle-like metric that is associated to the
transverse metric on the quotient bundle Q.

In [13], the authors define the new cohomology H̃∗ (M,F) = H∗

d− 1

2
κb∧

(M,F) (called the

twisted basic cohomology) of basic forms, using d̃ := d − 1
2
κb∧ as a differential. Recall

from (2.2) that the basic de Rham operator is Db = d̃ + δ̃, where δ̃ := δb −
1
2
κby. Because

κb is basic and closed, the twisted differential preserves Ω (M,F), d̃2 = 0 and δ̃2 = 0. We
show that the corresponding Betti numbers and eigenvalues of the twisted basic Laplacian

∆̃ := d̃ δ̃ + δ̃d̃ are independent of the choice of a bundle-like metric. In the remainder of
this section, we assume that the foliation is transversely oriented so that the ∗ operator is
well-defined.

Definition 2.2. We define the basic d̃-cohomology H̃∗ (M,F) by

H̃k (M,F) =
ker d̃k : Ω

k (M,F) → Ωk+1 (M,F)

image d̃k−1 : Ωk−1 (M,F) → Ωk (M,F)
.
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Proposition 2.3. (in [13]) The dimensions of H̃k (M,F) are independent of the choice of
the bundle-like metric and independent of the transverse Riemannian foliation structure.

2.3. The basic signature operator. We suppose that (M,F , gQ) is a transversally ori-
ented Riemannian foliation of even codimension q, and let gM be a bundle-like metric. Let

⋆ = ik(k−1)+ q

2∗

as an operator on basic k-forms, analogous to the involution used to identify self-dual and
anti-self-dual forms on a manifold. Note that this endomorphism is symmetric, and

⋆
2 = 1.

In the particular case when q = 4m for an integer m, we have ⋆ = ∗ on 2m-forms.

Proposition 2.4. (In [13]) We have ⋆

(
d̃+ δ̃

)
= −

(
d̃+ δ̃

)
⋆. In fact, ⋆d̃ = −δ̃⋆ and

⋆δ̃ = −d̃⋆.

Let Ω+ (M,F) denote the +1 eigenspace of ⋆ in Ω∗ (M,F), and let Ω− (M,F) denote the

−1 eigenspace of ⋆ in Ω∗ (M,F). By the proposition above, Db = d̃+ δ̃ maps Ω± (M,F) to
Ω∓ (M,F). Therefore, we may define the basic signature operator as follows.

Definition 2.5. On a transversally oriented Riemannian foliation of even codimension, let
the basic signature operator be the operator Db : Ω+ (M,F) → Ω− (M,F). We define
the basic signature σ (M,F) of the foliation to be the index

σ (M,F) = dimker

(
∆̃
∣∣∣
Ω+(M,F)

)
− dimker

(
∆̃
∣∣∣
Ω−(M,F)

)
.

Remark 2.6. We note that such a definition is not possible for the operator d+ δb, because
the relationship in the proposition above does not hold for d+ δb.

2.4. Known results on the homotopy invariance of the basic cohomology and sig-

nature in the taut case. In this section, we review the results in [5], where the smooth
homotopy invariance of ordinary basic cohomology is proved and the basic signature is stud-
ied in the case where the foliation is taut. For this, given two foliated manifolds (M,F) and
(M ′,F ′), we say that a map f : (M,F) → (M ′,F ′) is foliated if f maps the leaves of F to
the leaves of F ′, i.e. f∗(TF) ⊂ TF ′. The following fact is well-known and easy to show.

Lemma 2.7. If f : (M,F) → (M ′,F ′) is foliated, then f ∗(Ω(M ′,F ′)) ⊆ Ω(M,F).

Definition 2.8. Let (M,F) and (M ′,F ′) be two foliated manifolds. We say that the foliated
maps φ : M → M ′ and ψ : M → M ′ are foliated homotopic if there exists a continuous
map H : [0, 1] × M → M ′ such that H(0, x) = φ(x), H(1, x) = ψ(x) and that for each
t ∈ [0, 1] the map H(t, ·) is smooth and foliated.

Definition 2.9. We say that a foliated map f : (M,F) → (M ′,F ′) is a foliated homotopy

equivalence if there exists a foliated map g :M ′ →M such that f ◦ g is foliated homotopic
to IdM ′ and g ◦ f is foliated homotopic to IdM .

Proposition 2.10. (In [5]; also in [9] for the case of foliated homeomorphisms) If a map
f : M → M ′ is a smooth foliated homotopy equivalence, then f ∗ induces an isomorphism
between H∗

d (M
′,F ′) and H∗

d (M,F) .
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In what follows, for a taut Riemannian foliation (M,F) of codimension 2ℓ, we let AF :
Hℓ

d(M,F)×Hℓ
d(M,F) → R be the bilinear form

AF ([α] , [β]) =

∫

M

α ∧ β ∧ χF ,

which can be seen to be well-defined (for the taut case only). If ℓ is even, it is easy to see
that

σ (M,F) = dimker
(
∆|Ω+(M,F)

)
− dimker

(
∆|Ω−(M,F)

)

= signature (AF (·, ·)) ,

because ⋆d = −δ⋆ and ⋆δ = −d⋆ and ⋆ = ∗ on ℓ-forms. If ℓ is odd, it can be seen easily
that AF([α], [α]) ≡ 0 for all [α] ∈ Hℓ

d(M,F), and also that σ(M,F) = 0 since ⋆ = i∗ on
ℓ-forms so that the kernels have the same complex dimension.

Theorem 2.11. (In [5]) Let f : M → M ′ be a smooth foliated homotopy equivalence be-
tween two taut Riemannian foliations of codimension 2ℓ and transverse volume forms ν,
ν ′, respectively. Then σ(M,F) = σ(M ′,F ′) if f preserves the transverse orientation and
σ(M,F) = −σ(M ′,F ′) otherwise.

3. Homotopy invariance of twisted cohomology and basic signature

3.1. Twisted basic cohomology and basic signature for general Riemannian foli-

ations. Let q be the codimension of the transversally oriented foliation F in M , and let ∗
denote the transversal Hodge star operator. This operator is defined by (2.1) but can then
be extended to a map on cohomology classes. For example, from [13] we have formulas such
as

δb∗ = (−1)k+1∗(d− κb∧),

d∗ = (−1)k∗(δb − κby),

so that ∗ maps (d − κb∧, δb − κby)-harmonic forms to (d, δb)-harmonic forms. Using the
corresponding Hodge theorems, this gives a map (actually an isomorphism) between the
corresponding cohomology groups. That is, we can use ∗ to define the linear map

∗ : Hk
d−κb∧

(M,F)
∼=

−→ H
q−k
d (M,F).

This was originally observed in [16] for the case of basic mean curvature and can be adjusted
using the techniques in [2] and [22] for the general case.

Theorem 3.1. Let (M,F) be a Riemannian foliation of codimension q that is transversally
oriented. There for integers 0 ≤ r, s ≤ q, there is a pairing

H̃r(M,F)× H̃s(M,F) → H
q−r−s
d (M,F),

defined as follows. For [α] ∈ H̃r(M,F) and [β] ∈ H̃s(M,F), [α ∧ β] defines a class in
Hr+s

d−κb∧
(M,F), and thus ∗[α ∧ β] is a class in ordinary basic cohomology Hq−r−s

d (M,F). In
the particular case when r = s = q

2
, this pairing is nondegenerate, and the result is

∗[α ∧ β] =

[∫

M

α ∧ β ∧ χ

]
∈ H0

d(M,F) ∼= R.
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Proof. We have

d(α ∧ β) = d(α) ∧ β + (−1)rα ∧ d(β)

=
1

2
κb ∧ α ∧ β +

(−1)r

2
α ∧ κb ∧ β

= κb ∧ α ∧ β.

Then α ∧ β defines a cohomology class in Hr+s
d−κb∧

(M,F). We then apply ∗ to the associated

basic harmonic form to get an element in H
q−r−s
d (M,F). Note that the class [α ∧ β] ∈

Hr+s
d−κb∧

(M,F) is well-defined. If α′ = α + d̃γ with γ ∈ Ωr−1 (M,F), then

d̃γ ∧ β = dγ ∧ β −
1

2
κb ∧ γ ∧ β

= d (γ ∧ β)− (−1)r−1
γ ∧ dβ +

1

2
(−1)r−1

γ ∧ κb ∧ β − κb ∧ γ ∧ β

= (d− κb∧) (γ ∧ β)− (−1)r−1
γ ∧

(
d−

1

2
κb∧

)
β

= (d− κb∧) (γ ∧ β) .

It follows that the result [α ∧ β] is independent of the representative of the class [α]. By a
similar argument, it is independent of the choice of β. It follows that ∗[α∧β] ∈ H

q−r−s
d (M,F)

is well-defined.
When r = s = q

2
, we note that for any nonzero class [α] ∈ H̃r(M,F), [∗α] ∈ H̃r(M,F) by

[13], and so α ∧ ∗α is a multiple of the transverse volume form, so

∗[α ∧ ∗α] = 〈α, α〉 6= 0.

Repeating the argument in the second slot shows that the pairing is nondegenerate. �

Suppose that (M,F) is a Riemannian foliation of codimension 2ℓ, and we define the
bilinear map AF : Ωℓ(M,F)× Ωℓ(M,F) → R by

AF (α, β) =

∫

M

α ∧ β ∧ χF .

Proposition 3.2. The induced map AF : H̃ℓ(M,F)× H̃ℓ(M,F) → R is well-defined.

Proof. This is a direct consequence of Theorem 3.1. �

Lemma 3.3. The basic signature σ (M,F) of a Riemannian foliation of codimension 2l is

the same as the signature of the quadratic form AF([α], [α]) for α ∈ H̃ℓ(M,F).

Proof. When ℓ is even, ⋆d̃ = −δ̃⋆ and ⋆δ̃ = −d̃⋆, so we compute for any ∆̃-harmonic
ℓ-form α = ⋆α = ∗α in Ω+ (M,F),

AF(α, α) =

∫

M

α ∧ α ∧ χF

=

∫

M

α ∧ ∗α ∧ χF =

∫

M

|α|2.

In the same way, we find AF(β, β) = −

∫

M

|β|2 for any harmonic ℓ-form β in Ω− (M,F) .

Therefore,
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σ (M,F) = dimker

(
∆̃
∣∣∣
Ω+(M,F)

)
− dimker

(
∆̃
∣∣∣
Ω−(M,F)

)

= signature (AF(·, ·)) .

If ℓ is odd, it can be seen easily that AF([α], [α]) ≡ 0 for all [α], and since again ⋆ = i∗ on
ℓ-forms in this case, the kernels have the same dimension so that σ(M,F) = 0. �

We will need the following lemma; this is known to experts but does not appear to be
present in the literature.

Lemma 3.4. If (M,F) is a smooth foliation on a (not necessarily closed) manifold that
admits a bundle-like metric, then any two such bundle-like metrics are homotopic through a
smooth family of bundle-like metrics.

Proof. Consider a smooth foliation (M,F) of codimension q and dimension p on which a
bundle-like metric is defined. Near any point we may choose a foliation chart with adapted co-
ordinates (x, y) ∈ Rp×Rq on which an adapted local orthonormal frame (b1, b2, ..., bp, e1, ..., eq)
is defined. Let (b1, b2, ..., bp, e1, ..., eq) be the corresponding coframe. Then the bundle-like
metric takes the form

g = ds2 =

p∑

j=1

(bj)2 +

q∑

k=1

(ek)2,

with

gQ =

q∑

k=1

(ek)2 =

q∑

α,β=1

hαβdy
αdyβ

for a positive-definite symmetric matrix of functions (hαβ) and

gL =

p∑

j=1

(bj)2

positive definite when restricted to L = TF . The bundle-like condition is equivalent to hαβ
being a matrix of basic functions; that is, its restriction to Q = TF⊥ must be holonomy-
invariant; see [23, Section IV, Proposition 4.2]. Now, suppose that g̃ is another such bundle-
like metric; therefore, in a possibly smaller foliation chart we have

g̃ =

p∑

j=1

(̃bj)2 +

q∑

α,β=1

h̃αβ(y)dy
αdyβ = g̃L + g̃Q,

noting that the normal bundle Q̃ for g̃ is typically different from that of g. Let Π : TM → L

be the orthogonal projection defined by the first metric g. Since the tangential part of g̃

also remains positive definite on L, (Π∗b̃1, ...,Π∗b̃p, ẽ1, ..., ẽq) forms a basis of T ∗M , and so
choosing them to be an orthonormal basis defines a new bundle-like metric

g =

p∑

j=1

(Π∗b̃j)2 +

q∑

α,β=1

h̃αβ(y)dy
αdyβ = (Π∗ ⊗Π∗)(g̃L) + g̃Q,

with the feature that the bundles L and Q agree (and thus L∗ and Q∗ agree) for both g

and g. It is clear that g̃ and g are homotopic through a homotopy transforming b̃j to Π∗b̃j ;



10 G. HABIB AND K. RICHARDSON

specifically, for 0 ≤ t ≤ 1 we may set bj(t) = (1− t)̃bj + tΠ∗b̃j , and then the resulting metric
homotopy is

gt =
∑

(bj(t))2 + g̃Q; g0 = g̃, g1 = g.

The homotopy is independent of the choice of coframe {b̃j}, because if U = (Uℓm) is any

orthogonal matrix of functions and b̃j′ =
∑

m Ujmb̃
m, then

∑

j

(bj′(t))2 =
∑

j

(
∑

m

(1− t)Ujmb̃
m + tUjmΠ

∗b̃m)2

=
∑

j

(
∑

m

Ujm((1− t)̃bm + tΠ∗b̃m))2

=
∑

j

∑

ℓ,m

Ujℓ((1− t)̃bℓ + tΠ∗b̃ℓ)Ujm((1− t)̃bm + tΠ∗b̃m)

=
∑

ℓ

((1− t)̃bℓ + tΠ∗b̃ℓ)2 =
∑

ℓ

(bℓ(t))2.

Thus, this homotopy is independent of coordinates and choice of frame. Next, g and g are
homotopic through a convex combination of the respective metrics on L and Q; specifically,
letting g = gL + gQ, for t ∈ [0, 1], we have

ht = (1− t)gL + tgL + (1− t)gQ + tgQ

is a family of metrics that satisfies the bundle-like condition for each t. We may now form
the following smooth homotopy between g̃ and g:

Gt =

{
gu(t) for 0 ≤ t ≤ 1

2
,

hv(t) for 1
2
≤ t ≤ 1,

where u, v : R → R are smooth increasing functions such that u ≡ 0 on (−∞, 0], u ≡ 1 on
[1
2
,∞) and v ≡ 0 on (−∞, 1

2
) and v ≡ 1 on [1,∞). �

Proposition 3.5. The basic signature σ (M,F) of a Riemannian foliation does not depend
on the transverse Riemannian structure or the bundle-like metric; it is a smooth invariant
of the foliation.

Proof. Observe that by the previous lemma, any two bundle-like metrics on (M,F) are
smoothly homotopic through bundle-like metrics, and it follows that the principal transverse

symbols of the signature operators d̃ + δ̃ on Ω±(M,F) with respect to those metrics are
smoothly homotopic. Since the basic signature is the index of this operator on basic sections,
there is a continuous path through Fredholm operators connecting the two operators, so that
the index cannot change along that path. Thus, the basic signature is a smooth invariant of
the foliation. See [8] and [6] for properties of the basic index.

Note that it is also possible to see this result through a long, detailed analysis of the
differentials and bundle-like metrics and the effects on χF and κb as in [2]. �

3.2. Basic Lichnerowicz cohomology and foliated homotopy invariance . We start
with any smooth foliation (M,F). In what follows, let θ be a closed basic one-form. Then
d+θ∧ is a differential on the space of basic forms. Let H∗

d+θ∧ (M,F) denote the resulting co-
homology, which is sometimes called basic Lichnerowicz cohomology or basic Morse-Novikov
cohomology; see [26], [4], [15], [1], [21].
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Lemma 3.6. ([1, Proposition 3.0.11]) If [α] = [β] ∈ H1
d (M,F), then H∗

d+α∧ (M,F) ∼=
H∗

d+β∧ (M,F).

Lemma 3.7. Let f : (M,F) → (M ′,F ′) be a foliated map, and let θ be a closed basic
one form. Then f ∗ : Ω (M ′,F ′) → Ω (M,F) induces a linear map from H∗

d+θ∧ (M
′,F ′) to

H∗
d+f∗θ∧ (M,F).

Proof. By Lemma 2.7, f ∗Ω (M ′,F ′) ⊆ Ω (M,F). We must prove that the linear map f ∗ maps
closed and exact forms to closed and exact forms, respectively. Let [α] ∈ Hk

d+θ∧ (M
′,F ′),

then

(d+ f ∗θ∧) (f ∗α) = d(f ∗α) + f ∗θ ∧ f ∗α = f ∗(dα) + f ∗ (θ ∧ α)

= f ∗ ((d+ θ∧)α) = 0.

Thus closed forms onM ′ are mapped to closed forms onM . Next, for any β ∈ Ωk−1 (M ′,F ′),

f ∗ ((d+ θ∧)β) = d (f ∗β) + f ∗θ ∧ f ∗β

= (d+ f ∗θ∧) f ∗β,

so that exact forms map to exact forms. �

Let us consider two manifolds (M,F) and (M ′,F ′) endowed with a Riemannian foliations
F and F ′. We denote by κ (resp. κ′) the mean curvature of the foliation F (resp. F ′), with
metrics chosen so that both mean curvatures forms are basic. By [7], this can always be
done.

Proposition 3.8. Let f : (M,F) → (M ′,F ′) be a foliated map. Suppose that a bundle-
like metric gM ′ on M ′ is given such that the mean curvature κ′ is basic. Suppose that the
basic cohomology class [f ∗(κ′)] ∈ H1

d (M,F) contains the mean curvature one-form for some

bundle-like metric on M . Then f ∗ induces a linear map from H̃∗(M ′, gM ′) to H̃∗ (M, gM)
with respect to some bundle-like metric gM on M such that κ = f ∗(κ′).

Proof. By Lemma 2.7, f ∗Ω (M ′,F ′) ⊆ Ω (M,F). We are given that for some given g̃M ,
κ̃ = f ∗κ′ + dη for some basic function η. We then choose multiply the metric in the leaf
direction by exp (η) and obtain a bundle-like metric gM such that κ = f ∗κ′. Lemma 3.7
completes the proof with θ = −1

2
κ′. �

Lemma 3.9. Let H : I ×M → M ′ be a smooth foliated homotopy from (M,F) to (M ′,F ′),
and let θ′ be a closed basic one-form on M ′. Let

at = exp

(∫ t

0

j∗s (∂tyH
∗θ′) ds

)
∈ Ω0 (M,F) ,

where 0 ≤ t ≤ 1 and js : M → I ×M is defined by js (·) = (s, ·). Let h : Ωk (M ′,F ′) →
Ωk−1 (M,F) be defined by

h (σ) =

∫ 1

0

as j
∗
s (∂tyH

∗σ) ds.

Then

a1 (·)H (1, ·)∗ −H (0, ·)∗ = (d+H (0, ·)∗ θ′∧) h+ h (d+ θ′∧)

as operators on Ω∗ (M ′,F ′) .
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Proof. The proof is exactly the same as the proof of Lemma 1.1 in [14], but with basic
functions and forms. With the definitions given, we just use the fact that H (t, ·)∗ θ′ −
H (0, ·)∗ θ′ = d (log |at|) and calculate the derivatives. �

Using the chain homotopy h in the Lemma above, we get the following with H (0, ·) = φ,
H (1, ·) = ψ, a1 (·) = f . Also, because of [3, Corollary 13.3], if two smooth foliated maps are
(continuously) homotopic, then there exists a smooth homotopy between them.

Corollary 3.10. (Homotopy invariance of basic Lichnerowicz cohomology) Let φ and ψ

be two smooth maps that are foliated homotopic from (M,F) to (M ′,F ′), and let θ′ be a
closed basic one-form on M ′. Then there exists a positive basic function µ on M such that
φ∗ = µψ∗ : H∗

d+θ′∧ (M
′,F ′) → H∗

d+(φ∗θ′)∧ (M,F).

Proposition 3.11. (Also in [9] for the case of foliated homeomorphisms and θ = 0) If a map
f : (M,F) → (M ′,F ′) is a foliated homotopy equivalence and θ′ is a closed basic one-form
on M ′, then f ∗ induces an isomorphism between H∗

d+θ′∧(M
′,F ′) and H∗

d+f∗θ′∧(M,F).

Proof. Given f and g as in the definition, by Lemma 3.7, we have linear maps

H∗
d+θ∧(M

′,F ′)
f∗

→ H∗
d+f∗θ∧(M,F)

g∗

→ H∗
d+g∗f∗θ∧(M

′,F ′).

Since f ◦ g is foliated homotopic to the identity, by Corollary 3.10, there exists a positive
basic function µ such that

id = µg∗f ∗ = µ (f ◦ g)∗ : H∗
d+θ′∧ (M

′,F ′) → H∗
d+θ′∧ (M

′,F ′) .

In particular, g∗f ∗θ′ = θ′ + dµ

µ
. After considering the map g ◦ f , we then see that we must

have that f ∗ and g∗ are isomorphisms, since multiplication by µ is also an isomorphism on
basic Lichnerowicz cohomology. �

3.3. Invariance of the basic signature.

Proposition 3.12. If f : (M,F) → (M ′,F ′) is a foliated homotopy equivalence between
Riemannian foliations, then (M,F) and (M ′,F ′) have the same codimension and dimension.

Proof. Every class in H1
d (M,F) is represented by f ∗θ for some closed basic one-form θ on

M ′, and f ∗ is an isomorphism from Hk
d+θ∧(M

′,F ′) to Hk
d+f∗θ∧(M,F). Since the largest k

such that Hk
d+θ∧(M

′,F ′) 6= 0 over all possible θ is the codimension of F ′ (with θ = −κ′b),
and the codimension of F is computed similarly, the two codimensions of the foliations must
match. Since f is in particular a homotopy equivalence of the manifolds M and M ′, f ∗

induces isomorphisms on ordinary cohomology ofM , and therefore the dimensions ofM and
M ′ are also the same. The result follows. �

We need the following results to prove connections between foliated homotopy equivalences
and cohomology.

Proposition 3.13. (Twisted Poincaré duality for basic Lichnerowicz cohomology) If (M,F)
is a transversely oriented Riemannian foliation of codimension q on a closed manifold and
θ is a closed basic one-form, then the transverse Hodge star operator ∗ : Ωk (M,F) →
Ωq−k (M,F) induces the isomorphism

Hk
d−θ∧ (M,F) ∼= H

q−k

d−(κb−θ)∧ (M,F) .
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Proof. From [2], [22], [12] we have the following identities for operators acting on Ωk (M,F):

∗2 = (−1)k(q−k)

(θy) = (−1)q(k+1) ∗ (θ∧) ∗

δb = (−1)q(k+1)+1 ∗ (d− κb∧) ∗

(θy) ∗ = (−1)k ∗ (θ∧)

∗ (θy) = (−1)k+1 (θ∧) ∗

δb∗ = (−1)k+1 ∗ (d− κb∧)

∗δb = (−1)k (d− κb∧) ∗.

Then, letting the raised ∗ denote the L2 adjoint with respect to basic forms,

(d− θ∧)∗ = δb − θy,

and the associated Laplacian is

∆θ = (δb − θy) (d− θ∧) + (d− θ∧) (δb − θy) .

Then from the formulas above, if β ∈ Ωk (M,F),

∗∆θβ = ∗ (δb − θy) (d− θ∧) β + ∗ (d− θ∧) (δb − θy)β

= (−1)k+1 (d− κb ∧+θ∧) ∗ (d− θ∧) β

+ (−1)k (δb + (θ − κb)y) ∗ (δb − θy) β

= (−1)k+1 (d− κb ∧+θ∧) (−1)k+1 (δb − (κb − θ)y) ∗β

+ (−1)k (δb + (θ − κb)y) (d− κb ∧+θ∧) ∗β

= ∆κb−θ∗β.

Thus, the operator ∗ maps ∆θ-harmonic forms to ∆κb−θ-harmonic forms and vice versa, so
from the basic Hodge theorem for basic Lichnerowicz cohomology (see [15, Section 3.3]), ∗
induces the required isomorphism. �

Lemma 3.14. (In [4], [1], [15]) If (M,F) is Riemannian foliation of codimension q on a
closed, connected manifold and θ is a closed basic one-form, then H0

d−θ∧ (M,F) ∼= R if and
only if θ is exact. Otherwise, H0

d−θ∧ (M,F) ∼= {0}.

Proposition 3.15. If (M,F) is a transversely oriented Riemannian foliation of codimension
q on a closed, connected manifold and θ is a closed basic one-form, then Hq

d−θ∧ (M,F) ∼= R

if and only if [θ] = [κb] ∈ H1
d (M,F).

Proof. By Proposition 3.13, Hq
d−θ∧ (M,F) ∼= H0

d−(κb−θ)∧ (M,F). By Lemma 3.14, this group
is R if and only if κb − θ is exact and is zero otherwise. �

It has been shown previously by H. Nozawa in [19], [20] that the Álvarez class [κb] is
continuous with respect to smooth deformations of Riemannian foliations. The following
proposition extends these results further.

Proposition 3.16. If f : M → M ′ is a foliated homotopy equivalence between transversely
oriented Riemannian foliations with basic mean curvatures κb and κ′b, respectively, then
[f ∗κ′b] = [κb] ∈ H1

d (M,F).
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Proof. By Proposition 3.11, f ∗ : Hq

d−κ′

b
∧
(M ′,F ′) → H

q

d−f∗κ′

b
∧
(M,F) is an isomorphism,

so Hq

d−f∗κ′

b
∧
(M,F) ∼= R by the previous proposition. Therefore, by the same proposition,

[f ∗κ′b] = [κb] ∈ H1
d (M,F) . �

Corollary 3.17. If f : M → M ′ is a foliated homotopy equivalence between Riemann-
ian foliations, then there exist bundle-like metrics on (M,F) and (M ′,F ′) such that f ∗ :

H̃k (M ′,F ′) → H̃k (M,F) is defined and is an isomorphism.

Proof. By Proposition 3.11, f ∗ : H̃k (M ′,F ′) → Hk
d− 1

2
f∗κ′

b
∧
(M,F) is an isomorphism, with

θ′ = 1
2
κ′b. By Proposition 3.16, [f ∗κ′b] = [κb]. We then modify the bundle-like metric so that

κ = κb = f ∗κ′ exactly by using [7] to make the mean curvature basic and then by multiplying
the leafwise metric by a conformal factor to set the element of [κb]. �

Recall that given a Riemannian foliation (M,F), the leafwise volume form χF is related to
the mean curvature κ by Rummler’s formula [25] as dχF = −κ ∧ χF + ϕ0, where ϕ0 is a
(p + 1)-form (dimF = p) on M such that X1y · · ·y(Xpyϕ0) = 0 for all X1, · · · , Xp ∈ Γ(L).
We have

Lemma 3.18. Let f : (M,F) → (M ′,F ′) be a foliated homotopy equivalence between Rie-
mannian foliations of codimension 2ℓ. Let ν and ν ′ be the transverse volume forms for these
metrics on M and M ′, respectively. Then there is a real nonzero constant λ such that

〈f ∗(α), ν〉M = λ
Vol(M)

Vol(M ′)
〈α, ν ′〉M ′.

for all α ∈ Ω2ℓ (M ′,F ′).

Proof. We choose a metric on (M ′,F ′) such that the mean curvature κ′ is basic. Then
[f ∗κ′] = [κb] for any metric on M by Proposition 3.16. As in the last proof, we then
modify the bundle-like metric so that κ = κb = f ∗κ′ exactly. Since α is a basic 2ℓ-form, it
defines a class in H2ℓ

d−κ′∧(M
′,F ′) ≃ H0

b (M
′,F ′) ≃ R[ν ′]. We need to check that [ν ′] 6= 0 in

the cohomology group H2ℓ
d−κ′∧ (M

′,F ′) . Assume by contradiction that it is zero, then there
exists some basic form γ ∈ Ω2ℓ−1 (M ′,F ′) of degree 2ℓ− 1 such that ν ′ = dγ − κ′ ∧ γ. Then,
we compute

∫

M ′

ν ′ ∧ χF ′ =

∫

M ′

dγ ∧ χF ′ − κ′ ∧ γ ∧ χF ′

=

∫

M ′

d (γ ∧ χF ′) + γ ∧ dχF ′ − κ′ ∧ γ ∧ χF ′

=

∫

M ′

−γ ∧ κ′ ∧ χF ′ − κ′ ∧ γ ∧ χF ′ = 0.

This would imply Vol(M ′) = 0, a contradiction. Therefore [ν ′] 6= 0. Hence α = βν ′ + (d −
κ′∧)φ for some β ∈ R and φ ∈ Ω2ℓ−1 (M ′,F ′). Thus,

〈α, ν ′〉M ′ =

∫

M ′

α ∧ χF ′ =

∫

M ′

(βν ′ ∧ χF ′ + (dφ− κ′ ∧ φ) ∧ χF ′ = βVol(M ′).
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The last term vanishes as a consequence of the previous computation (just replace γ by φ).
Also, we have

〈f ∗(α), ν〉M =

∫

M

βf ∗(ν ′) ∧ χF + f ∗(dφ− κ′ ∧ φ) ∧ χF

=

∫

M

βf ∗(ν ′) ∧ χF + (d(f ∗φ)− f ∗(κ′) ∧ f ∗φ) ∧ χF

=

∫

M

βf ∗(ν ′) ∧ χF + (d− κ∧) (f ∗φ) ∧ χF =

∫

M

βf ∗(ν ′) ∧ χF = βλVol(M).

In the last equality, we used the fact that f ∗ν ′ defines a cohomology class [f ∗ν ′] inHq
d−κ∧(M,F) ∼=

R and therefore we can write that f ∗ν ′ = λν + (dM − κ∧)ϕ for some real number λ. Fur-
thermore, since f is a foliated homotopy equivalence, by Proposition 3.11, it induces an
isomorphism from H

q
d−κ′∧(M

′,F ′) to Hq
d−κ∧(M,F), so [f ∗ν ′] is a nonzero class. Thus, the

constant λ is nonzero. �

Theorem 3.19. Let f : M → M ′ be a foliated homotopy equivalence between two Rie-
mannian foliations of codimension 2ℓ and transverse volume forms ν, ν ′ respectively. Then
σ(M,F) = σ(M ′,F ′) if f preserves the transverse orientation and σ(M,F) = −σ(M ′,F ′)
otherwise.

Proof. We assume that ℓ is even, because the result is trivial when ℓ is odd. By Corollary
3.17, we may choose metrics such that f ∗ : H̃ℓ(M ′,F ′) → H̃ℓ(M,F) is an isomorphism and

is well-defined. For any α′
1, α

′
2 ∈ H̃ℓ(M ′,F ′), we compute

AF(f
∗α′

1, f
∗α′

2) =

∫

M

f ∗α′
1 ∧ f

∗α′
2 ∧ ∗ν

= 〈f ∗(α′
1 ∧ α

′
2), ν〉M

= λ
Vol (M)

Vol(M ′)
〈α′

1 ∧ α
′
2, ν

′〉M ′ = λ
Vol (M)

Vol(M ′)
AF ′(α′

1, α
′
2).

Then by computing signatures of these quadratic forms, the conclusion follows. �
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