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Abstract. Given (M, g) a smooth compact Riemannian manifold of dimen-
sion n ≥ 5, we investigate compactness for fourth order critical equations like

Pgu = u2]−1 ,

where Pgu = ∆2
gu + b∆gu + cu is a Paneitz-Branson operator with constant

coefficients b and c, u is required to be positive, and 2] = 2n
n−4

is critical from

the Sobolev viewpoint. We prove that such equations are compact on locally

conformally flat manifolds, unless b lies in some closed interval associated to the
spectrum of the smooth symmetric (2, 0)-tensor field involved in the definition

of the geometric Paneitz-Branson operator.

Contents

In 1983, Paneitz [?] introduced a conformally fourth order operator defined on
4-dimensional Riemannian manifolds. Branson [?] generalized the definition to
n-dimensional Riemannian manifolds, n ≥ 5. While the conformal Laplacian is
associated to the scalar curvature, the geometric Paneitz-Branson operator is asso-
ciated to a notion of Q-curvature. The Q-curvature in dimension 4, and for locally
conformally flat manifolds, turns out to be the integrand in the Gauss-Bonnet for-
mula for the Euler characteristic. We let in this article (M, g) be a smooth compact
locally conformally flat Riemannian n-manifold, n ≥ 5, and consider fourth order
equations of critical Sobolev growth like

∆2
gu+ bα∆gu+ cαu = u2]−1 , (0.1)

where ∆g = −divg∇, α is an integer, (bα) and (cα) are converging sequences of
positive real numbers with positive limits, cα ≤ b2α/4 for all α, u is required to
be positive, and 2] = 2n

n−4 is critical from the Sobolev viewpoint. The family of

equations (??) may of course reduce to one equation when the sequences consisting
of the bα’s and cα’s are constant sequences. Equations like (??) are modelized
on the conformal equation associated to the Paneitz-Branson operator when the
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background metric g is Einstein. In the case of an arbitrary manifold, the conformal
equation associated to the Paneitz-Branson operator reads as

∆2
gu− divg (Agdu) +

n− 4

2
Qgu =

n− 4

2
Qĝu

2]−1 , (0.2)

where Qg and Qĝ are the Q-curvature of g and ĝ = u4/(n−4)g,

Ag =
(n− 2)2 + 4

2(n− 1)(n− 2)
Sgg −

4

n− 2
Rcg , (0.3)

and Rcg and Sg are respectively the Ricci curvature and scalar curvature of g.
When g is Einstein, equation (??) becomes

∆2
gu+ αnSg∆gu+ anS

2
gu =

n− 4

2
Qĝu

2]−1 ,

where αn and an are positive dimensional constants such that an < α2
n/4, and Sg

is constant since g is Einstein. In particular, when we ask for Qĝ to be constant,
we recover an equation like (??). More material on the Paneitz-Branson operator
can be found in the very nice survey articles by Chang [?] and Chang-Yang [?].

In what follows we let H2
2 (M) be the Sobolev space consisting of functions u

in L2(M) which are such that |∇u| and |∇2u| are also in L2(M). Thanks to the
Bochner-Lichnerowicz-Weitzenböck formula, a possible norm on H2

2 (M) is

‖u‖2H2
2

=

∫
M

(∆gu)2dvg +

1∑
i=0

∫
M

|∇iu|2dvg .

A weak nonnegative solution u ∈ H2
2 (M) of one of the equations in (??) is smooth

and either is the zero function or is everywhere positive. A sequence (uα) in H2
2 (M)

of positive functions is then said to be a sequence of solutions of the family (??)
if for any α, uα is a solution of (??). Examples of compact manifolds, including
locally conformally flat manifolds, for which equations like (??) have nonconstant
solutions for abitrarily large bα’s and cα’s are in Felli, Hebey and Robert [?].

In what follows we say that the family of equations (??) is pseudo-compact if for
any bounded sequence (uα) in H2

2 (M) of positive solutions of (??) which converges
weakly in H2

2 (M), the weak limit u0 of the uα’s is not zero. Pseudo-compactness is
of traditional interest since it provides nontrivial solutions of the limit equation we
get from (??) by letting α→ +∞. In contrast to pseudo-compactness, we say that
the family of equations (??) is compact if any bounded sequence (uα) in H2

2 (M)
of positive solutions of (??) is actually bounded in C4,θ(M), 0 < θ < 1, and thus
converges, up to a subsequence, in C4(M) to some function u0. Compactness is a
stronger notion than pseudo-compactness since by the Sobolev inequality, and by
(??), ‖uα‖H2

2
≥ C for some C > 0 independent of α. With respect to blow-up

terminology, see Section ?? for details, pseudo-compactness allows bubbles in the
H2

2 -decomposition of sequences of solutions of (??), while compactness does not.

For Ag the smooth symmetric (2, 0)-tensor field in (??), we denote by λi(Ag)x,
i = 1, . . . , n, the g-eigenvalues of Ag(x), and define λ1 to be the infimum over i and
x of the λi(Ag)x’s, and λ2 to be the supremum over i and x of the λi(Ag)x’s. Then
we let Sc be the critical set (or wild spectrum of Ag) defined by

Sc =
{
λ ∈ R s.t. λ1 ≤ λ ≤ λ2

}
. (0.4)
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Pseudo compactness for second order elliptic equations of Yamabe type have been
intensively studied. Compactness for second order equations of Yamabe type goes
back to the remarkable work of Schoen on the Yamabe equation [?, ?, ?, ?]. Further
results were then obtained by Druet [?, ?]. Motivations for our work were Schoen [?]
and Druet [?]. Possible related references on second and fourth order equations are
Brendle [?], Chang [?], Chang and Yang [?, ?], Chen and Lin [?], Devillanova and
Solimini [?], Djadli, Hebey and Ledoux [?], Djadli, Malchiodi and Ould Ahmedou
[?, ?], Druet and Hebey [?], Druet, Hebey and Robert [?], Han and Li [?], Hebey
and Robert [?], Li and Zhu [?], Lin [?], Lions [?], Lu, Wei and Xu [?], Marques [?],
Robert [?], Robert and Struwe [?], and Struwe [?].

We prove in this article that the following general results hold. We state Theo-
rems ?? and ?? for families of equations like (??), but recall that, of course, this
includes the more traditional viewpoint of one single equation when the bα’s and
cα’s are independent of α.

Theorem 0.1. Let (M, g) be a smooth compact locally conformally flat manifold of
dimension n, and (bα), (cα) be converging sequences of positive real numbers with
positive limits and such that cα ≤ b2α/4 for all α. We consider equations like

∆2
gu+ bα∆gu+ cαu = u2]−1 (Eα)

and assume that b∞ 6∈ Sc, where b∞ is the limit of the bα’s and Sc is the critical set
given by (??). Then the family (Eα) is pseudo-compact when n ≥ 6, and compact
when n ≥ 9.

Theorem ?? is a complement to the compactness assertion in Theorem ?? when
the dimension n = 6, 7, 8 and b∞ lies below the lower bound λ1 of Sc.

Theorem 0.2. Let (M, g) be a smooth compact locally conformally flat manifold
of dimension n = 6, 7, 8, and (bα), (cα) be converging sequences of positive real
numbers with positive limits and such that cα ≤ b2α/4 for all α. We consider
equations like

∆2
gu+ bα∆gu+ cαu = u2]−1 (Eα)

and assume that b∞ < minSc, where b∞ is the limit of the bα’s and Sc is the critical
set given by (??). Then the family (Eα) is compact.

A major stress in proving Theorems ?? and ?? is to understand large solutions.
Namely, solutions with large energies which, in studying their possible blow-up,
involve multi-bubbles. Specific examples of blowing-up sequences of solutions of
equations like (??) are discussed in Section ??. These examples respectively indicate
that the case n = 8 with respect to compactness is most likely to be special,
that a condition like b∞ 6∈ Sc is sharp, and that there are equations like (??)
which possess unbounded sequences of solutions in H2

2 . Section ?? is devoted
to preliminary material on blow-up theory. We discuss in this section the H2

2 -
decomposition and pointwise estimates for sequences of solutions of equations like
(??). Relative concentrations for sequences (uα) of solutions of equations like (??)
are discussed in Sections ?? and ?? when the weak limit u0 of the uα’s is zero. The
proof of the pseudo-compactness part of Theorem ?? in Section ?? relies on these
concentrations. Sections ?? to ?? are devoted to refined estimates on sequences
(uα) of solutions of equations like (??) when we do not assume anything on u0.
The proof of the compactness part of Theorem ?? and of Theorem ?? in Section ??
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rely on these estimates. Section ?? is devoted to the existence of a Green’s function,
and estimates on this function, for second order operators with nondifferentiable
coefficients – a technical result we need in Section ??. The assumption that our
manifolds have to be locally conformally flat is required only in Sections ?? and ??.

In the sequel, in order to fix notations, the limit equation we get from (??) by
letting α→ +∞ is the equation

∆2
gu+ b∞∆gu+ c∞u = u2]−1 , (0.5)

where b∞ and c∞ are the limits of (bα) and (cα). We let Hq
k be the Sobolev space

of functions in Lq with k derivatives in Lq, and 2? = 2n/(n − 2) be the critical
Sobolev exponent for the embeddings of H2

1 in Lp-spaces.

1. Examples and comments on the Theorems

We discuss three specific examples which respectively indicate that the case
n = 8 with respect to compactness is most likely to be special, that a condition like
b∞ 6∈ Sc is sharp, and that there are equations like (??) which possess unbounded
sequences of solutions in H2

2 . For that purpose, we let (Sn, g0) be the unit n-sphere.
The geometric equation (??) on the sphere reads as

∆2
g0u+ αn∆g0u+ anu = u2]−1 , (1.1)

where αn = n2−2n−4
2 and an = n(n−4)(n2−4)

16 . In particular, for Sc as in (??),

Sc =
{
αn
}

. Given β > 1 and x0 ∈ Sn, we let Ux0,β be the function on Sn defined
by

Ux0,β(x) = a
n−4
8

n

( √
β2 − 1

β − cos dg0(x0, x)

)n−4
2

. (1.2)

As is well known, for any β > 1 and any x0 ∈ Sn, the Ux0,β ’s are solutions of (??).
This can be checked directly, or using conformal invariance and the Lin’s result we

discuss in Section ??. The L2] -norm of Ux0,β is a positive constant independent
of β and x0. Moreover, Ux0,β(x) → 0 as β → 1 if x 6= x0, while Ux0,β(x0) → +∞
as β → 1. In particular, (??) is not compact, neither pseudo-compact. This is
coherent with Theorems ?? and ?? since in this situation the bα’s are constant and
all in Sc (so that, in particular, b∞ ∈ Sc).

The first example we really want to discuss in this section is as follows. We fix
λ > 1, β > 1, and x0 ∈ Sn. We let also (βα) be a sequence such that βα > 1 for all
α, and βα → 1 as α→ +∞. We define the uα’s by

uα = λUx0,β + Ux0,βα . (1.3)

Then the uα’s are solutions of equations like (??). More precisely, if we let Lg0 be

the operator Lg0u = ∆g0u+ αn
2 u, the uα’s are such that

∆2
g0uα + bα∆g0uα + cαuα = u2]−1

α (1.4)

for all α, where the bα’s and cα’s are given by bα = αn + hα, cα = an + αn
2 hα, and

hα =

(
λUx0,β + Ux0,βα

)2]−1 − λU2]−1
x0,β

− U2]−1
x0,βα

λLg0Ux0,β + Lg0Ux0,βα

. (1.5)
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Noting that for u > 0 a solution of (??),

L2
g0u = u2]−1 +

(α2
n

4
− an

)
u

and that an < α2
n/4, it follows from the maximum principle that Lg0u > 0 so that

hα in (??) is well defined. Easy computations give that the sequence consisting of
the hα’s given by (??) is bounded in L∞(Sn) when n ≥ 8. Moreover, if we assume
that n = 8, then the bα’s and cα’s converge in Lp(S8) for all p ≥ 1 as α → +∞,
with the property (which stops to hold when n ≥ 9) that

lim inf
α→+∞

inf
Bx0 (R

√
βα−1)

bα > αn

for all R > 0. In particular, the pertinent quantities bα(x0) are such that

lim inf
α→+∞

bα(x0) > αn

while, by construction, uα(x0) → +∞ as α → +∞. Summarizing, when n = 8,
the uα’s are solutions of (??), an equation like (??), the bα’s and cα’s in (??) are
bounded in L∞(S8), they converge in Lp(S8) for all p, and the uα’s blow up at x0

with b∞ 6∈ Sc where, here, b∞ is the limit of the bα(x0)’s. Even if the bα’s and
cα’s are not constant functions, and the convergence of the bα’s and cα’s is only
in Lp, this example gives strong indications that, with respect to the assertion on
compactness in Theorems ?? and ??, a particular phenomenon is most likely to
happen when the dimension n = 8. For second order equations of critical growth,
see Druet [?], the critical dimension is n = 6.

Concerning the second example we discuss in this section, we let k ∈ N, where
k ≥ 1, we let (xiα), i = 1, . . . , k, be k converging sequences of points in Sn, and
let (βα) be a sequence of real numbers such that βα > 1 for all α, and βα → 1 as
α→ +∞. Then we define the function uα by

uα =

k∑
i=1

Uxiα,βα . (1.6)

As is easily checked, the uα’s are such that for any α,

∆2
g0uα + αn∆g0uα + cαuα = u2]−1

α , (1.7)

where αn is as in (??), cα = an + hα, an is as in (??), and

hα =

(∑k
i=1 Uxiα,βα

)2]−1 −
∑k
i=1 U

2]−1
xiα,βα∑k

i=1 Uxiα,βα
. (1.8)

We assume that n ≥ 12 and choose the xiα’s and βα’s such that for any α, xiα 6= xjα,
and such that for instance, d14

α ≥ βα − 1 where dα = infi 6=j dg0(xiα, x
j
α). Similar

arguments to those used in Druet and Hebey [?] in the second order case (see also
Druet and Hebey [?]) give that hα → 0 in C1(Sn) as α→ +∞. In particular,

cα → an in C1(Sn)

as α → +∞, and the uα’s blow up with k bubbles in their H2
2 -decomposition (see

Section ?? for the terminology). Moreover, as is easily checked, we can choose the
uα’s in such a way that for any 1 ≤ m ≤ k, the uα’s have m arbitrary geometrical
blow-up points x1, . . . , xm (the limits of the xiα’s as α → +∞), and such that the
uα’s have an arbitrary number k(j) of bubbles (Bα) in their H2

2 -decomposition with
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centers xiα converging to xj (as long as m and the k(j)’s satisfy
∑m
j=1 k(j) = k).

Noting that in this example, bα = αn is in Sc, and even if the cα’s are not constant
functions, this provides another illustration (in addition to the solutions (??) of
(??) on Sn) of the fact that a condition like b∞ 6∈ Sc in Theorem ?? is sharp. This
example extends to the projective space, and more generally to any quotient of the
sphere.

Concerning the third and last example we discuss in this section, the idea is to let
k → +∞ in the above example (??). We still assume that n ≥ 12 and let (kα) be a
sequence of integers such that kα → +∞ as α→ +∞. For any α, we let x1

α, . . . , x
kα
α

be kα distinct points in Sn, and let dα be the infimum over i 6= j ∈
{

1, . . . , kα
}

of the distances dg0(xiα, x
j
α). We let (βα) be a sequence of real numbers such that

βα > 1 for all α and such that βα → 1 as α→ +∞. We assume, for instance, that
d14
α ≥ kα(βα− 1) for all α, and that k20

α (βα− 1)→ 0 as α→ +∞. We define uα by

uα =

kα∑
i=1

Uxiα,βα . (1.9)

Then the uα’s are solution of (??) and (??) with k = kα, and here again, similar
arguments to those used in Druet and Hebey [?] in the second order case (see also
Druet and Hebey [?]) give that cα → an in C1(Sn) as α → +∞. Independently,
we easily get that ‖uα‖H2

2
→ +∞ as α → +∞. The uα’s are solutions of (??), an

equation like (??), the cα’s in (??) are such that cα → an in C1(Sn) as α → +∞,
and ‖uα‖H2

2
→ +∞ as α → +∞. In particular, there are equations like (??) for

which we do not have an a priori H2
2 -bound on the energy of the solutions (and,

for such general equations, the assumption on the H2
2 -norm in the definition of

pseudo-compactness or compactness is necessary). As above, this example extends
to the projective space, and more generally to any quotient of the sphere.

By the work of Lin [?], where smooth positive solutions in the Euclidean space

Rn of the critical equation ∆2u = u2]−1 are classified, we easily get that the Ux0,β ’s

in (??), together with the constant solution a
(n−4)/8
n , are the only positive solutions

of (??) in Sn. Their energy, defined as the L2] -norm of the solution, is a dimensional
constant and, in particular, (??) has one and only one admissible level of energy

a
n/4
n ωn. On the other hand, we just saw that there are sequences (uα) of equations

like (??) in Sn such that cα → an in C1(Sn) as α → +∞, so that, in some sense,
(??) converges C1 to (??), and such that ‖uα‖2] → +∞ as α→ +∞. If necessary,
this illustrates how much equations like (??) are unstable with respect to their
lower order terms.

As a general remark we mention that a reasonable guess on Theorems ?? and
?? is that Theorem ?? remains true if we only ask that b∞ 6= 1

n trg(Ag)x for all

x ∈ M , and that Theorem ?? remains true if we only ask that b∞ < 1
n trg(Ag)x

for all x ∈ M , where trg(Ag) is the trace with respect to g of Ag. This would
be true if we could develop a C0-theory for critical fourth order equations like the
one developed for critical second order equations by Druet, Hebey and Robert [?].
When g is Einstein, and hence (M, g) is a space form since we also assumed that g
is locally conformally flat, trg(Ag) is constant and Sc =

{
1
n trg(Ag)

}
so that we are

back to what we proved.
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2. Preliminary material

Let D2
2(Rn) be the Beppo-Levi space defined as the completion of the space

of smooth functions with compact support in Rn w.r.t. the norm ‖u‖ = ‖∆u‖2.
Nonnegative solutions u ∈ D2

2(Rn) of the critical Euclidean equation

∆2u = u2]−1 (2.1)

have been classified by Lin [?] (see also Hebey-Robert [?] for a slight additional
remark on Lin’s result). They all are of the form

uλ,x0
(x) =

 λ

λ2 + |x−x0|2√
λn


n−4
2

, (2.2)

where λ > 0, x0 ∈ Rn, and λn = n(n − 4)(n2 − 4). Let Kn be the sharp constant
for the Sobolev inequality(∫

Rn
|u|2

]

dx

)2/2]

≤ Kn

∫
Rn

(∆u)
2
dx . (2.3)

The sharp inequality (??) has been intensively studied. In particular by Beckner
[?], Edmunds-Fortunato-Janelli [?], Lieb [?], and Lions [?]. As a consequence of
their work,

K−1
n = π2λnΓ

(n
2

)4/n

Γ (n)
−4/n

,

where Γ is the Euler function, and the uλ,x0
’s in (??) are extremal functions for the

sharp inequality (??). The extension of (??) to Riemannian manifolds is studied in
Hebey [?] (following previous work by Hebey and Vaugon [?] in the second order
case).

In what follows we let (M, g) be a smooth compact Riemannian manifold of
dimension n ≥ 5, and we discuss the Sobolev decomposition and pointwise estimates
for sequences of solutions of (??). If (xα) is a converging sequence in M , and (µα)
is such that µα > 0 and µα → 0 as α → +∞, we define the standard bubble (Bα)
with respect to the xα’s and µα’s by

Bα(x) = η(rα)

 µα

µ2
α +

dg(xα,x)2√
λn


n−4
2

, (2.4)

where dg is the distance with respect to g, rα = dg(xα, x), λn is as above, and
η : R → R is a smooth nonnegative cutoff function with small support (less than
the injectivity radius of the manifold) around 0. The xα’s are referred to as the
centers of (Bα), and the µα’s as the weights of (Bα). It is easily checked that

‖Bα‖2H2
2

= K−n/4n + o(1) ,

where Kn is as above, and o(1) → 0 as α → +∞. Up to o(1), the H2
2 -norm of a

bubble is a dimensional constant independent of the bubble. As a remark, for any
R > 0,

lim
α→+∞

∫
Bxα (Rµα)

(∆gBα)
2
dvg = K−n/4n + εR ,
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where the sequence (εR) is such that εR → 0 as R → +∞, while the integral of
(∆gBα)2 over Bxα(δαµα) goes to zero as α→ +∞ if δα → 0 as α→ +∞. We say
the H2

2 -range of interaction of (Bα) is of the order µα. On the other hand, for any
R > 0,

inf
x∈Bxα (R

√
µα)

Bα(x) =

(√
λn
R2

)n−4
2

+ εα ,

where the sequence (εα) is such that εα → 0 as α→ +∞, while the supremum over
M\Bxα(Rα

√
µα) of Bα goes to zero as α → +∞ if Rα → +∞ as α → +∞. We

say the C0-range of interaction of (Bα) is of the order
√
µα.

Lemma ?? below was proved in Hebey-Robert [?]. It extends to fourth order
equations of critical Sobolev growth the well-known result of Struwe [?] proved in
the case of second order equations of critical Sobolev growth. We state Lemma ??
with no proof and refer to Hebey-Robert [?] for more details.

Lemma 2.1. Let (uα) be a bounded sequence in H2
2 (M) of nonnegative solutions

of (??). Then there exists k ∈ N, u0 ≥ 0 a nonnegative solution of (??), and k
bubbles (Biα), i = 1, . . . , k, such that, up to a subsequence,

uα = u0 +

k∑
i=1

Biα +Rα , and

‖uα‖2H2
2

= ‖u0‖2H2
2

+

k∑
i=1

‖Biα‖2H2
2

+ o(1) ,

where Rα → 0 in H2
2 (M) as α→ +∞, and o(1)→ 0 as α→ +∞.

Lemma ?? is what we refer to as the H2
2 -decomposition of the uα’s. When k ≥ 1

in Lemma ??, we say that the uα’s blow up. As an illustration of Lemma ??,
let (xα) be a converging sequence of points in Sn, and (βα) be a sequence of real
numbers such that βα > 1 for all α and βα → 1 as α→ +∞. Then,

Uxα,βα = Bα +Rα ,

where the Uxα,βα ’s, solutions of (??) on the sphere, are given by (??), where (Bα)
is the bubble of center the xα’s and weights the µα’s given by

µα =

√
4(βα − 1)√
λn(βα + 1)

and where Rα → 0 in H2
2 (Sn) as α → +∞. Moreover, in this example, there

exists C > 1 such that 1
CBα(x) ≤ Uxα,βα(x) ≤ CBα(x) for all α and all x for which

rα = dg(xα, x) is such that η(rα) = 1. In the general case, for arbitrary sequences of
solutions of equations like (??) on arbitrary manifolds, and multi-bubbles, pointwise
estimates are given by Lemma ??. Such estimates go back to Schoen [?] (see also
Schoen and Zhang [?]) when dealing with second order operators. They have been
intensively used by Druet [?] (still in the case of second order operators). We refer
also to Robert [?].

Lemma 2.2. In addition to the estimates in Lemma ??, there exists C > 0, such
that, up to a subsequence,(

min
1≤i≤k

dg(x
i
α, x)

)n−4
2 ∣∣uα(x)− u0(x)

∣∣ ≤ C
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for all α and all x, where u0 is as in Lemma ??, and the xiα’s, i = 1, . . . , k, are the
centers of the bubbles in the decomposition of the uα’s given by Lemma ??.

Proof of Lemma ??. Let Φα be the function defined at x as the minimum over i
in {1, . . . , k} of the dg(x

i
α, x)’s where the xiα’s are the centers of the bubbles in the

decomposition of the uα’s given by Lemma ??, and let vα be the function given by

vα(x) = Φα(x)
n−4
2 uα(x) .

Let also yα ∈M be such that vα is maximum at yα. We prove Lemma ?? by contra-
diction and assume that vα(yα) → +∞ as α → +∞. We let µα = uα(yα)−2/(n−4)

so that µα → 0 as α→ +∞. Then, by the definition of yα,

lim
α→+∞

dg(x
i
α, yα)

µα
= +∞ (2.5)

for all i = 1, . . . , k. Let δ > 0 be less than the injectivity radius of (M, g). We
define the function wα in B0(δµ−1

α ) by

wα(x) = µ
n−4
2

α uα
(
expyα(µαx)

)
, (2.6)

where B0(δµ−1
α ) is the Euclidean ball of center 0 and radius δµ−1

α , and where expyα
is the exponential map at yα. Given R > 0, for any i = 1, . . . , k, and x ∈ B0(R),

dg
(
xiα, expyα(µαx)

)
≥ dg

(
xiα, yα

)
−Rµα

≥
(

1− Rµα
Φα(yα)

)
Φα(yα)

and the right hand side of the last equation is positive by (??). Coming back to
(??), thanks to the definition of yα, we then get that

wα(x) ≤
(

1− Rµα
Φα(yα)

)−n−4
2

for all x ∈ B0(R). In particular, the wα’s are uniformly bounded on any compact
subset of Rn. It is easily checked that

∆2
gαwα + bαµ

2
α∆gαwα + cαµ

4
αwα = w2]−1

α , (2.7)

where gα(x) =
(
exp?yα g

)
(µαx). Let ξ be the Euclidean metric. Clearly, for any

compact subset K of Rn, gα → ξ in C2(K) as α → +∞. Moreover, equation (??)
can be written as[(

∆gα + d1,α(µα)2
)
◦
(
∆gα + d2,α(µα)2

)]
wα = w2]−1

α , (2.8)

where d1,α and d2,α are given by

d1,α =
bα
2

+

√
b2α
4
− cα and d2,α =

bα
2
−
√
b2α
4
− cα . (2.9)

Thanks to standard elliptic theory and (??) we then get that the wα’s are bounded

in C4,θ
loc (Rn), 0 < θ < 1. In particular, up to a subsequence, we can assume that

wα → w in C4
loc(Rn) as α→ +∞. Here w is a nonnegative function of C4(Rn) such

that w ≤ w(0) = 1. Moreover, w ∈ D2
2(Rn) and w ∈ L2](Rn). Clearly, we have

that ∫
Byα (Rµα)

u2]

α dvg =

∫
Rn
w2]dx+ εR(α) , (2.10)
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where εR(α) is such that

lim
R→+∞

lim
α→+∞

εR(α) = 0 .

Thanks to the decomposition of Lemma ??,∫
Byα (Rµα)

u2]

α dvg =

∫
Byα (Rµα)

(
u0 +

k∑
i=1

Biα +Rα

)2]

dvg .

Hence, ∫
Byα (Rµα)

u2]

α dvg ≤ C
k∑
i=1

∫
Byα (Rµα)

(Biα)2]dvg + o(1) , (2.11)

where o(1)→ 0 as α→ +∞ and C > 0 is independent of α and R. By (??) we can
write that

lim
α→+∞

∫
Byα (Rµα)

(Biα)2]dvg = 0 (2.12)

for all R > 0 and all i = 1, . . . , k. Coming back to (??) and (??), we then get

that
∫
Rn w

2]dx = εα(R), where εR(α) is such that limR→+∞ limα→+∞ εR(α) = 0.
Letting α→ +∞, and then R→ +∞, this implies that∫

Rn
w2]dx = 0

and since w is continuous, nonnegative, and such that w(0) = 1, we get our con-
tradiction. Lemma ?? is proved. �

Let S be the subset of M given by

S =
{

lim
α→+∞

xiα, i = 1, . . . , k
}
, (2.13)

where the xiα’s, i = 1, . . . , k, are the centers of the bubbles (Biα) in the decomposi-
tion of the uα’s given by Lemma ?? (and S = ∅ if the uα’s do not blow up). We
refer to the point in S as geometrical blow-up points. By Lemma ??, uα → u0 in
H2

2,loc(M\S) as α → +∞. By Lemma ??, the uα’s are bounded in any compact

subset of M\S. Standard elliptic theory and the splitting

Pα = [(∆g + d1,α) ◦ (∆g + d2,α)] ,

where Pα is the operator in the left hand side of (??), and d1,α and d2,α are given
by (??), then give that, up to a subsequence,

uα → u0 in C4
loc(M\S) (2.14)

as α→ +∞. Assuming that the uα’s blow up, we let Φα be the function in Lemma
?? given by

Φα(x) = min
1≤i≤k

dg(x
i
α, x) , (2.15)

where the xiα’s are the centers of the bubbles (Biα) in Lemma ??. An important
complement to Lemma ?? is the following.

Lemma 2.3. In addition to the estimate in Lemma ?? we also have that

lim
R→+∞

lim
α→+∞

sup
x∈M\Ωα(R)

Φα(x)
n−4
2

∣∣uα(x)− u0(x)
∣∣ = 0 ,
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where u0 is as in Lemma ??, Φα is given by (??), the xiα’s and µiα’s are the centers
and weights of the bubbles (Biα) in Lemma ??, and, for R > 0, Ωα(R) is given by

Ωα(R) =
⋃k
i=1Bxiα(Rµiα).

Proof of Lemma ??. We prove Lemma ?? by contradiction and assume that there
exists a sequence (yα) of points in M , and that there exists δ0 > 0 such that for
any i = 1, . . . , k,

dg(x
i
α, yα)

µiα
→ +∞ (2.16)

as α→ +∞, and such that for any α,

Φα(yα)
n−4
2

∣∣uα(yα)− u0(yα)
∣∣ ≥ δ0 . (2.17)

Clearly, Φα(yα) → 0 as α → +∞ by (??). We let µα = uα(yα)−2/(n−4). Then we
can rewrite (??) as

Φα(yα)

µα
≥ δ1 , (2.18)

where δ
(n−4)/2
1 = δ0/2. In particular, µα → 0 as α → +∞. Given δ > 0 less than

the injectivity radius of (M, g), we define the function wα in the Euclidean ball
B0(δµ−1

α ) by

wα(x) = µ
n−4
2

α uα
(
expyα(µαx)

)
and let gα be the metric given by gα(x) =

(
exp?yα g

)
(µαx). For any compact subset

K of Rn, and if ξ stands for the Euclidean metric, we have that gα → ξ in C2(K)
as α→ +∞. By (??) we can write that if (xα) is a sequence in B0(δ1/2), then

dg
(
xiα, expyα(µαxα)

)
≥ dg

(
yα, x

i
α

)
− dg

(
yα, expyα(µαxα)

)
≥ δ1µα − dgα(0, xα)µα

for all i and all α. In particular, dg
(
xiα, expyα(µαxα)

)
≥ Cµα for some C > 0

independent of α, and up to a subsequence, we get with the estimate of Lemma ??
that

wα(x) ≤ C (2.19)

for all x ∈ B0(δ1/2) and all α, where C > 0 is independent of α and x. Now we
may follow the arguments of the proof of Lemma ??. On one hand, the wα’s are
solutions of (??) in B0(δ1/2), where d1,α and d2,α are given by (??). On the other
hand, they are bounded in B0(δ1/2) by (??). Then it follows from standard elliptic
theory that the wα’s are bounded in C4,θ(B0(δ1/4)), 0 < θ < 1. In particular,
up to a subsequence, we can assume that wα → w in C4(B0(δ1/8)) as α → +∞.
Moreover, w(0) = 1 since wα(0) = 1 for all α. Let δ2 = δ1/8. We have that∫

Byα (δ2µα)

u2]

α dvg =

∫
B0(δ2)

w2]

α dvgα

=

∫
B0(δ2)

w2]dx+ o(1) ,

(2.20)

where o(1)→ 0 as α→ +∞, while, by Lemma ??,∫
Byα (δ2µα)

u2]

α dvg ≤ C
k∑
i=1

∫
Byα (δ2µα)

(Biα)2]dvg + o(1) , (2.21)
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where C > 0 is independent of α, and the (Biα)’s are the bubbles in Lemma ??.
Independently, here again, we can write that∫

Byα (δ2µα)

(Biα)2]dvg = o(1) (2.22)

for all i. Then, combining (??)-(??), we get that w satisfies∫
B0(δ2)

w2]dx = 0

and this is impossible since w is continuous, nonnegative, and such that w(0) = 1.
This proves Lemma ??. �

3. Relative concentrations when n ≥ 8

We let (M, g) be a smooth compact Riemannian manifold of dimension n. We
assume in what follows that n ≥ 8 and, for the reader’s convenience, we discuss
the notion of L2-concentration. We let (uα) be a bounded sequence in H2

2 (M) of
nonnegative solutions of (??). The material below, and in the following section,
is concerned with pseudo-compactness. We may therefore assume by contradiction
that the uα’s converge weakly in H2

2 (M) to the zero function. If S is the set
consisting of the geometrical blow-up points of the uα’s, as defined in (??), we
write that S =

{
x1, . . . , xp

}
. Given δ > 0, we define

RL2(α, δ) =

∫
Bδ u

2
αdvg∫

M
u2
αdvg

, (3.1)

where Bδ is the union of the Bxi(δ)’s, i = 1, . . . , p. Since we assumed that u0 ≡ 0,
the two quantities in this ratio go to zero as α → +∞. Then L2-concentration
states as follows.

Lemma 3.1. Assume u0 ≡ 0. When n ≥ 8, up to a subsequence, and for any
δ > 0, RL2(α, δ)→ 1 as α→ +∞.

Lemma ?? is easy to prove when n ≥ 9. The proof is slightly more delicate when
n = 8. When n ≤ 7, as is easily checked, bubbles as in (??) do not concentrate in L2

and L2-concentration fails in this case to be the right key notion for concentration.
The cases of dimensions n = 6 and n = 7 are treated in Section ??.

Proof of Lemma ??. Let Λ > 0 be such that E(uα) ≤ Λ for all α. For convenience,

we set ũα = ‖uα‖−1
2]
uα so that

∫
M
ũ2]

α dvg = 1. Then

∆2
gũα + bα∆gũα + cαũα = λαũ

2]−1
α , (3.2)

where λα = ‖uα‖8/(n−4)

2]
. Noting that the operator in the left hand side of (??)

is uniformly coercive as α → +∞ (the coefficients are positive and converge to
positive limits), there exist Λ1,Λ2 > 0 such that Λ1 ≤ λα ≤ Λ2 for all α. Up to
a subsequence, thanks to the compactness of the embedding of H2

2 in H2
1 , we may

assume that ‖ũα‖H2
1
→ 0 as α→ +∞. We let also ṽα be given by

ṽα = ∆gũα + d2,αũα ,

where d2,α is as in (??). We have that

∆2
gu+ bα∆gu+ cαu =

(
∆g + d1,α

)(
∆g + d2,α

)
u
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for all functions u, where d1,α is as in (??). Hence ∆g ṽα + d1,αṽα ≥ 0, and ṽα is

nonnegative. Let δ > 0 be given. Thanks to (??) with u0 ≡ 0, λαũ
2]−1
α − cαũα ≤ 0

in M\Bδ when α is sufficiently large. It follows that

∆g

(
∆gũα + bαũα

)
≤ 0 (3.3)

in M\Bδ when α is sufficiently large. Also, we have that ∆gũα + bαũα ≥ ṽα since
ũα ≥ 0 and d2,α ≤ bα. By the De Giorgi-Nash-Moser iterative scheme, that we
apply to (??), we then get that

sup
M\Bδ/2

ṽα ≤ sup
M\Bδ/2

(
∆gũα + bαũα

)
≤ C

∫
M\Bδ/3

(
∆gũα + bαũα

)
dvg ,

where C > 0 is independent of α. Let η be a smooth function such that 0 ≤ η ≤ 1,
η = 0 in Bδ/4, and η = 1 in M\Bδ/3. Then, integrating by parts,∫

M\Bδ/3

(
∆gũα + bαũα

)
dvg ≤

∫
M

η
(
∆gũα + bαũα

)
dvg

≤ C

∫
M\Bδ/4

ũαdvg ,

where C > 0 is independent of α. It follows that

sup
M\Bδ/2

ṽα ≤ C
∫
M\Bδ/4

ũαdvg (3.4)

when α is sufficiently large, where C > 0 is independent of α. Applying the De
Giorgi-Nash-Moser iterative scheme to the equation ∆gũα+d2,αũα = ṽα, it follows
from (??) that

sup
M\Bδ

ũα ≤ C
∫
M\Bδ/4

ũαdvg (3.5)

when α is sufficiently large, where C > 0 is independent of α. In particular, thanks
to (??), ∫

M\Bδ
ũ2
αdvg ≤ C

∫
M

ũαdvg

∫
M\Bδ/4

ũαdvg

and integrating (??) we get that∫
M\Bδ

ũ2
αdvg ≤ C

∫
M

ũ2]−1
α dvg

(∫
M

ũ2
αdvg

)1/2
(3.6)

when α is sufficiently large, where C > 0 is independent of α. First we assume that
n ≥ 12. Then 1 < 2] − 1 ≤ 2, and it follows from Hölder’s inequality that∫

M

ũ2]−1
α dvg ≤ C

(∫
M

ũ2
αdvg

)(2]−1)/2
,

where C > 0 is independent of α. Thanks to (??) we then get that∫
M\Bδ

ũ2
αdvg ≤ C

(∫
M

ũ2
α

)2]/2
and that

1−RL2(α, δ) ≤ C
(∫
M

ũ2
α

) 2]

2 −1
.
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Noting that ũα → 0 in L2 as α→ +∞, it follows that RL2(α, δ)→ 1 as α→ +∞.
Lemma ?? is proved when n ≥ 12. Now we assume that 9 ≤ n < 12. Then
2 < 2] − 1 < 2], and it follows from Hölder’s inequality that∫

M

ũ2]−1
α dvg ≤

(∫
M

ũ2
αdvg

)n−4
8
(∫
M

ũ2]

α dvg
) 12−n

8

≤
(∫
M

ũ2
αdvg

)n−4
8

since ‖ũα‖2] = 1. Thanks to (??) we then get that∫
M\Bδ

ũ2
αdvg ≤ C

(∫
M

ũ2
α

)n/8
and that

1−RL2(α, δ) ≤ C
(∫
M

ũ2
α

)n
8−1

.

Here again, ũα → 0 in L2 as α→ +∞. It follows that RL2(α, δ)→ 1 as α→ +∞
when 9 ≤ n < 12. This proves Lemma ?? for such n’s, and we are left with the
case when n = 8. It easily follows from (??) that∫

M\Bδ
u2
αdvg ≤ C

∫
M

u2]−1
α dvg

(∫
M

u2
αdvg

)1/2
(3.7)

when α is sufficiently large, where C > 0 is independent of α. Given δ > 0, we
write that∫

M

u2]−1
α dvg ≤

∫
M\Bδ

u2]−1
α dvg +

∫
Bδ
u2]−1
α dvg

≤
(

max
M\Bδ

uα
) ∫

M\Bδ
u2]−2
α dvg +

∫
Bδ
u2]−1
α dvg .

Coming back to (??), and since 2] = 4 when n = 8, we get that

RL2(α, δ) ≤
(

max
M\Bδ

uα
)
‖uα‖2 +Rδ(α) , (3.8)

where

Rδ(α) =

∫
Bδ u

2]−1
α dvg√∫

M
u2
αdvg

. (3.9)

Clearly, see for instance (??) with u0 ≡ 0,

lim
α→+∞

(
max
M\Bδ

uα
)
‖uα‖2 = 0 (3.10)

and we are left with getting estimates for Rδ(α). We come back here to the H2
2 -

decomposition of the uα’s given by Lemma ??. We let the xiα’s and the µiα’s be the
centers and weights of the bubbles involved in this decomposition. Given R > 0,
and for k as in Lemma ??, we let also Ωα(R) be the union from i = 1 to k of the
geodesic balls centered at xiα and of radii Rµiα. Since 2] = 4 when n = 8, we can
write by Hölder’s inequality that∫

Bδ
u2]−1
α dvg ≤

∫
Ωα(R)

u2]−1
α dvg +

√∫
Bδ\Ωα(R)

u2]
α dvg

√∫
M

u2
αdvg .
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Then,

Rδ(α) ≤

∫
Ωα(R)

u2]−1
α dvg√∫

M
u2
αdvg

+

√∫
Bδ\Ωα(R)

u2]
α dvg , (3.11)

where Rδ(α) is as in (??). As is easily checked, we get with the H2
2 -decomposition

of Lemma ?? that∫
Bδ\Ωα(R)

u2]

α dvg = εR(α) ,

∫
Ωα(R)

u2]−1
α dvg ≤ C

(
max
i
µiα
)n−4

2

(∫
B0(R)

u2]−1dx+ o(1)

)
, and

∫
M

u2
αdvg ≥

(
max
i
µiα
)n−4

(∫
B0(R)

u2dx+ o(1)

)
,

(3.12)

where limR→+∞ limα→+∞ εR(α) = 0, where o(1) → 0 as α → +∞, C > 0 is
independent of α and R, and u = u1,0 is given by (??). By (??) and (??) we then
get that

lim sup
α→+∞

Rδ(α) ≤ εR + C

∫
B0(R)

u2]−1dx√∫
B0(R)

u2dx
, (3.13)

where εR → 0 as R→ +∞, and C > 0 does not depend on R. We have that∫
B0(R)

u2]−1dx <

∫
Rn
u2]−1dx

for all R, so that the integrals in the left hand side of this equation are uni-
formly bounded with respect to R. On the other hand, when n = 8, we have
that

∫
B0(R)

u2dx → +∞ as R → +∞. Hence, we get with (??) that Rδ(α) → 0

for all δ > 0 as α → +∞. Coming back to (??), and by (??), it follows that
RL2(α, δ)→ 1 as α→ +∞ for all δ > 0, and this ends the proof of Lemma ??. �

We still write that S =
{
x1, . . . , xp

}
, where S is the set consisting of the geo-

metrical blow-up points of (uα), and, for δ > 0, we define the ratio

R∇L2(α, δ) =

∫
Bδ |∇uα|

2dvg∫
M
|∇uα|2dvg

, (3.14)

where Bδ is the union of the Bxi(δ)’s, i = 1, . . . , p. Since we assumed that u0 ≡ 0,
the two quantities in this ratio go to zero as α → +∞. We claim here that, as it
was the case for L2-concentration, the ratio itself goes to 1 as α→ +∞. We refer to
this property as ∇L2-concentration. We obtain ∇L2-concentration in Lemma ??
below as a corollary of L2-concentration. The cases n = 6 and n = 7 with respect
to this concentration are treated in the following section.

Lemma 3.2. Assume u0 ≡ 0. When n ≥ 8, up to a subsequence, and for any
δ > 0, R∇L2(α, δ)→ 1 as α→ +∞.

Proof of Lemma ??. We let the ũα’s be as in (??), and let ṽα = ∆gũα + d2,αũα,
where d2,α is as in (??). Given δ > 0, we let also η be a smooth function such that
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0 ≤ η ≤ 1, η = 0 in Bδ/2, and η = 1 in M\Bδ. Then, thanks to (??),∫
M

η
(
∆gũα + d2,αũα

)
ũαdvg ≤ C

∫
M

ηũαdvg

∫
M\Bδ/4

ũαdvg

≤ C

∫
M\Bδ/4

ũ2
αdvg

when α is sufficiently large, where C > 0 is independent of α. Integrating by parts,
it follows that ∫

M

η|∇ũα|2dvg ≤ C
∫
M\Bδ/4

ũ2
αdvg

when α is sufficiently large, where C > 0 is independent of α. In particular,∫
M\Bδ

|∇ũα|2dvg ≤ C
∫
M\Bδ/4

ũ2
αdvg ,

and writing that

1−R∇L2(α, δ) =

∫
M\Bδ |∇ũα|

2dvg∫
M
ũ2
αdvg

×
∫
M
ũ2
αdvg∫

M
|∇ũα|2dvg

,

we get that ∇L2-concentration follows from Lemma ?? and Lemma ?? below. �

Another estimate we need to prove the assertion on pseudo-compactness in The-
orem ??, which we also used in the proof of Lemma ??, is the global balance
L2 − ∇L2. Here again we obtain this balance, as stated in Lemma ?? below, as
a corollary of L2-concentration. The cases n = 6 and n = 7 with respect to this
balance are treated in the following section.

Lemma 3.3. Assume u0 ≡ 0. When n ≥ 8, up to a subsequence,∫
M

u2
αdvg = o(1)

∫
M

|∇uα|2dvg , (3.15)

where o(1)→ 0 as α→ +∞.

Proof of Lemma ??. We let δ > 0. By Hölder’s inequalities,∫
Bδ
u2
αdvg ≤ V olg(Bδ)(2?−2)/2?‖uα‖22? ,

where V olg(Bδ) stands for the volume of Bδ with respect to g. Independently, we
can write with the Sobolev inequality corresponding to the embedding of the second
order Sobolev space H2

1 into L2? that

‖uα‖22? ≤ A
(
‖∇uα‖22 + ‖uα‖22

)
,

where A > 0 is independent of α. Noting that∫
M

u2
αdvg =

∫
Bδ
u2
αdvg +

∫
M\Bδ

u2
αdvg

and since V olg(Bδ)→ 0 as δ → 0, we then get that∫
M

u2
αdvg ≤ C1

∫
M\Bδ

u2
αdvg + C2V olg(Bδ)(2?−2)/2?

∫
M

|∇uα|2dvg

for all δ > 0 small, where C1, C2 > 0 are independent of α and δ. In particular, if
RL2(α, δ)→ 1 as α→ +∞, we get (??) by letting first α→ +∞, and then δ → 0.
This proves Lemma ??. �
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As a remark, it follows from Lemma ?? and Lemma ?? that when n ≥ 8, and
for any δ > 0, ∫

M\Bδ
|∇2uα|2dvg = o(1)

∫
M

|∇uα|2dvg , (3.16)

where o(1) → 0 as α → +∞. In order to prove (??), we fix δ > 0 and let η be
a smooth function such that 0 ≤ η ≤ 1, η = 0 in Bδ/2, and η = 1 in M\Bδ. We

consider (??) with u = uα, multiply the equation by η2uα, and integrate over M .
Then, ∫

M

∆guα∆g(η
2uα)dvg + bα

∫
M

(
∇uα∇(η2uα)

)
dvg

+ cα

∫
M

η2u2
αdvg =

∫
M

η2u2]

α dvg .

(3.17)

As is easily checked,∫
M

∆guα∆g(η
2uα)dvg =

∫
M

(∆g(ηuα))
2
dvg +O

(
‖uα‖H2

1 (Bδ\Bδ/2)

)
,

where ‖u‖H2
1 (A) =

∫
A

(|∇u|2 + u2)dvg, and∫
M

(
∇uα∇(η2uα)

)
dvg =

∫
M

|∇(ηuα)|2dvg +O
(
‖uα‖L2(Bδ\Bδ/2)

)
.

Independently, thanks to (??),∫
M

η2u2]

α dvg = o

(∫
M

η2u2
αdvg

)
.

Coming back to (??), it follows that∫
M

(∆g(ηuα))
2
dvg + bα

∫
M

|∇(ηuα)|2dvg +
(
cα + o(1)

) ∫
M

η2u2
αdvg

= O
(
‖uα‖L2(Bδ\Bδ/2)

)
+O

(
‖∇uα‖L2(Bδ\Bδ/2)

)
,

(3.18)

where o(1)→ 0 as α→ +∞. By the Bochner-Lichnerowicz-Weitzenböck formula,∫
M

(∆g(ηuα))
2
dvg =

∫
M

|∇2(ηuα)|2dvg +

∫
M

Rcg (∇(ηuα),∇(ηuα)) dvg

=

∫
M

|∇2(ηuα)|2dvg +O

(∫
M

|∇(ηuα)|2dvg
)
,

where Rcg is the Ricci curvature of g. By (??) we then get that∫
M\Bδ

|∇2uα|2dvg ≤ C1

∫
M\Bδ/2

|∇uα|2dvg + C2

∫
M\Bδ/2

u2
αdvg ,

where C1, C2 > 0 do not depend on α, and (??) follows from Lemma ?? and Lemma
??.
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4. Relative concentrations when n = 6, 7

We let (M, g) be a smooth compact Riemannian manifold of dimension n. As in
Section ??, we are concerned with pseudo-compactness. We let (uα) be a bounded
sequence in H2

2 (M) of nonnegative solutions of (??), and we assume by contradic-
tion that the uα’s converge weakly in H2

2 (M) to the zero function. We prove that
Lemma ?? and Lemma ?? of the preceding section still hold when n = 6, 7. In the
sequel the notations are those of Section ??. In particular, R∇L2(α, δ) is defined in
(??). We claim that the following result holds.

Lemma 4.1. Assume u0 ≡ 0. When n = 6, 7, ∇L2-concentration holds so that,
up to a subsequence, and for any δ > 0, R∇L2(α, δ) → 1 as α → +∞. Moreover,
the global balance L2 −∇L2 holds also so that∫

M

u2
αdvg = o(1)

∫
M

|∇uα|2dvg ,

where o(1)→ 0 as α→ +∞.

Proof of Lemma ??. We assume n = 6, 7, and let δ > 0 be given. We claim that∫
M\Bδ

u2
αdvg = o(1)

(∫
M

u2?

α dvg

)2/2?

, (4.1)

where o(1) → 0 as α → +∞. In order to prove (??), we first note that similar
arguments to those used in the proof of Lemma ?? give that

sup
M\Bδ

ũα ≤ C
∫
M\Bδ/4

ũαdvg (4.2)

when α is sufficiently large, where C > 0 is independent of α, and ũα = ‖uα‖−1
2]
uα.

In particular, we can write with (??) that∫
M\Bδ

ũ2
αdvg ≤ C‖ũα‖2L1(M)

≤ C‖ũα‖L1(M)‖ũα‖L2? (M)

(4.3)

and then, with (??), we can write that∫
M\Bδ

ũ2
αdvg ≤ C

∫
M
ũ2]−1
α dvg

‖ũα‖L2? (M)

(∫
M

ũ2?

α dvg

)2/2?

, (4.4)

where C > 0 is independent of α, since, integrating equation (??) satisfied by the

uα’s, we get that cα
∫
M
uαdvg =

∫
M
u2]−1
α dvg. If we assume now that n = 7, then

2? < 2] − 1 < 2], and we can write by Hölder’s inequality that∫
M

ũ2]−1
α dvg ≤ C‖ũα‖2

?/(2]−2?)

L2? (M)
. (4.5)

Since 2?/(2] − 2?) > 1 when n = 7, and ‖ũα‖L2? (M) → 0 as α→ +∞, we get with

(??) and (??) that (??) is true when n = 7. Now we assume that n = 6. We let
the xiα’s and the µiα’s be the centers and weights of the bubbles involved in the
decomposition of Lemma ??. Given R > 0, and for k as in Lemma ??, we let, as
in the proof of Lemma ??, Ωα(R) be the union from i = 1 to k of the geodesic
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balls centered at xiα and of radii Rµiα. Then, coming back to the uα’s, by Hölder’s
inequality as above, and since n = 6, we can write that∫

M

u2]−1
α dvg =

∫
M\Ωα(R)

u2]−1
α dvg +

∫
Ωα(R)

u2]−1
α dvg

≤

(∫
M\Ωα(R)

u2]

α dvg

)2/3

‖uα‖L2? (M) +

∫
Ωα(R)

u2]−1
α dvg .

(4.6)

By the H2
2 -decomposition of Lemma ?? we have that, when n = 6,∫

M\Ωα(R)

u2]

α dvg = εR(α) ,∫
Ωα(R)

u2]−1
α dvg ≤ C

(
max
i
µiα
)
, and

∫
M

u2?

α dvg ≥
(
max
i
µiα
)2? (∫

B0(R)

u2?dx+ o(1)

)
,

(4.7)

where

lim
R→+∞

lim
α→+∞

εR(α) = 0 ,

where o(1) → 0 as α → +∞, C > 0 is independent of α and R, and u = u1,0 is
given by (??). By (??) and (??) we can then write that when n = 6,

lim sup
α→+∞

∫
M
u2]−1
α dvg

‖uα‖L2? (M)

≤ εR +
C(∫

B0(R)
u2?dx

)1/2?
, (4.8)

where εR → 0 as R → +∞, and C > 0 does not depend on R. Noting that∫
B0(R)

u2?dx → +∞ as R → +∞ when n = 6, it follows from (??) and (??) that

(??) is also true when n = 6. Now that we have (??) for all δ > 0, similar arguments
to those developed in the proof of Lemma ?? give that∫

M

u2
αdvg = o(1)

(∫
M

u2?

α dvg

)2/2?

, (4.9)

and then that ∫
M

u2
αdvg = o(1)

∫
M

|∇uα|2dvg . (4.10)

In particular, the global balance L2 −∇L2 holds when n = 6, 7. We obtain ∇L2-
concentration as in the proof of Lemma ??. This ends the proof of Lemma ??. �

As in Section ??, it follows from Lemma ?? that for any δ > 0,∫
M\Bδ

|∇2uα|2dvg = o(1)

∫
M

|∇uα|2dvg , (4.11)

where o(1)→ 0 as α→ +∞.
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5. A splitting estimate

We let (M, g) be a smooth compact Riemannian manifold of dimension n ≥ 5.
We are concerned in this section with getting estimates to prove the compactness
assertion of Theorem ?? and Theorem ??. We borrow material developed for second
order equations by Devillanova and Solimini [?]. We let (uα) be a bounded sequence
in H2

2 (M) of nonnegative solutions of (??), and assume that the uα’s blow up. In
this section, u0 may be nonzero. Up to renumbering and up to a subsequence, with
the notations of Section ??, we can assume that

µ1
α = max

1≤i≤k
µiα , (5.1)

where the µiα’s are the weights of the bubbles (Biα) of Lemma ??. We let

xα = x1
α and µα = µ1

α , (5.2)

where the x1
α’s are the centers of (B1

α). The main purpose of this section is to prove
the following splitting type estimate.

Lemma 5.1. Let p1, p2 be arbitrary real numbers such that 2]/2 < p2 < 2] < p1.
Then there exists C > 0, and sequences (u1

α) and (u2
α) of nonnegative functions

such that, up to a subsequence, uα ≤ u1
α + u2

α, ‖u1
α‖p1 ≤ C, and

‖u2
α‖p2 ≤ Cµ

n
p2
− n

2]

α

for all α, where µα is given by (??) and (??).

We prove Lemma ?? thanks to Steps ?? to ?? below. Note that a basic model
for Lemma ?? is uα = u0 + B1

α, u1
α = u0, and u2

α = B1
α. For p1 and p2 such that

2]/2 < p2 < 2] < p1, and σ > 0, we define the norm ‖ · ‖p1,p2,σ on L∞(M), the
space of bounded functions in M , by

‖u‖p1,p2,σ = inf
{
C > 0 s.t. (Iσp1,p2) holds for u

}
,

where (Iσp1,p2) holds for u if there exist nonnegative functions u1, u2 ∈ L∞(M) such

that |u| ≤ u1 + u2,

‖u1‖p1 ≤ C and ‖u2‖p2 ≤ Cσ
n

2]
− n
p2 .

Step ?? states as follows.

Step 5.1. Let u, v ∈ H2
2 (M) ∩ L∞(M) and K ∈ L∞(M) be nonnegative functions

such that (
∆g +

a

2

)2

u ≤ Kv (5.3)

for some a ∈ [Λ1,Λ2] where Λ1 < Λ2 are positive. Let p1, p2 be arbitrary real
numbers such that 2]/2 < p2 < 2] < p1, and σ > 0 arbitrary. Then

‖u‖p1,p2,σ ≤ C‖K‖n/4‖v‖p1,p2,σ ,

where C > 0 depends only on the manifold, p1, p2, Λ1, and Λ2.

Proof of Step ??. Let Λ > ‖v‖p1,p2,σ, Λ arbitrary. Then there exist v1, v2 ≥ 0 in

L∞(M) such that v ≤ v1 + v2, ‖v1‖p1 ≤ Λ, and ‖v2‖p2 ≤ Λσ(n/2])−(n/p2). We let
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ui ∈ H2
2 (M) and ũi ∈ H2

2 (M) be such that(
∆g +

a

2

)
ũi = Kvi , and(

∆g +
a

2

)
ui = ũi .

(5.4)

Then ũi ∈ Hp
2 (M), and ui ∈ Hp

4 (M) for all p > 1. In particular ui ∈ L∞(M),
i = 1, 2, and, of course, it follows from (??) that(

∆g +
a

2

)2

ui = Kvi .

By the maximum principle that we apply to the two equations in (??), ui ≥ 0
for all i = 1, 2. Now we let qi > 1, i = 1, 2, be such that 1

qi
= 4

n + 1
pi

. Noting

that Kvi ∈ Lqi(M), we get that ũi ∈ Hqi
2 (M) and then that ui ∈ Hqi

4 (M). In
particular, ui ∈ H ′qi4 (M) where, for k integer and q > 1, H ′qk (M) is the (reduced)
Sobolev space defined as the completion of C∞(M) with respect to the norm

‖u‖H′qk =

E(k/2)∑
i=0

‖∆i
gu‖q +

E((k−1)/2)∑
i=0

‖∇∆i
gu‖q

and where E(s) is the greatest integer not exceeding s. By Step ?? below, that
we apply to the second equation in (??), we easily get that ‖ui‖H′qi4

≤ C‖ũi‖Hqi2
where C > 0 depends only on the manifold, pi, Λ1, and Λ2. Applying now Step ??
to the first equation in (??), we can write that for any i = 1, 2,

‖ui‖H′qi4
≤ C‖Kvi‖qi
≤ C‖K‖n/4‖vi‖pi ,

where C > 0 depends only on the manifold, p1, p2, Λ1, and Λ2. By the Sobolev
embedding theorem for H ′qk -spaces, see for instance Aubin [?], H ′qi4 (M) ⊂ Lpi(M),
i = 1, 2. Hence, for any i = 1, 2,

‖ui‖pi ≤ C‖K‖n/4‖vi‖pi ,

where C > 0 depends only on the manifold, p1, p2, Λ1, and Λ2. By (??), and since
v ≤ v1 + v2, (

∆g +
a

2

)2

u ≤
(

∆g +
a

2

)2

u1 +
(

∆g +
a

2

)2

u2 .

Then, by the maximum principle that we apply again twice, u ≤ u1 +u2. It follows
that ‖u‖p1,p2,σ ≤ C‖K‖n/4Λ, and since Λ > ‖v‖p1,p2,σ is arbitrary, this proves Step
??. �

Step ?? (inspired from Gilbarg and Trudinger [?]) is standard. We state it with
no proof.

Step 5.2. Let u ∈ Hp
2 (M) and f ∈ Lp(M), p > 1, be two functions such that

Lau = f where La = ∆g + a, a ∈ [Λ1,Λ2], and Λ1 < Λ2 are positive. Then
‖u‖Hp2 ≤ C‖f‖p where C > 0 depends only on the manifold, p, Λ1, and Λ2.

The next step in the proof, Step ?? below, is a bootstrap argument to improve

the values of p1 and p2 we get from Step ??. We let θ(n) = n(n+4)
4(n−4) . Step ?? states

as follows.
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Step 5.3. Let u, v ∈ H2
2 (M) ∩ L∞(M) be nonnegative functions such that(

∆g +
a

2

)2

u = v2]−1 +Av

for some a,A ∈ [Λ1,Λ2] where 0 < Λ1 < Λ2. Let p1, p2 be arbitrary real numbers

such that 2] − 1 < p2 < 2] < p1 < θ(n), and q1, q2 > 1 be such that 1
qi

= 2]−1
pi
− 4

n ,

i = 1, 2. Then, for any σ > 0,

‖u‖q1,q2,σ ≤ C
(
‖v‖2

]−1
p1,p2,σ + 1

)
,

where C > 0 depends only one the manifold, p1, p2, Λ1, and Λ2.

Proof of Step ??. Let Λ > ‖v‖p1,p2,σ, Λ arbitrary. Then there exist v1, v2 ≥ 0 in

L∞(M) such that v ≤ v1 + v2, ‖v1‖p1 ≤ Λ, and ‖v2‖p2 ≤ Λσ(n/2])−(n/p2). We let
u1 and u2 be such that(

∆g +
a

2

)2

u1 = (1 +A) 22]−1(v1)2]−1 +A , and(
∆g +

a

2

)2

u2 = (1 +A) 22]−1(v2)2]−1 .

Then ui ∈ Hp
4 (M)∩L∞(M), i = 1, 2, for all p > 1, and it follows from the maximum

principle applied twice that u1, u2 ≥ 0. Since pi > 2] − 1, i = 1, 2, we can write
with Step ??, as in the proof of Step ??, that

‖u1‖
H
′p1/(2]−1)
4

≤ C‖ (1 +A) 22]−1(v1)2]−1 +A‖p1/(2]−1) , and

‖u2‖
H
′p2/(2]−1)
4

≤ C‖ (1 +A) 22]−1(v2)2]−1‖p2/(2]−1) ,

where C > 0 depends only on the manifold, p1, p2, Λ1, and Λ2. Independently,
since 2] − 1 < pi < θ(n), we can write with the Sobolev embedding theorem for

H ′qk -spaces that H
′pi/(2]−1)
4 (M) ⊂ Lqi(M), i = 1, 2. It follows that

‖u1‖q1 ≤ C
(
‖v1‖2

]−1
p1 + 1

)
, and

‖u2‖q2 ≤ C‖v2‖2
]−1
p2 ,

where C > 0 depends only on the manifold, p1, p2, Λ1, and Λ2. Noting that(
∆g +

a

2

)2

u = v2]−1 +Av

≤ (1 +A)v2]−1 +A

≤ 22]−1(1 +A)(v1)2]−1 +A+ 22]−1(1 +A)(v2)2]−1

=
(

∆g +
a

2

)2

u1 +
(

∆g +
a

2

)2

u2

we then get with the maximum principle applied twice that u ≤ u1 + u2. In
particular, since

(
2] − 1

) (
(n/2])− (n/p2)

)
= (n/2])− (n/q2), we get that

‖u‖q1,q2,σ ≤ C
(

Λ2]−1 + 1
)
,

where C > 0 depends only on the manifold, p1, p2, Λ1, and Λ2. Since Λ > ‖v‖p1,p2,σ
is arbitrary, this proves Step ??. �
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The initialisation step in the proof, Step ?? below, states as follows. We recall
that if G : M ×M\∆→ R, ∆ being the diagonal in M ×M , is the Green function
of L = ∆g + a, a > 0, then

G̃(x, y) =

∫
M

G(x, z)G(z, y)dvg(z)

is the Green function of L2 = L ◦ L. The integral makes sense and estimates on G̃
follow from material in Druet, Hebey and Robert [?].

Step 5.4. Let (uα) be a bounded sequence in H2
2 (M) of nonnegative solutions of

(??). There exists p0(n) = max
(
2]/(2] − 1), 2]/2

)
and p(n) > 2] with the property

that for any p1, p2 satisfying p0(n) < p2 < 2] < p1 < p(n) there exists C > 0 such
that, up to a subsequence,

‖uα‖p1,p2,µ−1
α
≤ C

for all α, where µα is given by (??) and (??).

Proof of Step ??. We let Gα be the Green function of the operator
(
∆g + bα

2

)2
.

Then,

uα(x) =

∫
M

Gα(x, y)

(
u2]−2
α (y) +

(
b2α
4
− aα

))
uα(y)dvg(y)

for all x ∈M . By Lemma ??, up to a subsequence, it follows that

uα(x) ≤ C
∫
M

Gα(x, y)

(
1 +

k∑
i=1

(Biα)2]−2(y) + |Rα(y)|2
]−2

)
uα(y)dvg(y) , (5.5)

where C > 0 is independent of α, the (Biα)’s are bubbles, and Rα → 0 in H2
2 (M)

as α→ +∞. We let vα and wiα, i = 1, . . . , k, be given by

vα(x) =

∫
M

Gα(x, y)uα(y)dvg(y)

wiα(x) =

∫
M

Gα(x, y)(Biα)2]−2(y)uα(y)dvg(y) .

(5.6)

From the equation
(
∆g + bα

2

)2
vα = uα, from Step ?? and arguments as in the

proof of Step ??, and since the uα’s are bounded in H2
2 (M), there exists p(n) > 2],

depending only on n, such that for any 2] < p1 < p(n), and any α,

‖vα‖p1 ≤ C , (5.7)

where C > 0 does not depend on α. In a similar way, we get with the equations(
∆g +

bα
2

)2

wiα = (Biα)2]−2uα

that for any p0(n) < p2 < 2], there exists C,C ′ > 0 such that for any i and any α,

‖wiα‖p2 ≤ C‖(Biα)2]−2‖r‖uα‖2]

≤ C ′‖(Biα)2]−2‖r ,
where r ∈

(
n
8 ,

n
4

)
is such that 1

r = 1
p2

+ 4
n −

1
2]

. From equation (??), from (??) and

(??), and since n
8 < r < n

4 , we can write that for any i and any α,

‖(Biα)2]−2‖r ≤ C(µiα)
n
r−4

≤ Cµ
n
r−4
α ,
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where C > 0 is independent of α and i. It follows that for any p0(n) < p2 < 2], for
any α, and any i,

‖wiα‖p2 ≤ C(µ−1
α )

n

2]
− n
p2 , (5.8)

where C > 0 is independent of α and i. Now we let v̂α be given by

v̂α(x) =

∫
M

Gα(x, y)|Rα(y)|2
]−2uα(y)dvg(y) .

Then (
∆g +

bα
2

)2

v̂α = |Rα|2
]−2uα

and it follows from Step ?? that for any 2]

2 < p2 < 2] < p1,

‖v̂α‖p1,p2,µ−1
α

= o
(
‖uα‖p1,p2,µ−1

α

)
. (5.9)

By (??) and (??), if p0(n) < p2 < 2] < p1 < p(n), then∥∥∥∥∥vα +

k∑
i=1

wiα

∥∥∥∥∥
p1,p2,µ

−1
α

≤ C , (5.10)

where C > 0 does not depend on α. Noting that if 0 ≤ u ≤ v, then for any p1, p2,
and σ, ‖u‖p1,p2,σ ≤ ‖v‖p1,p2,σ, and that by (??),

uα ≤ C

(
vα +

k∑
i=1

wiα + v̂α

)
we get with (??) and (??) that for any p0(n) < p2 < 2] < p1 < p(n), there exists
C > 0 such that, for any α, ‖uα‖p1,p2,µ−1

α
≤ C. This proves Step ??. �

With Steps ?? to ?? we are in position to prove Lemma ??. The proof of Lemma
?? proceeds as follows.

Proof of Lemma ??. We proceed by induction, starting from Step ??, using Step
??. An easy remark is that

‖u‖p̃1,p2,σ ≤ ‖u‖p1,p2,σ (5.11)

if p̃1 ≤ p1. We fix p1, p2 such that 2]

2 < p2 < 2] < p1. We let p0
1 > 2] be close to

2], and let k0 ≥ 1 be such that the increasing sequence (pk1) given by

1

pk+1
1

=
2] − 1

pk1
− 4

n

satisfies pk1 < θ(n) for all k ≤ k0, and pk0+1
1 ≥ θ(n), where θ(n) is as in Step ??.

Similarly, for p0
2 < 2] we construct the decreasing sequence (pk2) by

1

pk+1
2

=
2] − 1

pk2
− 4

n
.

We choose p0
2 such that pk0+2

2 = p2. Then, since p2 > 2]/2, pk2 > 2] − 1 for all
k ≤ k0 + 1. The closer p0

1 > 2] is to 2], the larger k0 is, and the larger k0 is, the
closer p0

2 < 2] has to be to 2]. In particular, we can assume that p0
2 > 2]/(2] − 1).
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Then, by Steps ?? and ??, we get that there exists C > 0 such that, up to a
subsequence, and for any α,

‖uα‖pk0+1
1 ,p

k0+1
2 ,µ−1

α
≤ C .

In particular, by (??), ‖uα‖p̃1,pk0+1
2 ,µ−1

α
≤ C for p̃1 < θ(n) as close as we want to

θ(n). We then apply Step ?? once more and get that

‖uα‖p̂1,pk0+2
2 ,µ−1

α
≤ C ,

where p̂1 → +∞ as p̃1 → θ(n). Choosing p̃1 sufficiently close to θ(n), we can
assume that p̂1 ≥ p1, and, thanks to (??), this proves Lemma ??. �

6. An integral estimate

We let (M, g) be a smooth compact Riemannian manifold of dimension n ≥
5. Here also we are concerned with getting estimates to prove the compactness
assertion of Theorem ?? and Theorem ??. We let (uα) be a bounded sequence in
H2

2 (M) of nonnegative solutions of (??), and assume that the uα’s blow up. As in
Section ??, u0 may be nonzero. Up to renumbering and up to a subsequence, as
done in Section ??, we can assume that

µ1
α = max

1≤i≤k
µiα , (6.1)

where the µiα’s are the weights of the bubbles (Biα) of Lemma ??. Then, as in (??),
we let xα = x1

α and µα = µ1
α, where the x1

α’s are the centers of (B1
α). The main

purpose of this section is to prove the following integral estimate.

Lemma 6.1. There exists C1, C2 > 0 such that, up to a subsequence,

1

rn−1

∫
∂Bxα (r)

uαdσg ≤ C1 + C2
µ
n−4
2

α

rn−4
, and

1

rn−1

∫
∂Bxα (r)

|∆guα| dσg ≤ C1 + C2
µ
n−4
2

α

rn−2

for all α and all r > 0 sufficiently small, independent of α, where ∂Bxα(r) is the
boundary of the geodesic ball Bxα(r), and dσg is the measure induced on ∂Bxα(r)
by g.

We prove Lemma ?? thanks to Steps ?? and ?? below. As a preliminary remark,
given x0 ∈M , we let βx0

be the smooth function around x0 such that for u smooth
in M , and r > 0 small (less than the injectivity radius of the manifold),

d

dr

(
1

rn−1

∫
∂Bx0 (r)

udσg

)

=
1

rn−1

∫
∂Bx0 (r)

(
∂u

∂ν

)
dσg +

1

rn−1

∫
∂Bx0 (r)

βx0udσg ,

(6.2)

where ∂Bx0
(r) is the boundary of the geodesic ball Bx0

(r), where dσg is the volume

element on ∂Bx0
(r) induced by g, and ∂

∂ν is the normal derivative with respect to
the outward unit normal vector ν. As is well known, see for instance Sakai [?],

dg(x0, x) |βx0
(x)| = O′′

(
dg(x0, x)2

)
, (6.3)
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where the notation in the right hand side of (??) stands for a C3-function such
that the kth derivatives of this function, k = 0, 1, 2, are bounded by Cdg(x0, x)2−k

where C > 0 does not depend on x0 and x. We also have for the function βx0
that

βx0
(x) = O′ (dg(x0, x)) where the notation in the right hand side of this equation

stands for a C1-function such that the kth derivatives of this function, k = 0, 1,
are bounded by Cdg(x0, x)1−k where C > 0 does not depend on x0 and x. In what
follows, for r > 0 small, we let

ϕα(r) =
1

rn−1

∫
∂Bxα (r)

(∆guα) dσg , (6.4)

where xα is given by (??), and set βα = βxα . We let also F1,α, F2,α, and F3,α be
the functions given by

F1,α(r) =
1

rn−1

∫
Bxα (r)

(
u2]−1
α − cαuα

)
dvg

F2,α(r) =
1

rn−1

∫
Bxα (r)

(
1 + u2]−1

α

)
dvg

(6.5)

and

F3,α(r) =
1

rn−1

∫
∂Bxα (r)

uαdσg . (6.6)

We regard the ϕα’s alternatively as functions of the variable r or functions of the
variable x in Rn such that r = |x|. The first step in the proof of Lemma ?? is as
follows.

Step 6.1. For r > 0 small, the ϕα’s in (??) are solutions of

∆ϕα +
Bα(r)xi

r
∂iϕα + Cα(r)ϕα

= F ′1,α(r) +
n− 1

r
F1,α(r) + Θ1

α(r)F2,α(r) + Θ2
α(r)F3,α(r) ,

(6.7)

where ∆ is the Euclidean Laplacian, where F1,α, F2,α, and F3,α are given by (??)
and (??), and where the Bα’s, Cα’s, Θ1

α’s, and Θ2
α’s are bounded functions both

with respect to r and α.

Proof of Step ??. By (??),(
dϕα
dr

)
(r) =

1

rn−1

∫
∂Bxα (r)

(
∂∆guα
∂ν

)
dσg

+
1

rn−1

∫
∂Bxα (r)

βα∆guαdσg

(6.8)

and, by (??), it easily follows that(
dϕα
dr

)
(r) = −F1,α(r) +

bα
rn−1

∫ r

0

tn−1ϕα(t)dt

+
1

rn−1

∫
∂Bxα (r)

βα∆guαdσg .

(6.9)
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Then we get that

∆ϕα + bαϕα = F ′1,α(r) +
n− 1

r
F1,α(r)

− 1

rn−1

d

dr

(∫
∂Bxα (r)

βα∆guαdσg

)
,

(6.10)

where ∆ is the Euclidean Laplacian (so that, if u is radially symmetrical, then ∆u
is given by −∆u = u′′+ n−1

r u′). Independently, see for instance (??), we can write
that

d

dr

(∫
∂Bxα (r)

βα∆guαdσg

)
=

∫
∂Bxα (r)

βα

(
∂∆guα
∂ν

)
dσg

+

∫
∂Bxα (r)

(
∂βα
∂ν

+ β2
α +

n− 1

r
βα

)
∆guαdσg .

(6.11)

From now on we define the functions βα : (0,+∞)×M → R of the variables (r, x)
by

βα(r, x) =
1

r
β̃α(x) +

∆gβ̃α(xα)

2nr
r2
α , (6.12)

where rα = dg(xα, x), and β̃α = O′′
(
r2
α

)
is the function in the right hand side of

(??). Then

βα(r, x) = O

(
r2
α

r

)
and ∆gβα(r, x) = O

(rα
r

)
. (6.13)

Moreover, we can write that∫
∂Bxα (r)

βα

(
∂∆guα
∂ν

)
dσg =

∫
∂Bxα (r)

βα(r, x)

(
∂∆guα
∂ν

)
(x)dσg(x)

− ∆gβ̃α(xα)

2n
r

∫
∂Bxα (r)

(
∂∆guα
∂ν

)
dσg .

(6.14)

Integrating by parts, using (??), we have that∫
∂Bxα (r)

βα(r, x)

(
∂∆guα
∂ν

)
(x)dσg(x)

=

∫
Bxα (r)

(
∆gβα(r, x) + bαβα(r, x)

)
∆guα(x)dvg(x)

+

∫
∂Bxα (r)

∂βα(r, x)

∂ν
∆guα(x)dσg(x)

−
∫
Bxα (r)

βα(r, x)
(
u2]−1
α (x)− cαuα(x)

)
dvg(x) .

(6.15)
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Let (hα) be a sequence of functions such that |hα(x)| ≤ C for all α, all x, and some
C > 0 independent of α and x. Since

(
∆g + bα

2

)
uα ≥ 0, we can write that∫

Bxα (r)

hα∆guαdvg

=

∫
Bxα (r)

hα

(
∆guα +

bα
2
uα

)
dvg −

bα
2

∫
Bxα (r)

hαuαdvg

= Hα(r)

∫
Bxα (r)

(
∆guα +

bα
2
uα

)
dvg −

bα
2

∫
Bxα (r)

hαuαdvg

= Hα(r)

∫
Bxα (r)

∆guαdvg +
bα
2

∫
Bxα (r)

(Hα(r)− hα)uαdvg ,

(6.16)

where Hα is such that |Hα(r)| ≤ C for all r and all α. With this remark (??), with
(??), and with (??) we can then write that∫

∂Bxα (r)

βα(r, x)

(
∂∆guα
∂ν

)
(x)dσg(x)

= H1,α(r)

∫
Bxα (r)

∆guαdvg +H2,α(r)

∫
∂Bxα (r)

∆guαdσg

+H3,α(r)

∫
∂Bxα (r)

uαdσg +H4,α(r)

∫
Bxα (r)

(
1 + u2]−1

α

)
dvg ,

(6.17)

where the Hi,α’s, 1 ≤ i ≤ 4, are such that |Hi,α(r)| ≤ C for all r and all α. Clearly,
thanks to the properties of βα, we also have that∫

∂Bxα (r)

(
∂βα
∂ν

+ β2
α +

n− 1

r
βα

)
∆guαdσg

= H5,α(r)

∫
∂Bxα (r)

∆guαdσg +H6,α(r)

∫
∂Bxα (r)

uαdσg

(6.18)

and, by (??), we have that∫
∂Bxα (r)

(
∂∆guα
∂ν

)
dσg = H7,α(r)

∫
Bxα (r)

∆guαdvg

+H8,α(r)

∫
Bxα (r)

(
1 + u2]−1

α

)
dvg ,

(6.19)

where the Hi,α’s, 5 ≤ i ≤ 8, are such that |Hi,α(r)| ≤ C for all r and all α.
Combining (??)–(??), (??), and (??)–(??), it follows that

∆ϕα + bαϕα = F ′1,α(r) +
n− 1

r
F1,α(r)

+
H9,α(r)

rn−1

∫
Bxα (r)

∆guαdvg +
H10,α(r)

rn−1

∫
∂Bxα (r)

∆guαdσg

+
H11,α(r)

rn−1

∫
∂Bxα (r)

uαdσg +
H12,α(r)

rn−1

∫
Bxα (r)

(
1 + u2]−1

α

)
dvg ,

(6.20)
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where, as above, the Hi,α’s, 8 ≤ i ≤ 12, are such that |Hi,α(r)| ≤ C for all r and
all α. Independently, by (??) and (??),

dϕα
dr

= −F1,α(r) +
bα
rn−1

∫
Bxα (r)

∆guαdvg

+
1

rn−1

∫
∂Bxα (r)

βα∆guαdσg

(6.21)

and, since we have that
(
∆g + bα

2

)
uα ≥ 0, we can write that∫

∂Bxα (r)

βα∆guαdσg = H13,α(r)

∫
∂Bxα (r)

∆guαdσg

+H14,α(r)

∫
∂Bxα (r)

uαdσg ,

(6.22)

where the the Hi,α’s, i = 13, 14, are such that |Hi,α(r)| ≤ C for all r and all α. As
a supplementary remark, we can also write that

F1,α(r) = O

(
1

rn−1

)∫
Bxα (r)

(
1 + u2]−1

α

)
dvg . (6.23)

Combining (??)–(??) we then get that

∆ϕα +H15,α(r)
dϕα
dr

+H16,α(r)ϕα = F ′1,α(r) +
n− 1

r
F1,α(r)

+
H17,α(r)

rn−1

∫
∂Bxα (r)

uαdσg +
H18,α(r)

rn−1

∫
Bxα (r)

(
1 + u2]−1

α

)
dvg ,

where the Hi,α’s, 15 ≤ i ≤ 18, are such that |Hi,α(r)| ≤ C for all r and all α.
Noting that such an equation reads also as

∆ϕα +
H15,α(r)xi

r
∂iϕα +H16,α(r)ϕα

= F ′1,α(r) +
n− 1

r
F1,α(r) +H17,α(r)F3,α(r) +H18,α(r)F2,α(r) ,

this ends the proof of Step ??. �

In what follows we let Lα be the operator of Step ??. Namely,

Lαu = ∆u+
Bα(r)xi

r
∂iu+ Cα(r)u , (6.24)

where ∆ is the Euclidean Laplacian and the Bα’s and Cα’s are bounded functions
both with respect to r and α. We write that 2xy ≤ ε2x2 + ε−2y2 for two real
numbers x and y, and that∫

B0(δ)

r−1
∣∣Bα(r)xiu∂iu

∣∣ dx ≤ C ∫
B0(δ)

|u||∇u|dx

for all u ∈ C∞0 (B0(δ)), the space of smooth functions with compact support in the
Euclidean ball centered at 0 and of radius δ. Then we easily get that for δ > 0
small, and any u ∈ C∞0 (B0(δ)),∫

B0(δ)

(Lαu)udx ≥ 1

2

∫
B0(δ)

|∇u|2dx−A
∫
B0(δ)

u2dx ,
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where A > 0 is independent of u and α. If λ1 is the first eigenvalue of the Laplacian
for the Dirichlet problem in B0(1), we then get that for any u ∈ C∞0 (B0(δ)),∫

B0(δ)

(Lαu)udx ≥ 1

4

∫
B0(δ)

|∇u|2dx+

(
λ1

4δ2
−A

)∫
B0(δ)

u2dx

so that for δ > 0 sufficiently small, there exists Cδ > 0 with the property that∫
B0(δ)

(Lαu)udx ≥ Cδ‖u‖2H2
1

for all u ∈ C∞0 (B0(δ)), where ‖ · ‖H2
1

is the usual norm on H2
1 . In particular, the

operators Lα are uniformly coercive on balls B0(δ) when δ > 0 (independent of α)
is sufficiently small. Then the second step in the proof of Lemma ?? is as follows.

Step 6.2. There exists C > 0 such that, up to a subsequence, for any α and r > 0
sufficiently small, independent of α,

|ϕα(r)| ≤ C + C
µ
n−4
2

α

rn−2
, (6.25)

where the µα’s are given by (??), and the ϕα’s are given by (??).

Proof of Step ??. Let x0 be the limit of the xα’s in (??). Let also δ > 0 be such
that the Lα’s are uniformly coercive on B0(δ), and Bx0

(2δ) ∩ S = {x0}, where S,
the set of geometrical blow-up points, is as in (??). By (??), the ϕα’s converge
in C2

loc (B0(2δ)\{0}). We let η smooth be such that η = 0 in B0(s) and η = 1
in M\B0(2s) where s ∈ (0, δ/2). By the Lax-Milgram theorem we can solve the
equation Lαϕ̃α = −Lα(ηϕα) in B0(δ), ϕ̃α = 0 on ∂B0(δ), where Lα is given by
(??). Letting ϕ̂α = ϕ̃α + ηϕα we then get that ϕ̂α solves the equation

Lαϕ̂α = 0 in B0(δ) , and

ϕ̂α = ϕα on ∂B0(δ) .
(6.26)

By standard elliptic theory, and the above remark on the uniform coercivity of the
Lα’s, the ϕ̂α’s are in Hp

2 (B0(δ)) for all p, and we have that

‖ϕ̂α‖C1(B0(δ)) ≤ C (6.27)

for all α, where C > 0 is independent of α. Now we let F4,α be the right hand side
in equation (??) so that

F4,α(x) = F ′1,α(r) +
n− 1

r
F1,α(r) + Θ1

α(r)F2,α(r) + Θ2
α(r)F3,α(r) , (6.28)

where r = |x|, F1,α, F2,α, and F3,α are given by (??) and (??), and the Θ1
α’s, and

Θ2
α’s are bounded functions both with respect to r and α. Letting ϕα = ϕα − ϕ̂α,

it follows that

Lαϕα = F4,α in B0(δ) , and

ϕα = 0 on ∂B0(δ) .
(6.29)

Moreover, by (??), we have that

‖ϕα‖C1(B0(δ)\B0(δ/2)) ≤ C (6.30)
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for all α, where C > 0 is independent of α. Of course we also have that the ϕα’s
are in Hp

2 (B0(δ)) for all p. Computing F ′1,α we easily find that

F ′1,α(r) +
n− 1

r
F1,α(r)

= O

(
1

rn−1

∫
∂Bxα (r)

|fα|dσg

)
+O

(
1

rn−2

∫
Bxα (r)

|fα|dvg

)
,

where fα = u2]−1
α − cαuα. It follows that

F4,α(r) ≤ C1

rn−1

∫
∂Bxα (r)

(
1 + u2]−1

α

)
dσg

+
C2

rn−1

∫
Bxα (r)

(
1 + u2]−1

α

)
dvg

and we can also write that

F4,α(r) ≤ C3

∫
∂B0(1)

(
1 + ũ2]−1

α (rx)
)
dσ(x)

+
C4

rn−1

∫
B0(r)

(
1 + ũ2]−1

α (x)
)
dx ,

(6.31)

where the Ci’s are positive constants independent of r and α, where the function ũα
is given by ũα(x) = uα

(
expxα(x)

)
, and where dσ is with respect to the Euclidean

measure dx. Now we let Gα be the Green’s function of Lα for the Dirichlet problem
in B0(δ) (as discussed in Section ??). Then there exists C > 0 such that for any α,
and any x, y ∈ B0(δ),

|Gα(x, y)| ≤ C

|y − x|n−2
(6.32)

and we also have that for any α,

ϕα(x) =

∫
B0(δ)

Gα(x, y)F4,α(y)dy +

∫
∂B0(δ)

Gα(x, y)∂νϕα(y)dσ(y) .

We fix x in B0(δ/2). By (??) and (??),

ϕα(x) ≤ C
∫
B0(δ)

F4,α(y)

|y − x|n−2
dy + C , (6.33)

where C > 0 is independent of x and α. Let Kα be the function given by

Kα(x) =

∫
B0(δ)

1

|y − x|n−2

(∫
∂B0(1)

(
1 + ũ2]−1

α (|y|θ)
)
dσ(θ)

)
dy (6.34)

and let ψα be the function given by

ψα(r) =

∫
B0(r)

(
1 + ũ2]−1

α (x)
)
dx . (6.35)

Noting that

ψ′α(r) = rn−1

∫
∂B0(1)

(
1 + ũ2]−1

α (rθ)
)
dσ(θ) ,

and integrating by parts, we easily get that

|Kα(x)| ≤ C5 + C6

∫
B0(δ)

ψα(|y|)
|y − x|n−1|y|n−1

dy , (6.36)
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where C5, C6 > 0 do not depend on x and α. Combining (??), (??), and (??), we
then get that for x ∈ B0(δ/2),

|ϕα(x)| ≤ C7 + C8

∫
B0(δ)

ψα(|y|)
|y − x|n−1|y|n−1

dy , (6.37)

where C7, C8 > 0 do not depend on x and α, and where ψα is given by (??).
Now we let p > n/2, and set p1 = (2] − 1)p, p2 = 2] − 1. By Lemma ??, there
exist sequences (u1

α) and (u2
α) of nonnegative functions such that uα ≤ u1

α + u2
α,

‖u1
α‖p1 ≤ C, and

‖u2
α‖p2 ≤ Cµ

n
p2
− n

2]

α ,

where C > 0 is independent of α. It follows that

|ψα(r)| ≤ C9r
n(1− 1

p ) + C10µ
n−4
2

α , (6.38)

where C9, C10 > 0 do not depend on r and α. Then, combining (??) and (??), we
get that

|ϕα(x)| ≤ C11 + C12

∫
B0(δ)

|y|1−
n
p

|y − x|n−1
dy

+C13µ
n−4
2

α

∫
B0(δ)

1

|y − x|n−1|y|n−1
dy

and, since p > n/2, it follows from Giraud’s lemma [?] that

|ϕα(x)| ≤ C14 + C15
µ
n−4
2

α

rn−2
,

where the Ci’s, i = 11, . . . , 15, are independent of x and α. Since ϕα = ϕα + ϕ̂α,
and (??) holds, this proves Step ??. �

With Steps ?? and ?? we are now in position to prove Lemma ??.

Proof of Lemma ??. Let Φα be the function F3,α in (??). Then

Φα(r) =
1

rn−1

∫
∂Bxα (r)

uαdσg .

By (??), and thanks to the definition (??) of ϕα, we can write that

Φ′α(r) = − 1

rn−1

∫ r

0

tn−1ϕα(t)dt+ hα(r)Φα(r) , (6.39)

where the hα’s are bounded functions both with respect to r and α. Integrating
(??) between r and δ/2, where δ > 0 is small, we get that

e−
∫ r
0
hα(t)dtΦα(r)− e−

∫ δ/2
0 hα(t)dtΦα(δ/2)

=

∫ δ/2

r

∫ t
0
sn−1ϕα(s)ds

tn−1
e−

∫ t
0
hα(s)dsdt .

By Step ?? we then get that

|Φα(r)| ≤ C1 + C2
µ
n−4
2

α

rn−4
(6.40)
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for all r < δ/2, where C1, C2 > 0 are independent of α and r. On the other hand,
since cα ≤ b2α/4, we can write that ∆guα + bα

2 uα ≥ 0. By (??) of Step ??, by (??),
and since uα ≥ 0, we can then write that

1

rn−1

∫
∂Bxα (r)

|∆guα| dσg

≤ 1

rn−1

∣∣∣∣∣
∫
∂Bxα (r)

∆guαdσg

∣∣∣∣∣+
bα
rn−1

∫
∂Bxα (r)

uαdσg

≤ C3 + C4
µ
n−4
2

α

rn−2
,

where C3, C4 > 0 are independent of α and r. Together with (??), this proves
Lemma ??. �

7. Asymptotic estimates

As in the previous sections, we let (M, g) be a smooth compact Riemannian
manifold of dimension n ≥ 5, and we are concerned with getting estimates to prove
the compactness assertion of Theorem ?? and Theorem ??. We let (uα) be a
bounded sequence in H2

2 (M) of nonnegative solutions of (??), and assume that the
uα’s blow up. As in Sections ?? and ??, u0 may be nonzero. Up to renumbering
and up to a subsequence, as done in Sections ?? and ??, we can assume that

µ1
α = max

1≤i≤k
µiα , (7.1)

where the µiα’s are the weights of the bubbles (Biα) of Lemma ??. Then, as in (??),
we let xα = x1

α and µα = µ1
α, where the x1

α’s are the centers of (B1
α). We let also

uα be the function defined in the Euclidean space by

uα(x) = uα
(
expxα(

√
µαx)

)
, (7.2)

where expxα is the exponential map at xα. We use the terminology biharmonic in

the sequel for functions u such that ∆2u = 0, where ∆ is the Euclidean Laplacian.
We prove in this section that the following estimate holds.

Lemma 7.1. There exist δ > 0, A > 0, and a biharmonic function ϕ ∈ C4 (B0(2δ))
such that, up to a subsequence,

uα(x)→ A

|x|n−4
+ ϕ(x)

in C3
loc (B0(2δ)\{0}) as α → +∞, where uα is given by (??). Moreover, ϕ is

positive in B0(2δ) if u0 6≡ 0, where u0 is as in Lemma ??.

We prove Lemma ?? using Steps ?? to ??. Up to a subsequence we may assume
that for any given i, either dg(xα, x

i
α) ≤ C

√
µα for some C > 0 and all α, or

dg(xα, x
i
α)/
√
µα → +∞ as α→ +∞, where the xiα’s are the centers of the bubbles

(Biα) given by Lemma ??. If I is the subset of {1, . . . , k} consisting of the i’s for
which dg(xα, x

i
α) ≤ C√µα for some C > 0 and all α, we then let

Ŝ =

{
lim

α→+∞

1
√
µα

exp−1
xα (xiα) , i ∈ I

}
, (7.3)
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where expxα is the exponential map at xα, and the limits in Ŝ are assumed to exist

up to passing to a subsequence. Clearly, 0 ∈ Ŝ. Step ?? in the proof of Lemma ??
is as follows.

Step 7.1. There exists u ∈ C4
(
Rn\Ŝ

)
such that, up to a subsequence, uα → u in

C3
loc

(
Rn\Ŝ

)
, where uα is given by (??). Moreover u is biharmonic in Rn\Ŝ with

the property that u and ∆u are both nonnegative in Rn\Ŝ.

Proof of Step ??. By (??),

∆2
gαuα + bαµα∆gαuα + cαµ

2
αuα = hαuα , (7.4)

where gα(x) =
(
exp?xα g

)
(
√
µαx), and hα = µ2

αu
2]−2
α . If ξ stands for the Euclidean

metric, gα → ξ in C2(K) for any compact subset K of Rn. Given R > 0 and δ > 0,

we let K = B0(R)\
⋃
x∈Ŝ Bx(δ). By Lemma ??, the hα’s are uniformly bounded in

K. By Lemma ??,

hα → 0 in L∞(K) (7.5)

as α → +∞. Now we claim that for any δ1 < δ2 positive, and any p ∈
(
1, n

n−2

)
,

there exists C = C(δ1, δ2, p) positive such that∫
R
δ2
δ1

upαdvgα ≤ C (7.6)

for all α, where Rδ2δ1 is the Euclidean annulus centered at 0 and of radii δ1 and δ2.

In order to prove (??) we use Lemma ??. We let Aδ2δ1 = Aδ2δ1(α) be the annulus
centered at xα and of radii δ1

√
µα and δ2

√
µα. Integrating the two equations in

Lemma ?? over this annulus we get that

1

V olg

(
Aδ2δ1

) ∫
A
δ2
δ1

uαdvg ≤ C , and

1

V olg

(
Aδ2δ1

) ∫
A
δ2
δ1

|∆guα| dvg ≤ Cµ−1
α ,

(7.7)

where C > 0 is independent of α, and V olg

(
Aδ2δ1

)
is the volume of Aδ2δ1 with respect

to g. Then (??) gives that∫
R
δ2
δ1

uαdvgα ≤ C and

∫
R
δ2
δ1

|∆gαuα| dvgα ≤ C . (7.8)

We let Fα be such that Fα = ∆gαuα in Rδ2δ1 and Fα = 0 outside Rδ2δ1 . Given δ > δ2
we let also Gα be the Green’s function of ∆gα in B0(δ) with zero Dirichlet boundary
condition, and set

vα(x) =

∫
B0(δ)

Gα(x, y)Fα(y)dvgα(y) .

By standard properties of the Green’s function, there exists C > 0 such that

Gα(x, y) ≤ C

|y − x|n−2 (7.9)
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for all x ∈ Rδ2δ1 , all y ∈ B0(δ), and all α. For p ∈
(
1, n

n−2

)
we let q be such that

1
p + 1

q = 1. For ϕ ∈ Lq(Rδ2δ1), by (??), we can write that∣∣∣∣∣
∫
R
δ2
δ1

vαϕdx

∣∣∣∣∣ ≤ C
∫
R
δ2
δ1

(∫
R
δ2
δ1

ϕ(x)

|y − x|n−2
dx

)
|Fα(y)| dy .

This implies that∣∣∣∣∣
∫
R
δ2
δ1

vαϕdx

∣∣∣∣∣ ≤ C‖ϕ‖
Lq(R

δ2
δ1

)

∫
R
δ2
δ1

(∫
R
δ2
δ1

dx

|y − x|p(n−2)

)1/p

|Fα(y)| dy

≤ C‖ϕ‖
Lq(R

δ2
δ1

)
‖Fα‖L1(R

δ2
δ1

)

and then, by (??), that ∣∣∣∣∣
∫
R
δ2
δ1

vαϕdx

∣∣∣∣∣ ≤ C‖ϕ‖Lq(Rδ2δ1 )
,

where C > 0 does not depend on α and ϕ. By duality, taking ϕ = vp−1
α , we get

that ∫
R
δ2
δ1

vpαdvgα ≤ C , (7.10)

where C > 0 is independent of α. Since ∆gα (vα − uα) = 0 in Rδ2δ1 , it follows

from standard elliptic theory (the De Giorgi-Nash-Moser iterative scheme) that if

Ω ⊂⊂ Rδ2δ1 , then

sup
Ω
|vα − uα| ≤ C ‖vα − uα‖L1(R

δ2
δ1

)
,

where C > 0 is independent of α. By (??) and (??), and since δ1 < δ2 are arbitrary,
this implies (??). In particular, with similar ideas to those developed in Agmon-
Douglis-Nirenberg [?, ?] (see also Section ?? for the global version of the local
estimates in [?, ?] we use here), we get with (??), (??), and (??) that for any

p ∈
(
1, n

n−2

)
, and any Ω ⊂⊂ Rn\Ŝ, the uα’s are uniformly bounded in Hp

4 (Ω). By
standard bootstrap arguments, it follows that the uα’s are uniformly bounded in
Hp

4 (Ω) for all p > 1. Then, by the Sobolev embedding theorem, we get that, up

to a subsequence, the uα’s converge in C3
loc(Rn\Ŝ) to some nonnegative function

u as α → +∞. By (??) and (??), u is biharmonic. In particular, u is smooth in

Rn\Ŝ. Independently, since cα ≤ b2α/4, we can also write that (L′α)2uα ≥ 0, so
that L′αuα ≥ 0, where L′α = ∆gα + (bαµα)/2. It follows by passing to the limit as
α→ +∞ that ∆u ≥ 0, and this proves Step ??. �

In what follows we write that Ŝ =
{
x1, . . . , xp

}
with x1 = 0. Step ?? in the

proof of Lemma ?? is as follows.

Step 7.2. There exist ai, bi ∈ R, i = 1, . . . , p, and a smooth biharmonic function
ϕ in Rn such that

u(x) =

p∑
i=1

bi
|x− xi|n−4

+

p∑
i=1

ai
|x− xi|n−2

+ ϕ(x) (7.11)

for all x in Rn\Ŝ.
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Proof of Step ??. We fix i = 1, . . . , p. Since ∆u is harmonic and nonnegative in
Bxi(δ0)\{xi}, for some δ0 > 0, classical results in harmonic analysis (see for instance
Veron [?]) give that

∆u(x) =
A

|x− xi|n−2
+ ψ(x) ,

where A ∈ R and ψ is harmonic in Bxi(δ0). Let ψ̃ be such that ∆ψ̃ = ψ in Bxi(δ0),
and let û be the function in Bxi(δ0)\{xi} given by

û(x) = u(x)− A

2(n− 4)|x|n−4
− ψ̃(x) .

Then û is harmonic in Bxi(δ0)\{xi}. Clearly, for B ∈ R, the function ûB given by

ûB(x) = û(x) +
B

|x− xi|n−2

is still harmonic in Bxi(δ0)\{xi}, while ûB is nonnegative in Bxi(δ0/2)\{xi} if we
choose B > 0 sufficiently large. Then (see again Veron [?]), for B > 0 large, ûB
writes as

ûB(x) =
C

|x− xi|n−2
+ ψ̂(x) ,

where C ∈ R and ψ̂ is harmonic in Bxi(δ0). In particular,

u(x) =
C1

|x− xi|n−4
+

C2

|x− xi|n−2
+ ϕi(x)

in Bxi(δ0)\{xi}, where C1, C2 ∈ R and ϕi is biharmonic in Bxi(δ0). A local result
from which we easily get that Step ?? holds. �

Since u ≥ 0 and ∆u ≥ 0, it follows from (??) and equation (??) below that
ai ≥ 0 and bi ≥ 0 for all i. Step ?? in the proof of Lemma ?? is as follows.

Step 7.3. The biharmonic function ϕ in (??) is nonnegative and constant, while
a1 = 0 in (??).

Proof of Step ??. It follows from (??) that

∆u(x) =

p∑
i=1

2(n− 4)bi
|x− xi|n−2

+ ∆ϕ(x) (7.12)

for all x ∈ Rn\Ŝ. By (??) and (??) we then get that ϕ and ∆ϕ are uniformly
bounded from below since u ≥ 0 and ∆u ≥ 0. By Liouville’s theorem, since ∆ϕ
is harmonic, ∆ϕ = K0 is constant. Noting that by (??), K0 is the limit of the
∆u(x)’s as x→ +∞, we get that K0 ≥ 0. Writing that

∆

(
ϕ+

K0

2n
|x|2
)

= 0

and noting that ϕ+ K0

2n |x|
2 is bounded from below since ϕ is bounded from below,

another application of Liouville’s theorem gives that ϕ+ K0

2n |x|
2 = K ′0 is constant.

By (??), and since u ≥ 0, ϕ(x) has to be nonnegative for x large. This implies that
K0 = 0 and thus that ϕ is a nonnegative constant. This proves the first assertion
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in Step ??. Concerning the second assertion, we know from Lemma ?? that there
exists C1, C2 > 0 such that

1

rn−1

∫
∂Bxα (r)

uαdσg ≤ C1 + C2
µ
n−4
2

α

rn−4

for all α and all r > 0 sufficiently small. By Step ??, letting r = δ
√
µα, with δ > 0

small, we then get that

1

δn−1

∫
∂B0(δ)

udσ ≤ C3 +
C4

δn−4
,

where dσ is the measure on ∂B0(δ) induced by the Euclidean metric, and C3, C4 > 0
are independent of δ and α. By (??), letting δ → 0, it follows that a1 = 0. This
proves Step ??. �

By Step ?? and (??) we can now write that

u(x) =
A

|x|n−4
+

p∑
i=2

bi
|x− xi|n−4

+

p∑
i=2

ai
|x− xi|n−2

+K0 (7.13)

for all x ∈ Rn\Ŝ, where A, the ai’s and bi’s, and K0 are nonnegative constants.
Then Step ?? in the proof of Lemma ?? is as follows.

Step 7.4. The constant A in (??) is positive.

Proof of Step ??. For d1,α and d2,α as in (??), we can write the fourth order oper-
ator Pα = ∆2

g + bα∆g + cα as the product L1
αL

2
α where L1

α and L2
α are the second

order operators given by L1
α = ∆g + d1,α and L2

α = ∆g + d2,α. If G1
α stands for the

Green function of L1
α, and G2

α for the Green function of L2
α, we then get that

G̃α(x, y) =

∫
M

G1
α(x, z)G2

α(z, y)dvg(z)

is the Green function of Pα. By standard properties of G1
α and G2

α, as studied for
instance in the appendix of Druet, Hebey and Robert [?], there exists C > 0 such
that G1

α(x, y) and G2
α(x, y) are both controlled from below by C/dg(x, y)n−2 for all

x 6= y. Then it follows that there exists C > 0 such that for any x 6= y in M , and
any α,

G̃α(x, y) ≥ C

dg(x, y)n−4
. (7.14)

We assume from now on that the ratios dg(xα, x
i
α)/µα converge (with a limit pos-

sibly +∞) for all i as α → +∞. This holds up to passing to a subsequence. We
let δ1 < δ2 positive be such that the closed interval [δ1, δ2] does not contain any of
such limits. Then, for x ∈ B0(δ2)\B0(δ1), dg

(
xiα, expxα(µαx)

)
≥ Cµα where C > 0

is independent of α and x, and if we let vα be the function given by

vα(x) = µ
n−4
2

α uα
(
expxα(µαx)

)
it follows from the above equation and Lemma ?? that there exists C > 0 such
that vα(x) ≤ C for all α and all x ∈ B0(δ2)\B0(δ1). We let g̃α be the metric
given by g̃α(x) =

(
exp?xα g

)
(µαx). If ξ stands for the Euclidean metric, g̃α → ξ in
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C2(K) as α → +∞ for all compact subsets K of Rn. Since the vα’s are bounded
in B0(δ2)\B0(δ1),∫

B0(δ2)\B0(δ1)

v2]

α dvg̃α ≤ C
∫
B0(δ2)\B0(δ1)

v2]−1
α dvg̃α ,

where C > 0 is independent of α. Independently, by Lemma ??, we can write that∫
B0(δ2)\B0(δ1)

v2]

α dvg̃α =

∫
Bxα (δ2µα)\Bxα (δ1µα)

u2]

α dvg

≥ C

∫
Bxα (δ2µα)\Bxα (δ1µα)

B2]

α dvg + o(1) ,

where (Bα) is the bubble of centers the xα’s and weights the µα’s, C > 0 is inde-
pendent of α, and o(1)→ 0 as α→ +∞. Noting that∫

Bxα (δ2µα)\Bxα (δ1µα)

B2]

α dvg =

∫
B0(δ2)\B0(δ1)

u2]

1,0dvg̃α ,

where u1,0 is the positive function given by (??), it follows that there exists C > 0
such that ∫

B0(δ2)\B0(δ1)

v2]−1
α dvg̃α ≥ C (7.15)

for all α. Now we fix x ∈ B0(δ)\{0}, where δ > 0 is such that B0(δ) ∩ Ŝ contains

only 0, and, for y ∈ B0(δ2)\B0(δ1), x 6= √µαy, we let Ĝα be the function given by

Ĝα(x, y) = G̃α
(
expxα(

√
µαx), expxα(µαy)

)
. Then, by the Green’s representation

formula, we write that

uα(x) =

∫
M

G̃α
(
expxα(

√
µαx), y

)
u2]−1
α (y)dvg(y)

≥
∫
Bxα (δ2µα)\Bxα (δ1µα)

G̃α
(
expxα(

√
µαx), y

)
u2]−1
α (y)dvg(y)

≥ µ
n−4
2

α

∫
B0(δ2)\B0(δ1)

Ĝα(x, y)v2]−1
α (y)dvg̃α(y) .

(7.16)

Noting that by (??), there exists C > 0 such that

µ
n−4
2

α Ĝα(x, y) ≥ Cµ
n−4
2

α∣∣√µαx− µαy∣∣n−4

≥ C∣∣x−√µαy∣∣n−4

(7.17)

for all x ∈ B0(δ) and all y ∈ B0(δ2)\B0(δ1) with x 6= √µαy, it follows from (??),
(??), (??), and Step ?? that there exists C > 0 such that

u(x) ≥ C

|x|n−4
(7.18)

for all x ∈ B0(δ)\{0}. Coming back to (??), we get with (??) that A > 0. This
proves Step ??. �

The last step we need in the proof of Lemma ?? is as follows.

Step 7.5. If u0 6≡ 0, the constant K0 in (??) is positive.
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Proof of Step ??. First if u0 6≡ 0 then, since u0 is a nonnegative solution of (??), it
is smooth and positive everywhere. Now we let x̂0 be the limit of the xα’s, and let
δ > 0 small. As in the proof of Step ??, given x ∈ Rn\Ŝ, we write that

uα(x) =

∫
M

G̃α
(
expxα(

√
µαx), y

)
u2]−1
α (y)dvg(y) ,

where G̃α is the Green function of ∆2
g + bα∆g + cα. In particular,

uα(x) ≥
∫
M\Bx̂0 (δ)

G̃α
(
expxα(

√
µαx), y

)
u2]−1
α (y)dvg(y) .

Letting α→ +∞, it follows that

u(x) ≥
∫
M\Bx̂0 (δ)

G(x̂0, y)(u0)2]−1dvg(y) ,

where G is the Green function of the limit operator ∆2
g + b∞∆g + c∞. Letting δ

tend to zero, we get that

u(x) ≥
∫
M

G(x̂0, y)(u0)2]−1dvg(y)

= u0(x̂0)

(7.19)

since u0 is a solution of (??). By (??), u(x) → K0 as |x| → +∞. By assumption,
u0(x̂0) > 0. It follows from these remarks and equation (??) that K0 > 0. This
proves Step ??. �

With Steps ?? to ?? we are now in position to prove Lemma ??. The proof of
Lemma ?? proceeds as follows.

Proof of Lemma ??. We let δ > 0 be such that B0(3δ) and Ŝ intersect only at 0,

where Ŝ is given by (??). By Step ??, the uα’s converge, up to a subsequence, to
u in C3

loc(B0(2δ)\{0}) as α→ +∞. By Steps ?? to ??, we can write that

u(x) =
A

|x|n−4
+ ϕ(x)

for all x ∈ B0(2δ)\{0}, where A > 0, and ϕ is biharmonic and nonnegative in
B0(2δ). The explicit equation for ϕ is

ϕ(x) =

p∑
i=2

bi
|x− xi|n−4

+

p∑
i=2

ai
|x− xi|n−2

+K0 ,

where ai, bi, and K0 are nonnegative constants. By Step ??, K0, and thus ϕ in
B0(2δ), is positive if u0 6≡ 0. This proves Lemma ??. �

Lemma ?? below is the infinitesimal analogue of the global balance L2 − ∇L2

stated in Lemmas ?? and ??. Since, here, u0 may not be zero, the proof is more
involved.

Lemma 7.2. Let δ > 0 be as in Lemma ??. Then, for any α,∫
Bxα (δ

√
µα)

u2
αdvg = o(1)

∫
Bxα (δ

√
µα)

|∇uα|2dvg ,

where o(1) → 0 as α → +∞. Moreover,
∫
Bxα (δ

√
µα)
|∇uα|2dvg ≥ Cµ2

α for all α,

where C > 0 is independent of α.
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Proof of Lemma ??. By Lemma ??, the Euclidean Sobolev inequality for the em-
bedding H2

1 ⊂ L2? that we apply in B0(δ), and Hölder’s inequality,∫
B0(δ)

u2
αdx ≤ C1

∫
B0(δ)

|∇uα|2dx+ C2 , (7.20)

where δ > 0 is as in Lemma ??, and C1, C2 > 0 are independent of α. In order
to get (??), we write that B0(δ) = B0(r)

⋃
(B0(δ)\B0(r)), that the L2-norm of

uα in B0(δ)\B0(r) is bounded by Lemma ??, that the L2-norm of uα in B0(r) is
controled by r times the L2? -norm of uα in B0(δ) by Hölder, and then we choose
r > 0 small. Coming back to the uα’s, it follows from (??) that∫

Bxα (δ
√
µα)

u2
αdvg ≤ C3µα

∫
Bxα (δ

√
µα)

|∇uα|2dvg + C4µ
2
αµ

n−4
2

α , (7.21)

where C3, C4 > 0 are independent of α. Now we let ϕ ∈ C∞0 (Rn) be such that
0 ≤ ϕ ≤ 1, ϕ ≡ 1 in B0(1/2), and ϕ ≡ 0 in Rn\B0(1). Then we define ϕα by

ϕα(x) = µ
−n−2

2
α ϕ

(
1

µα
exp−1

xα (x)

)
.

Given r > 0, we can write that for α large,∫
Bxα (r

√
µα)

|∇uα|2dvg ≥
∫
Bxα (µα)

|∇uα|2dvg

≥ µ2
α

∫
Bxα (µα)

|∇uα|2ϕ2?−2
α dvg .

Thanks to the decomposition in Lemma ??, noting that H2
2 (M) ⊂ H2?

1 (M), and
by Hölder’s inequalities, we can also write that∫

Bxα (µα)

|∇uα|2ϕ2?−2
α dvg =

∫
Bxα (µα)

|∇Bα|2ϕ2?−2
α dvg + o(1) ,

where (Bα) is the bubble of centers the xα’s and weights the µα’s, and where
o(1)→ 0 as α→ +∞. Then, noting that∫

Bxα (µα)

|∇Bα|2ϕ2?−2
α dvg =

∫
B0(1)

|∇u|2ϕ2?−2dvgα ,

where u = u1,0 is given by (??), and gα(x) =
(
exp?xα g

)
(µαx), we easily get that

for any r > 0, there exists C > 0, independent of α, such that for α large,∫
Bxα (r

√
µα)

|∇uα|2dvg ≥ Cµ2
α . (7.22)

Taking r = δ, coming back to (??), we get with (??) that∫
Bxα (δ

√
µα)

u2
αdvg ≤ C5

(
µα + µ

n−4
2

α

) ∫
Bxα (δ

√
µα)

|∇uα|2dvg ,

where C5 > 0 is independent of α. This ends the proof of Lemma ??. �
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8. The Green’s function of Lα

We let Ω be a smooth bounded domain of Rn. For k integer and p > 1, we let
Hp
k (Ω) be the standard Sobolev space of functions in Lp(Ω) with k derivatives in

Lp. Then we let Hp
k,0(Ω) be the completion of C∞0 (Ω) in Hp

k (Ω), where C∞0 (Ω) is

the space of smooth functions with compact support in Ω. We let c and the bi’s be
functions in L∞(Ω), 1 ≤ i ≤ n, and let K0 be such that

|c(x)|+
n∑
i=1

∣∣bi(x)
∣∣ ≤ K0

for all x ∈ Ω. We also assume that the operator Lu = ∆u+ bi∂iu+ cu is coercive
in the sense that there exists λ > 0 such that∫

Ω

(
|∇u|2 + ubi∂iu+ cu2

)
dx ≥ λ

∫
Ω

|∇u|2dx (8.1)

for all u ∈ H2
1,0(Ω). Then we claim that there exists a Green function for L which

satisfies uniform bound with respect to the coefficients bi and c. More precisely, we
claim that there exists G : Ω× Ω\D → R, where D is the diagonal in Ω× Ω, such
that G satisfies the three propositions:

(G1) for any x ∈ Ω, the function y → G(x, y) is in L1(Ω) and in L∞(∂Ω),

(G2) for any u ∈ Hq
2 (Ω) ∩Hq

1,0(Ω), q > n,

u(x) =

∫
Ω

G(x, y)
(
∆u+ bi∂iu+ cu

)
(y)dy +

∫
∂Ω

G(x, y)∂νu(y)dσ(y)

for all x ∈ Ω, where ν is the outward unit normal vector of ∂Ω, and

(G3) there exists C > 0, depending only on Ω, K0, and λ, such that

|G(x, y)| ≤ C

|y − x|n−2

for all x ∈ Ω and all y ∈ Ω such that x 6= y,

where, concerning (G2), it should be noted that by the Sobolev embedding theorem,
Hq

2 (Ω) ⊂ C1(Ω). The existence of G (for the operator Lα of Section ??) was used
in Section ??. The difficult point here is that the coefficients bi (and c) are not
assumed to be differentiable functions (the situation we face with Lα). In order to
prove (G1)-(G3) we proceed as follows. For x, y ∈ Rn, x 6= y, we let

H(x, y) =
1

(n− 2)ωn−1|y − x|n−2

and for i = 1, . . . , n, we let also Hi(x, y) = ∂i,xH(x, y) so that

Hi(x, y) =
yi − xi

ωn−1|y − x|n
.

It is easily checked that for u ∈ Hq
2 (Ω) ∩Hq

1,0(Ω), q > n, and x ∈ Ω,∫
Ω

H(x, y)∆u(y)dy = u(x)−
∫
∂Ω

H(x, y)∂νu(y)dσ(y) (8.2)

and that for u ∈ Hq
2 (Ω) ∩Hq

1,0(Ω), q > n, for i = 1, . . . , n, and for x ∈ Ω,∫
Ω

Hi(x, y)∆u(y)dy = ∂iu(x)−
∫
∂Ω

Hi(x, y)∂νu(y)dσ(y) . (8.3)
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For x, y ∈ Ω, x 6= y, and i = 1, . . . , n, we define Γ1 and the Γi1’s by the equations

Γ1(x, y) = −c(y)H(x, y) , and

Γi1(x, y) = −bi(y)H(x, y) .

Then, by induction, we define the Γj ’s and Γij ’s, where j ≥ 1 is integer, by the
equations

Γj+1(x, y) = −c(y)

∫
Ω

(
Γj(x, z)H(z, y) +

n∑
k=1

Γkj (x, z)Hk(z, y)

)
dz , and

Γij+1(x, y) = −bi(y)

∫
Ω

(
Γj(x, z)H(z, y) +

n∑
k=1

Γkj (x, z)Hk(z, y)

)
dz .

It follows from Giraud’s lemma [?] that for j ≥ 1 there exists Cj(Ω,K0) > 0 such
that

|Γj(x, y)|+
n∑
i=1

∣∣Γij(x, y)
∣∣ ≤ Cj(Ω,K0)

|y − x|n−j−1
if n > j + 1

|Γj(x, y)|+
n∑
i=1

∣∣Γij(x, y)
∣∣ ≤ Cj(Ω,K0)

(
1 +

∣∣ln |y − x|∣∣) if n = j + 1

|Γj(x, y)|+
n∑
i=1

∣∣Γij(x, y)
∣∣ ≤ Cj(Ω,K0) if n < j + 1 .

(8.4)

For x ∈ Ω and y ∈ Ω\{x} we let

G(x, y) = H(x, y)

+

n∑
j=1

∫
Ω

(
Γj(x, z)H(z, y) +

n∑
k=1

Γkj (x, z)Hk(z, y)

)
dz + ux(y)

(8.5)

and for y ∈ ∂Ω, we let

G(x, y) = H(x, y) +

n∑
j=1

∫
Ω

(
Γj(x, z)H(z, y) +

n∑
k=1

Γkj (x, z)Hk(z, y)

)
dz , (8.6)

where ux ∈ H2
1,0(Ω) will be fixed later on. By (??), the function y → G(x, y) is in

Lp(Ω) for all 1 ≤ p < n
n−2 and also in L∞(∂Ω). In particular, y → G(x, y) satisfies

(G1). Independently, by (??) and (??), and thanks to the definition of the Γj ’s and
Γij ’s, we easily get that for u ∈ Hq

2 (Ω) ∩Hq
1,0(Ω), and x ∈ Ω,∫

Ω

G(x, y)
(
∆u+ bi∂iu+ cu

)
(y)dy

= u(x)−
∫

Ω

Γn+1(x, y)u(y)dy −
∫

Ω

Γkn+1(x, y)∂ku(y)dy

+

∫
Ω

(
(∇ux∇u) + uxb

i∂iu+ cuxu
)
dy −

∫
∂Ω

G(x, y)∂νu(y)dσ(y) .

(8.7)

By (??) we have that

|Γn+1(x, y)|+
n∑
i=1

∣∣Γin+1(x, y)
∣∣ ≤ C(Ω,K0)
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for x, y ∈ Ω, x 6= y. Now we let ux ∈ H2
1,0(Ω) be such that∫

Ω

(
(∇ux∇ϕ) + uxb

i∂iϕ+ cuxϕ
)
dy

=

∫
Ω

Γn+1(x, y)ϕ(y)dy +

∫
Ω

Γkn+1(x, y)∂kϕ(y)dy

(8.8)

for all ϕ ∈ H2
1,0(Ω). The existence of ux easily follows from the Lax-Milgram

theorem and the coercivity assumption (??). Moreover, we get by (??) and (??)
that for any u ∈ Hq

2 (Ω) ∩Hq
1,0(Ω), and any x ∈ Ω,

u(x) =

∫
Ω

G(x, y)
(
∆u+ bi∂iu+ cu

)
(y)dy +

∫
∂Ω

G(x, y)∂νu(y)dσ(y) .

In particular, (G2) is satisfied and we are left with the proof of (G3). By standard
elliptic theory, and (??), there exists C(Ω,K0, λ) > 0 such that

sup
y∈Ω
|ux(y)| ≤ C(Ω,K0, λ) (8.9)

for all x ∈ Ω. Then, by the definition of G, by (??), and by (??), we get that

|G(x, y)| ≤ C

|y − x|n−2

for all x, y ∈ Ω, with x 6= y, where C > 0 depends only on Ω, K0, and λ. This
proves (G3) and the above claim.

9. Proof of pseudo-compactness

We prove the pseudo-compactness assertion of Theorem ?? in this section. We
let (M, g) be a smooth compact locally conformally flat Riemannian manifold of
dimension n ≥ 5, and let (uα) be a bounded sequence of nonnegative solutions of
(??). By contradiction we can assume that the uα’s blow up and that the weak
limit u0 in H2

2 (M) of the uα’s is zero. Roughly speaking, the argument in this
section consists in applying a Pohozaev type identity to the uα’s in small balls of
the type Bxi(δ), where the xi’s stand for the geometrical blow-up points of the
uα’s, and then to get the contradiction by conformal invariance and the estimates
we proved in Sections ?? and ??. We start with conformal invariance. As already
mentioned in the introduction, the geometric Paneitz-Branson operator and the Q-
curvature satisfy conformal transormation laws. The same holds for the conformal
Laplacian and the scalar curvature. Let ĝ be a conformal metric to g. We write
that g = ϕ4/(n−4)ĝ. Let also ûα = uαϕ. Then, by conformal invariance,

∆2
ĝûα + bαϕ

4
n−4 ∆ĝûα −Bα(∇ϕ,∇ûα) + hαûα + ϕ

n+4
n−4 divg(ϕ

−1Agdûα)

= divĝ(Aĝdûα)− n− 4

2
Qnĝ ûα −

n− 2

4(n− 1)
bαϕ

4
n−4Sĝû+ û2]−1

α ,
(9.1)

where Ag is given by (??), Bα is given by

Bα =
4bα
n− 4

ϕ
8−n
n−4 ĝ + ϕ

12−n
n−4 Ag
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and where

hα = bαϕ
2

n−4 ∆ĝϕ
2

n−4 − n− 2

4(n− 1)
bαϕ

8
n−4Sg + cαϕ

8
n−4

−n− 4

2
Qgϕ

8
n−4 + ϕ

n+4
n−4 divg(Agdϕ

−1) .

We assumed here, as in Theorem ??, that our manifold is locally conformally flat.
We let x0 ∈ S where S is the set of geometrical blow-up points given by (??). Then
there exists δ > 0 and a conformal metric ĝ to g such that ĝ is flat in Bx0

(4δ).
According to what we just said, see in particular equation (??), we can write that

∆2ûα + bαϕ
4

n−4 ∆ûα −Bα(∇ϕ,∇ûα) + hαûα

+ ϕ
n+4
n−4 divg(ϕ

−1Agdûα) = û2]−1
α

(9.2)

in Bx0(4δ), where Ag, Bα, and hα are as above, and ∆ = ∆ĝ is the Euclidean
Laplacian. We choose δ > 0 sufficiently small such that S ∩ Bx0

(4δ) = {x0}.
Also, we let η be a smooth function in Rn such that η = 1 in B0(δ) and η = 0
in Rn\B0(2δ), where B0(r) stands for the Euclidean ball of center 0 and radius r.
We regard ηûα as a function in the Euclidean space. Also, we regard ϕ and Ag as
defined in the Euclidean space. By Lemmas ??, ??, and ??, and by (??) and (??),
we can write that when n ≥ 6, and for any j = 0, 1, 2,∫

B0(2δ)\B0(δ)

|∇j ûα|2dx = o

(∫
M

|∇uα|2dvg
)
. (9.3)

Now we apply to the ηûα’s the Pohozaev type identity∫
Ω

(
xk∂ku

)
∆2udx+

n− 4

2

∫
Ω

u∆2udx

=
n− 4

2

∫
∂Ω

(
−u∂∆u

∂ν
+
∂u

∂ν
∆u

)
dσ

+

∫
∂Ω

(
1

2
(x, ν)(∆u)2 − (x,∇u)

∂∆u

∂ν
+
∂(x,∇u)

∂ν
∆u

)
dσ

(9.4)

which holds for all smooth bounded domains Ω in Rn and all u ∈ C4
(
Ω
)
, where ν

is the outward unit normal of ∂Ω, and dσ is the Euclidean volume element on ∂Ω.
We let in what follows Ω = B0(2δ) and u = ηûα. By (??), integrating by parts, we
easily get that∫

Rn
η2xk∂kûα∆2ûαdx+

n− 4

2

∫
Rn
η2ûα∆2ûαdx = o

(∫
M

|∇uα|2dvg
)
. (9.5)

Multiplying equation (??) by η2ûα, and integrating by parts, we can write by
Lemmas ??, ??, and ?? that∫

Rn
η2ûα∆2ûαdx+ bα

∫
Rn
η2ϕ

4
n−4 |∇ûα|2dx

=

∫
Rn
η2ϕ

8
n−4Ag(∇ûα,∇ûα)dx+

∫
Rn
η2û2]

α dx+ o

(∫
M

|∇uα|2dvg
)
.

(9.6)
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In a similar way, multiplying equation (??) by η2xk∂kûα, and integrating by parts,
we can write by Lemmas ??, ??, and ?? that∫

Rn
η2(∆2ûα)xk∂kûαdx−

(n− 2)

2
bα

∫
Rn
η2ϕ

4
n−4 |∇ûα|2dx

+
n− 2

2

∫
Rn
η2ϕ

8
n−4Ag(∇ûα,∇ûα)dx+

(n− 4)

2

∫
Rn
η2û2]

α dx

= εδO

(∫
M

|∇uα|2dvg
)

+ o

(∫
M

|∇uα|2dvg
)
,

(9.7)

where εδ → 0 as δ → 0. The proofs of equations (??), (??), and (??) involve only
straightforward computations. Now, plugging (??) and (??) into (??), it comes
that

bα

∫
Rn
η2ϕ

4
n−4 |∇ûα|2dx−

∫
Rn
η2ϕ

8
n−4Ag(∇ûα,∇ûα)dx

= εδO

(∫
M

|∇uα|2dvg
)

+ o

(∫
M

|∇uα|2dvg
)
,

(9.8)

where εδ → 0 as δ → 0. The norm of ∇ûα in the first term of (??) is with respect
to the Euclidean metric ĝ = ξ. Noting that |∇u|2ĝ = ϕ4/(n−4)|∇u|2g, it follows from

(??) that ∫
Rn
η2ϕ

8
n−4

(
Ag − bαg

)
(∇ûα,∇ûα)dx

= εδO

(∫
M

|∇uα|2dvg
)

+ o

(∫
M

|∇uα|2dvg
)
.

(9.9)

Since b∞ 6∈ Sc, where Sc is as in (??), Ag − bαg has a sign when α is sufficiently
large. In particular, coming back to our manifold, it follows from (??) and Lemmas
?? and ?? that there exists t > 0, independent of α and δ, such that∫

Bx0 (tδ)

|∇uα|2dvg = εδO

(∫
M

|∇uα|2dvg
)

+ o

(∫
M

|∇uα|2dvg
)

(9.10)

for all δ > 0 sufficiently small, and all α sufficiently large. Summing (??) over the
x0 ∈ S, and thanks to Lemmas ?? and ??, we then get that for any δ > 0,∫

M

|∇uα|2dvg = εδO

(∫
M

|∇uα|2dvg
)

+ o

(∫
M

|∇uα|2dvg
)

for all α sufficiently large. The contradiction easily follows since εδ → 0 as δ → 0.
This proves the pseudo-compactness part of Theorem ??.

10. Proof of compactness

We prove the compactness assertion of Theorem ?? and Theorem ?? in this
section. We let (M, g) be a smooth compact locally conformally flat Riemannian
manifold of dimension n ≥ 5, and (uα) be a bounded sequence of nonnegative
solutions of (??). By contradiction we can assume that the uα’s blow up, since if
not we get Theorem ?? and Theorem ?? by (??). Up to renumbering and up to a
subsequence, as in Sections ??–??, we can assume that

µ1
α = max

1≤i≤k
µiα , (10.1)
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where the µiα’s are the weights of the bubbles (Biα) of Lemma ??. Then, as in the
preceding sections, we let xα = x1

α and µα = µ1
α, where the x1

α’s are the centers
of (B1

α). Roughly speaking, the argument in this section consists in applying the
Pohozaev type identity (??) to the uα’s in small balls Bxα(δ

√
µα), and then to get

the contradiction by conformal invariance and the estimates we proved in Sections
?? to ??. As a remark, we need to consider smaller balls than in the preceding
section, of radii δ

√
µα instead of δ, because of the weak limit u0 which, when

nonzero, dominates the other terms in the Pohozaev identity on balls of fixed radii.
A similar phenomenon (with the limit of the uα’s after rescaling) appears on balls
of radii δµα. The sharp quantity in this argument turns out to be the C0-range of
interaction δ

√
µα. We need also to be more precise than in the preceding section

and compute the boundary terms in the right hand side of (??). As in Section ??,
we start with conformal invariance. We let x0 ∈ S be the limit of the xα’s, and
let δ0 > 0 and ĝ be such that ĝ is flat in Bx0

(4δ0). We write that g = ϕ4/(n−4)ĝ,
with ϕ(x0) = 1, and let ûα = uαϕ. Then equation (??) holds in Bx0

(4δ0). Now, as
already mentioned, we apply the Pohozaev identity (??) of Section ?? to the ûα’s
with Ω = B0(δ

√
µα) where δ > 0 is given by Lemmas ?? and ??. In the process we

assimilate xα with 0 (thanks to the exponential map expxα with respect to g) and
regard ûα as a function in the Euclidean space. With an abusive use of notations,
we still denote by ϕ the function ϕ ◦ expxα , by Ag the tensor field (expxα)?Ag,
and by ĝ the metric (expxα)?ĝ. Applying the Pohozaev identity (??) to the ûα’s in
B0(δ

√
µα) we get that

∫
B0(δ

√
µα)

(
xk∂kûα

)
∆2ûαdx+

n− 4

2

∫
B0(δ

√
µα)

ûα∆2ûαdx

=
n− 4

2

∫
∂B0(δ

√
µα)

(
−ûα

∂∆ûα
∂ν

+
∂ûα
∂ν

∆ûα

)
dσ

+

∫
∂B0(δ

√
µα)

(
1

2
(x, ν)(∆ûα)2 − (x,∇ûα)

∂∆ûα
∂ν

+
∂(x,∇ûα)

∂ν
∆ûα

)
dσ .

(10.2)

Integrating by parts, using (??), we can also write that

∫
B0(δ

√
µα)

(
xk∂kûα

)
∆2ûαdx+

n− 4

2

∫
B0(δ

√
µα)

ûα∆2ûαdx

= bα

∫
B0(δ

√
µα)

ϕ
4

n−4 |∇ûα|2dx−
∫
B0(δ

√
µα)

ϕ
8

n−4Ag(∇ûα,∇ûα)dx

+ o

(∫
B0(δ

√
µα)

|∇ûα|2dx

)
+O

(∫
B0(δ

√
µα)

û2
αdx

)

+O

(∫
∂B0(δ

√
µα)

û2
α(1 + û2]−2

α )dx

)
+O

(∫
∂B0(δ

√
µα)

|∇ûα|2dx

)
,

(10.3)

where, in this equation, as already mentioned, we regard ϕ and Ag as defined in
the Euclidean space. The proof of (??) involves only straightforward computations.



FOURTH ORDER EQUATIONS OF CRITICAL SOBOLEV GROWTH 47

By Lemma ??, ∫
∂B0(δ

√
µα)

û2
α(1 + û2]−2

α )dx = o
(
µ
n−4
2

α

)
, and∫

∂B0(δ
√
µα)

|∇ûα|2dx = o
(
µ
n−4
2

α

) (10.4)

while, by Lemma ??,∫
B0(δ

√
µα)

û2
αdx = o

(∫
B0(δ

√
µα)

|∇ûα|2dx

)
. (10.5)

Independently, we can also write with the change of variables x =
√
µαy and Lemma

?? that if Rα stands for the right hand side in (??), then

µ
−n−4

2
α Rα →

n− 4

2

∫
∂B0(δ)

(
−ũ∂∆ũ

∂ν
+
∂ũ

∂ν
∆ũ

)
dσ

+

∫
∂B0(δ)

(
1

2
(x, ν)(∆ũ)2 − (x,∇ũ)

∂∆ũ

∂ν
+
∂(x,∇ũ)

∂ν
∆ũ

)
dσ

(10.6)

as α→ +∞, where

ũ(x) =
A

|x|n−4
+ ϕ̂(x) (10.7)

is given by Lemma ?? (so that ∆2ϕ̂ = 0). Coming back to the Pohozaev identity
(??) of Section ??, taking Ω = B0(δ)\B0(r), and since ∆2ũ = 0 in Ω, it comes that

n− 4

2

∫
∂B0(δ)

(
−ũ∂∆ũ

∂ν
+
∂ũ

∂ν
∆ũ

)
dσ

+

∫
∂B0(δ)

(
1

2
(x, ν)(∆ũ)2 − (x,∇ũ)

∂∆ũ

∂ν
+
∂(x,∇ũ)

∂ν
∆ũ

)
dσ

=
n− 4

2

∫
∂B0(r)

(
−ũ∂∆ũ

∂ν
+
∂ũ

∂ν
∆ũ

)
dσ

+

∫
∂B0(r)

(
1

2
(x, ν)(∆ũ)2 − (x,∇ũ)

∂∆ũ

∂ν
+
∂(x,∇ũ)

∂ν
∆ũ

)
dσ

(10.8)

for all r > 0. Combining (??), (??), and (??), letting r → 0, we then get that

µ
−n−4

2
α Rα → K0 (10.9)

as α → +∞, where K0 = (n − 2)(n − 4)2ωn−1Aϕ̂(0). By Lemma ??, A > 0, and
we can assume that ϕ̂(0) > 0 (since if not u0 ≡ 0 and we are back to Section ??).
In particular, K0 > 0, and we get by combining (??)–(??), and (??), that

bα

∫
B0(δ

√
µα)

ϕ
4

n−4 |∇ûα|2dx−
∫
B0(δ

√
µα)

ϕ
8

n−4Ag(∇ûα,∇ûα)dx

= o

(∫
B0(δ

√
µα)

|∇ûα|2dx

)
+
(
K0 + o(1)

)
µ
n−4
2

α ,

(10.10)

where o(1) → 0 as α → +∞. The norm of ∇ûα in the first term of (??) is with
respect to the Euclidean metric ĝ = ξ. Noting that |∇u|2ĝ = ϕ4/(n−4)|∇u|2g, it
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follows from (??) that∫
B0(δ

√
µα)

ϕ
8

n−4
(
Ag − bαg

)
(∇ûα,∇ûα)dx

= o

(∫
B0(δ

√
µα)

|∇ûα|2dx

)
−
(
K0 + o(1)

)
µ
n−4
2

α

an equation from which we easily get with Lemma ?? that∫
B0(δ

√
µα)

ϕ
2n
n−4
(
Ag − bαg

)
(∇uα,∇uα)dx

= o

(∫
B0(δ

√
µα)

|∇uα|2dx

)
−
(
K0 + o(1)

)
µ
n−4
2

α .

(10.11)

If b∞ > maxSc, where Sc is given by (??), then (??) implies that(
λ+ o(1)

) ∫
B0(δ

√
µα)

|∇uα|2dx =
(
K0 + o(1)

)
µ
n−4
2

α (10.12)

for some λ > 0 independent of α. By Lemma ??, we can also write that∫
B0(δ

√
µα)

|∇uα|2dx ≥ Cµ2
α (10.13)

for some C > 0 independent of α. The contradiction follows from (??) and (??)
when n ≥ 9 since, in this case, n−4

2 > 2. This proves the assertion on compactness
in Theorem ??. If, on the contrary, b∞ < minSc, then (??) gives that(

λ+ o(1)
) ∫

B0(δ
√
µα)

|∇uα|2dx+
(
K0 + o(1)

)
µ
n−4
2

α = 0 (10.14)

for some λ > 0 independent of α. In particular, (??) would give that K0 ≤ 0, and,
since K0 > 0, the contradiction follows here again. This proves Theorem ??.
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Site de Saint-Martin, 2 avenue Adolphe Chauvin, 95302 Cergy-Pontoise cedex, France
E-mail address: Emmanuel.Hebey@math.u-cergy.fr

Frédéric Robert, Laboratoire J.A.Dieudonné, Université de Nice Sophia-Antipolis,
Parc Valrose, 06108 Nice cedex 2, France

E-mail address: frobert@math.unice.fr

Yuliang Wen, East China Normal University, Department of Mathematics, 200062
Shanghai, P.R.China

E-mail address: ylwen@math.ecnu.edu.cn


