COMPACTNESS AND GLOBAL ESTIMATES FOR A FOURTH
ORDER EQUATION OF CRITICAL SOBOLEV GROWTH
ARISING FROM CONFORMAL GEOMETRY

EMMANUEL HEBEY, FREDERIC ROBERT, AND YULIANG WEN

ABSTRACT. Given (M, g) a smooth compact Riemannian manifold of dimen-
sion n > 5, we investigate compactness for fourth order critical equations like

f_
Pgu:u2 r

where Pyu = A2u + bAgu + cu is a Paneitz-Branson operator with constant
2n

coefficients b and ¢, u is required to be positive, and 2f = = is critical from

the Sobolev viewpoint. We prove that such equations are compact on locally
conformally flat manifolds, unless b lies in some closed interval associated to the
spectrum of the smooth symmetric (2, 0)-tensor field involved in the definition
of the geometric Paneitz-Branson operator.

CONTENTS

In 1983, Paneitz [?] introduced a conformally fourth order operator defined on
4-dimensional Riemannian manifolds. Branson [?] generalized the definition to
n-dimensional Riemannian manifolds, n > 5. While the conformal Laplacian is
associated to the scalar curvature, the geometric Paneitz-Branson operator is asso-
ciated to a notion of Q-curvature. The Q-curvature in dimension 4, and for locally
conformally flat manifolds, turns out to be the integrand in the Gauss-Bonnet for-
mula for the Euler characteristic. We let in this article (M, g) be a smooth compact
locally conformally flat Riemannian n-manifold, n > 5, and consider fourth order
equations of critical Sobolev growth like

i

Agu—i—baAgu—l—cau =u? "t (0.1)
where A, = —div,V, « is an integer, (by) and (c,) are converging sequences of
positive real numbers with positive limits, ¢, < b2/4 for all a, u is required to
be positive, and 2f = % is critical from the Sobolev viewpoint. The family of

equations (??) may of course reduce to one equation when the sequences consisting
of the b,’s and ¢, ’s are constant sequences. Equations like (?7?) are modelized
on the conformal equation associated to the Paneitz-Branson operator when the
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background metric g is Einstein. In the case of an arbitrary manifold, the conformal
equation associated to the Paneitz-Branson operator reads as

n—4

—4
Agu — divg (Agdu) + %qu = qu2ﬁ—1 ) (0.2)
where Q, and Q; are the Q-curvature of g and § = u¥/ ("4 g,
(n—2)2+4 4
= -  _S.9g—- ——R 0.3
I —1(n—2)" 2" (03)

and Rc, and S, are respectively the Ricci curvature and scalar curvature of g.
When ¢ is Einstein, equation (??) becomes
n—4 2t _1

2 qu )
where a,, and a,, are positive dimensional constants such that a,, < a2 /4, and S,
is constant since g is Einstein. In particular, when we ask for ); to be constant,
we recover an equation like (?7?). More material on the Paneitz-Branson operator
can be found in the very nice survey articles by Chang [?] and Chang-Yang [?].

Agu + anSgAgu + anSgu =

In what follows we let H2(M) be the Sobolev space consisting of functions u
in L?(M) which are such that |Vu| and |V?u| are also in L?(M). Thanks to the
Bochner-Lichnerowicz-Weitzenbock formula, a possible norm on H3 (M) is

1
ul|? :/ Agu)?dv, + / Viul?dv, .
l[uull %2 M( gu) dvg ; MI “dv,

A weak nonnegative solution u € H3(M) of one of the equations in (??) is smooth
and either is the zero function or is everywhere positive. A sequence (u,) in H3 (M)
of positive functions is then said to be a sequence of solutions of the family (?7?)
if for any «, u, is a solution of (??). Examples of compact manifolds, including
locally conformally flat manifolds, for which equations like (??) have nonconstant
solutions for abitrarily large b,’s and ¢, ’s are in Felli, Hebey and Robert [?].

In what follows we say that the family of equations (?7?) is pseudo-compact if for
any bounded sequence (u,) in H3(M) of positive solutions of (??) which converges
weakly in HZ (M), the weak limit u° of the u,’s is not zero. Pseudo-compactness is
of traditional interest since it provides nontrivial solutions of the limit equation we
get from (??) by letting o — +o0. In contrast to pseudo-compactness, we say that
the family of equations (??) is compact if any bounded sequence (uq) in H2(M)
of positive solutions of (??) is actually bounded in C*?(M), 0 < 6 < 1, and thus
converges, up to a subsequence, in C4(M ) to some function u?. Compactness is a
stronger notion than pseudo-compactness since by the Sobolev inequality, and by
(??), lluallgz = C for some C' > 0 independent of a. With respect to blow-up
terminology, see Section 7?7 for details, pseudo-compactness allows bubbles in the
H32-decomposition of sequences of solutions of (??), while compactness does not.

For A, the smooth symmetric (2, 0)-tensor field in (??), we denote by \;(Ag)z,
i=1,...,n, the g-eigenvalues of A4(z), and define A; to be the infimum over ¢ and
x of the A\;(A4y)s’s, and A2 to be the supremum over ¢ and = of the \;(A4,),’s. Then
we let S, be the critical set (or wild spectrum of A,) defined by

SC:{)\ERS.L Alg)\g)\g}. (0.4)
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Pseudo compactness for second order elliptic equations of Yamabe type have been
intensively studied. Compactness for second order equations of Yamabe type goes
back to the remarkable work of Schoen on the Yamabe equation [?, ?, ?, ?]. Further
results were then obtained by Druet [?, ?]. Motivations for our work were Schoen [?]
and Druet [?]. Possible related references on second and fourth order equations are
Brendle [?], Chang [?], Chang and Yang [?, 7], Chen and Lin [?], Devillanova and
Solimini [?], Djadli, Hebey and Ledoux [?], Djadli, Malchiodi and Ould Ahmedou
[?, ?], Druet and Hebey [?], Druet, Hebey and Robert [?], Han and Li [?], Hebey
and Robert [?], Li and Zhu [?], Lin [?], Lions [?], Lu, Wei and Xu [?], Marques [?],
Robert [?], Robert and Struwe [?], and Struwe [?].

We prove in this article that the following general results hold. We state Theo-
rems ?? and ?? for families of equations like (??), but recall that, of course, this
includes the more traditional viewpoint of one single equation when the b,’s and
¢o’s are independent of a.

Theorem 0.1. Let (M, g) be a smooth compact locally conformally flat manifold of
dimension n, and (by), (ca) be converging sequences of positive real numbers with
positive limits and such that co < b2 /4 for all . We consider equations like

AZU+baAgu+cau - u2u71 (EOé)

and assume that by & S¢, where by, is the limit of the by ’s and S, is the critical set
given by (??). Then the family (E,) is pseudo-compact when n > 6, and compact
when n > 9.

Theorem 77 is a complement to the compactness assertion in Theorem ?7 when
the dimension n = 6,7,8 and by, lies below the lower bound A; of S..

Theorem 0.2. Let (M, g) be a smooth compact locally conformally flat manifold
of dimension n = 6,7,8, and (by), (ca) be converging sequences of positive real
numbers with positive limits and such that c, < b2/4 for all a. We consider
equations like

Aﬁu +boAgu + cqu = w21 (E.)
and assume that by < minS,., where by, is the limit of the b, ’s and S, is the critical
set given by (??). Then the family (E,) is compact.

A major stress in proving Theorems ?7 and 77 is to understand large solutions.
Namely, solutions with large energies which, in studying their possible blow-up,
involve multi-bubbles. Specific examples of blowing-up sequences of solutions of
equations like (??) are discussed in Section ??. These examples respectively indicate
that the case n = 8 with respect to compactness is most likely to be special,
that a condition like by, & S. is sharp, and that there are equations like (77?)
which possess unbounded sequences of solutions in HZ. Section ?? is devoted
to preliminary material on blow-up theory. We discuss in this section the H32-
decomposition and pointwise estimates for sequences of solutions of equations like
(??). Relative concentrations for sequences (u,,) of solutions of equations like (?7?)
are discussed in Sections ?? and ?? when the weak limit u° of the u,’s is zero. The
proof of the pseudo-compactness part of Theorem 7?7 in Section ?7 relies on these
concentrations. Sections 77 to 7?7 are devoted to refined estimates on sequences
(uq) of solutions of equations like (??) when we do not assume anything on u°.
The proof of the compactness part of Theorem ?? and of Theorem ?? in Section 77
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rely on these estimates. Section 77 is devoted to the existence of a Green’s function,
and estimates on this function, for second order operators with nondifferentiable
coefficients — a technical result we need in Section ??7. The assumption that our
manifolds have to be locally conformally flat is required only in Sections 7?7 and ?77.

In the sequel, in order to fix notations, the limit equation we get from (??) by
letting o« — +o00 is the equation

Azu F b Agu + coou = w21 , (0.5)

where bo, and ¢ are the limits of (by) and (cq). We let H}! be the Sobolev space
of functions in L? with k derivatives in L%, and 2* = 2n/(n — 2) be the critical
Sobolev exponent for the embeddings of H? in LP-spaces.

1. EXAMPLES AND COMMENTS ON THE THEOREMS

We discuss three specific examples which respectively indicate that the case
n = 8 with respect to compactness is most likely to be special, that a condition like
boo & S. is sharp, and that there are equations like (??) which possess unbounded
sequences of solutions in HZ. For that purpose, we let (S™, go) be the unit n-sphere.
The geometric equation (?7?) on the sphere reads as

_ _ i
A;Ou—l—anAgou—i—anu:uQ 1 , (1.1)
2
where @,, = % and @, = %é”*@. In particular, for S, as in (?7),

S. = {an}. Given > 1 and zg € 5", we let U,, g be the function on S™ defined
by

n—4

nea 2 _ 2
Uro,ﬁ(:c)ans< 1 > : (1.2)

B — cosdg, (zo, )

As is well known, for any 8 > 1 and any z € S™, the Uy, g’s are solutions of (77).
This can be checked directly, or using conformal invariance and the Lin’s result we
discuss in Section ??. The L% -norm of U,,,3 is a positive constant independent
of f and zg. Moreover, Uy, g(x) = 0 as § — 1 if x # x¢, while Uy, g(z9) = +00
as § — 1. In particular, (??) is not compact, neither pseudo-compact. This is
coherent with Theorems 77 and ?? since in this situation the b,’s are constant and
all in S, (so that, in particular, bo, € S;).

The first example we really want to discuss in this section is as follows. We fix
A>1,6>1,and x5 € S™. We let also (B,) be a sequence such that 3, > 1 for all
a, and B, — 1 as @ — 4+00. We define the u,’s by

Ug = AUz g + Uz ., - (1.3)

Then the u,’s are solutions of equations like (??). More precisely, if we let Ly, be
the operator Lg,u = Ay u + %+u, the u,’s are such that

Agoua + baAgytia + Calta = uiﬁ_l (1.4)

for all a;, where the b,’s and ¢,’s are given by b, = @, + hq, Co = Gy + %Lha, and

(Ao + Usy )2 "

)‘LQO UEO,B + Lgn Uwo,ﬁa

281 21
_)\Uﬂcoﬂ _Ux()yﬁa . (15)

ho =
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Noting that for w > 0 a solution of (?7?),
—2
2 2f1 o —
Ly u=u +(T"fan)u

and that @, < @2 /4, it follows from the maximum principle that Lgou > 0 so that
he in (?7?) is well defined. Easy computations give that the sequence consisting of
the hy’s given by (?7) is bounded in L*°(S™) when n > 8. Moreover, if we assume
that n = 8, then the b,’s and ¢,’s converge in LP(S®) for all p > 1 as a — +o0,
with the property (which stops to hold when n > 9) that

lim inf inf ba > Qi
a—+00 B, (Rv/Ba—1)

for all R > 0. In particular, the pertinent quantities b, (z) are such that

IO}I_I}E;E bo(z0) > @y,

while, by construction, u,(xg) — +00 as & — +oo. Summarizing, when n = 8,
the u,’s are solutions of (?7?), an equation like (??), the b,’s and ¢,’s in (??) are
bounded in L>°(S%), they converge in LP(S®) for all p, and the u,’s blow up at
with by & S. where, here, by, is the limit of the b, (z¢)’s. Even if the b,’s and
Co’s are not constant functions, and the convergence of the b,’s and ¢,’s is only
in LP, this example gives strong indications that, with respect to the assertion on
compactness in Theorems ?? and 77, a particular phenomenon is most likely to
happen when the dimension n = 8. For second order equations of critical growth,
see Druet [?], the critical dimension is n = 6.

Concerning the second example we discuss in this section, we let k € N, where
k> 1, welet (2), i = 1,...,k, be k converging sequences of points in S™, and
let (8.) be a sequence of real numbers such that 8, > 1 for all a, and 8, — 1 as
a — 400. Then we define the function u, by

k
Uo =Y Usi g, - (1.6)
=1

As is easily checked, the u,’s are such that for any «,
H_
Aﬁoua +apAgua + Calta = u?} L (1.7)

where @, is as in (??), ¢ = @y + ha, Gy, is as in (77), and

k k E_
(Zizl ng, « - Zi:l Uii ,Bla
he = k ar (1.8)
2 i1 Ui, 5a

We assume that n > 12 and choose the z¢’s and f3,’s such that for any «, 2%, # 2,
and such that for instance, di' > B8, — 1 where d, = inf;+; dg, (2!, 2%). Similar
arguments to those used in Druet and Hebey [?] in the second order case (see also
Druet and Hebey [?]) give that h, — 0 in C1(S™) as o — +o00. In particular,

Co — Gy in C1(S™)
as a — 400, and the u,’s blow up with & bubbles in their H3-decomposition (see
Section ?? for the terminology). Moreover, as is easily checked, we can choose the
Ug’s in such a way that for any 1 < m < k, the u,’s have m arbitrary geometrical

blow-up points z1, ..., T, (the limits of the z’s as @ — +o0), and such that the
’s have an arbitrary number k(j) of bubbles (B,,) in their H2-decomposition with

)2”71
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centers 7, converging to x; (as long as m and the k(j)’s satisty >, k(j) = k).
Noting that in this example, b, = @, is in S, and even if the ¢,’s are not constant
functions, this provides another illustration (in addition to the solutions (??) of
(??) on S™) of the fact that a condition like bo & S, in Theorem ?? is sharp. This
example extends to the projective space, and more generally to any quotient of the
sphere.

Concerning the third and last example we discuss in this section, the idea is to let
k — +o0 in the above example (7?7). We still assume that n > 12 and let (k,) be a
sequence of integers such that k, — +00 as a — +o0. For any a, we let z}, ..., zk~
be k, distinct points in S™, and let d, be the infimum over i # j € {1, .. .,ka}
of the distances dg, (z%,,2%). We let (34) be a sequence of real numbers such that
B > 1 for all & and such that 5, — 1 as @« — +00. We assume, for instance, that
dX* > ko (Ba — 1) for all o, and that k2°(8, — 1) — 0 as o — +oo. We define u,, by

ko
o =Y Usi g, - (1.9)
i=1

Then the u,’s are solution of (??) and (??) with k = k4, and here again, similar
arguments to those used in Druet and Hebey [?] in the second order case (see also
Druet and Hebey [?]) give that ¢, — @, in C'(S™) as @ — +oo. Independently,
we easily get that [[ua||gz — +00 as @ — +00. The uq’s are solutions of (??), an
equation like (?7?), the c,’s in (??) are such that ¢, — @, in C1(S™) as o — +o0,
and [[ual/gz — +00 as a — +oo. In particular, there are equations like (??) for
which we do not have an a priori H3-bound on the energy of the solutions (and,
for such general equations, the assumption on the H3-norm in the definition of
pseudo-compactness or compactness is necessary). As above, this example extends
to the projective space, and more generally to any quotient of the sphere.

By the work of Lin [?], where smooth positive solutions in the Euclidean space

R of the critical equation A2u = w2~ are classified, we easily get that the Uso 8's
n (?7), together with the constant solution 6%”74)/ 8, are the only positive solutions

of (??7) in S™. Their energy, defined as the L? -norm of the solution, is a dimensional
constant and, in particular, (??) has one and only one admissible level of energy
EZ/ 4wn. On the other hand, we just saw that there are sequences (u,) of equations
like (?7) in S™ such that ¢, — @, in C*(S™) as a — +o0, so that, in some sense,
(?7) converges C! to (??), and such that ||ug||os — +00 as o — +o00. If necessary,
this illustrates how much equations like (??) are unstable with respect to their
lower order terms.

As a general remark we mention that a reasonable guess on Theorems 7?7 and
7?7 is that Theorem ?7 remains true if we only ask that b, # %trg(Ag)w for all
x € M, and that Theorem ?? remains true if we only ask that bo, < ttrg(Ag)s
for all x € M, where try(Ay) is the trace with respect to g of A;. This would
be true if we could develop a C%-theory for critical fourth order equations like the
one developed for critical second order equations by Druet, Hebey and Robert [?].
When g is Einstein, and hence (M, g) is a space form since we also assumed that g
is locally conformally flat, try(Ag) is constant and S. = {try(A4,)} so that we are
back to what we proved.
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2. PRELIMINARY MATERIAL

Let D2(R™) be the Beppo-Levi space defined as the completion of the space
of smooth functions with compact support in R” w.r.t. the norm |ju|| = ||Aul|s.
Nonnegative solutions u € D3(R™) of the critical Euclidean equation

A2y =21 (2.1)

have been classified by Lin [?] (see also Hebey-Robert [?] for a slight additional
remark on Lin’s result). They all are of the form

A

2 4 |z==of?

Uz, (T) = , (2.2)

where A > 0, 79 € R", and )\, = n(n — 4)(n? — 4). Let K,, be the sharp constant
for the Sobolev inequality

) 2/2¢ )
(/ |u|? dw) <K, (Au)” dzx . (2.3)
n Rn

The sharp inequality (??) has been intensively studied. In particular by Beckner
[?], Edmunds-Fortunato-Janelli [?], Lieb [?], and Lions [?]. As a consequence of
their work,
4/n
Kol =22\, (%) T ()",

where I' is the Euler function, and the wy ,’s in (??) are extremal functions for the
sharp inequality (??). The extension of (??) to Riemannian manifolds is studied in
Hebey [?] (following previous work by Hebey and Vaugon [?] in the second order
case).

In what follows we let (M,g) be a smooth compact Riemannian manifold of
dimension n > 5, and we discuss the Sobolev decomposition and pointwise estimates
for sequences of solutions of (??). If (z,) is a converging sequence in M, and (14 )
is such that p, > 0 and g, — 0 as @ — 400, we define the standard bubble (B,)
with respect to the x,’s and u,’s by

n—4
_ Ha
p3 + Ll ’
where dg is the distance with respect to g, 7o = dg(za,x), Ay is as above, and
7 : R — R is a smooth nonnegative cutoff function with small support (less than
the injectivity radius of the manifold) around 0. The x,’s are referred to as the
centers of (B,), and the u,’s as the weights of (B,). It is easily checked that

1Ball%s = K™/ +o0(1) |

Ba(x) =n(ra) (2.4)

where K, is as above, and o(1) — 0 as @ — +o0o. Up to o(1), the H3-norm of a
bubble is a dimensional constant independent of the bubble. As a remark, for any
R >0,

lim (AyBo) dvg = K;"* +ep
a2+ /B, (Rua) ! !
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where the sequence (eg) is such that eg — 0 as R — +oo, while the integral of
(AgBoé)2 over By (0afte) goes to zero as a — +oo if 6, — 0 as @ — +oo. We say
the HZ-range of interaction of (B,) is of the order zi,. On the other hand, for any
R >0,

n—4
/)\n 2
inf By (z) = ( 5 > +€a,
2€Bu, (R\/ia) R
where the sequence (g4) is such that £, — 0 as @« — +o00, while the supremum over
M\B;_ (Ra+/fha) of By goes to zero as a — 400 if R, — +00 as a — +o00. We

say the C%-range of interaction of (B,) is of the order \/fiq.

Lemma ?? below was proved in Hebey-Robert [?]. It extends to fourth order
equations of critical Sobolev growth the well-known result of Struwe [?] proved in
the case of second order equations of critical Sobolev growth. We state Lemma 77
with no proof and refer to Hebey-Robert [?] for more details.

Lemma 2.1. Let (uy) be a bounded sequence in H2(M) of nonnegative solutions
of (??). Then there exists k € N, u® > 0 a nonnegative solution of (??), and k
bubbles (BL), i =1,...,k, such that, up to a subsequence,

k
U :uo—l—ZBé—&—Ra, and
i=1
k
el = [0 + D 1Bl +0(1)
i=1
where Ry — 0 in H3(M) as a — 400, and o(1) = 0 as a — +oc.

Lemma ?7 is what we refer to as the H3-decomposition of the u,’s. When k > 1
in Lemma 7?7, we say that the u,’s blow up. As an illustration of Lemma 77,
let (x,) be a converging sequence of points in S™, and (8,) be a sequence of real
numbers such that g, > 1 for all @ and 5, — 1 as @ — +o00. Then,

Ummﬁa = Ba + R, )

where the Uy, g.’s, solutions of (??) on the sphere, are given by (??), where (By,)
is the bubble of center the z,’s and weights the u,’s given by

Lo = 4(604 B 1)
“ VA (Ba + 1)

and where R, — 0 in H3(S™) as a — 4oo. Moreover, in this example, there
exists C' > 1 such that & B, (z) < U, g, (z) < CBq(x) for all a and all « for which
rq = dg(Ta,x) is such that n(r,) = 1. In the general case, for arbitrary sequences of
solutions of equations like (??) on arbitrary manifolds, and multi-bubbles, pointwise
estimates are given by Lemma ??. Such estimates go back to Schoen [?] (see also
Schoen and Zhang [?]) when dealing with second order operators. They have been
intensively used by Druet [?] (still in the case of second order operators). We refer
also to Robert [?].

Lemma 2.2. In addition to the estimates in Lemma 77, there exists C > 0, such
that, up to a subsequence,

n—4

(lrgnii;lk dg(xg,w)) N lua(z) —u’(z)| < C
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for all o and all z, where u° is as in Lemma 77, and the z%,’s, i = 1,...,k, are the

centers of the bubbles in the decomposition of the uy’s given by Lemma 77.

Proof of Lemma ?7. Let ®, be the function defined at x as the minimum over 4
in {1,...,k} of the dy(z},, z)’s where the z!’s are the centers of the bubbles in the
decomposition of the wu,’s given by Lemma 7?7, and let v, be the function given by

V() = @a(x)%ua(x) .

Let also y, € M be such that v,, is maximum at y,. We prove Lemma ?? by contra-
diction and assume that vy (ya) — +00 as a — +o00. We let pig = g (yq) 2/
so that p, — 0 as @ = +00. Then, by the definition of y,,

lim dg (xzw ya)
a—r~+00o Mo

for all i = 1,...,k. Let § > 0 be less than the injectivity radius of (M,g). We
define the function w, in Bo(du,!) by

= +o0 (2.5)

n—4
Wa () = fta® uq (exp, (taz)) , (2.6)
where Bo(du, 1) is the Euclidean ball of center 0 and radius du, !, and where exp,,

is the exponential map at y,. Given R > 0, for any i = 1,...,k, and = € By(R),
dg (25, expy, (Ha)) 2 dg (25, Ya) — Rpta

- (1 - @f@i)) Plye)

and the right hand side of the last equation is positive by (??). Coming back to
(?7), thanks to the definition of y,, we then get that

wwwgﬁ‘@iQJJ#

for all z € Bo(R). In particular, the w,’s are uniformly bounded on any compact
subset of R™. Tt is easily checked that

A;awa + Do 2 Ay Wo + Cafibwy, = wiu_l ; (2.7)

where go(2) = (exp}_ g) (1az). Let & be the Euclidean metric. Clearly, for any
compact subset K of R", g, — ¢ in C?(K) as o — +00. Moreover, equation (??)
can be written as

[(Ag. + dia(ia)?) 0 (Bg, + daa(j1a)?)] wa = wZ ", (2.8)
where d; o, and da  are given by
ba b2 bo b2
dl,a—?—k Z—ca and d27a—?— X—ca. (2.9)

Thanks to standard elliptic theory and (?7?) we then get that the w,’s are bounded
in C’fo’f (R™), 0 < 6 < 1. In particular, up to a subsequence, we can assume that
we — w in Cf (R™) as @ — +oo. Here w is a nonnegative function of C4(R™) such

that w < w(0) = 1. Moreover, w € D3(R") and w € LQﬁ(R”). Clearly, we have
that

/ uffdvg = / w?dz + er(a), (2.10)
By, (Rpa) "
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where eg(a) is such that

lim lim ep(a)=0.
R—+o00 =400

Thanks to the decomposition of Lemma 77,

#
& 2
/ uindvg = / u’ + ZB& +Ry | dug.
By, (Rpta) By, (Rpta)

i=1

Hence,

k
/ W dv, < cz/ (BL)Z duy + o(1) | (2.11)
By, (Rpa) i=1 By, (Rpta)

where o(1) — 0 as & — +o00 and C > 0 is independent of a and R. By (??) we can
write that

. i 2k

agr}rloo Bya(R“a)(Ba) dvy =0 (2.12)
for all R > 0 and all ¢ = 1,...,k. Coming back to (??) and (??), we then get
that fRn w? de = €a(R), where eg(a) is such that limpg_, 10 limy—y 100 er(a) = 0.
Letting @« — 400, and then R — +o0, this implies that

/ wQﬁdx =0

and since w is continuous, nonnegative, and such that w(0) = 1, we get our con-
tradiction. Lemma 7?7 is proved. O

Let S be the subset of M given by

S:{ lim xg,i:L...,k}, (2.13)
a——+00
where the x%’s, i = 1,..., k, are the centers of the bubbles (B)) in the decomposi-

tion of the u,’s given by Lemma ?? (and S = () if the u,’s do not blow up). We
refer to the point in S as geometrical blow-up points. By Lemma ??, u, — u" in
H%loc(M\S) as o — +o0o. By Lemma ?7?, the u,’s are bounded in any compact
subset of M\S. Standard elliptic theory and the splitting

Pa = [(Ag + dl,(x) © (Ag + d2,oz)] y

where P, is the operator in the left hand side of (??), and d; o and ds o are given
by (??), then give that, up to a subsequence,

to — u in CL_(M\S) (2.14)
as @ — +00. Assuming that the u,’s blow up, we let ®, be the function in Lemma
?7? given by

®,(z) = min dy(zl, ), (2.15)

1<i<k

where the z¢’s are the centers of the bubbles (B) in Lemma ??. An important
complement to Lemma 77 is the following.

Lemma 2.3. In addition to the estimate in Lemma 7?7 we also have that

n—4
lim  lim sup D, (2) 7 |ug(z) —ul(z =0,
R*}JFOOQ_H_OOIEM\QQ(R) ( ) ‘ ( ) ( )’
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where u® is as in Lemma 77, ®, is given by (7?), the 2%, ’s and p,’s are the centers

and weights of the bubbles (B.) in Lemma 7?7, and, for R > 0, Q4(R) is given by
Qu(R) = Uiy Ba (Bitl).
Proof of Lemma ?7. We prove Lemma 7?7 by contradiction and assume that there

exists a sequence (y,) of points in M, and that there exists dy > 0 such that for
any i =1,...,k,

dy (22, Yo
do(TaYa) _, | (2.16)
e
as a — 400, and such that for any «,
n—4
Po(ya) = |ua(ya) - uo(ya)| > do - (2.17)
Clearly, ®,(yo) — 0 as & — +oo by (2?). We let 1o = ua(ya) 2%, Then we
can rewrite (?7) as
¢O£ «
Palya) 5 5, (2.18)
[
where (5(n /2 = §p/2. In particular, u, — 0 as o — +oo. Given § > 0 less than

the injectivity radius of (M, g), we define the function w, in the Euclidean ball
Bo(dug ') by
n—4
Wa () = pa® Ua (eXPya (Haf))
and let g, be the metric given by g, (x) = (exp;a g) (). For any compact subset

K of R™, and if ¢ stands for the Euclidean metric, we have that g, — ¢ in C?(K)
as a = +00. By (??) we can write that if (z,,) is a sequence in By(d1/2), then

dg (xfl,expya (Nozl'a)) > dg (ymxé) - dg (ymeXPya (Maxa))
Z 61/14a - dga (0, ma)ﬂa
for all ¢ and all @. In particular, dg (a:fx,expya (uaxa)) > Clpg for some C > 0

independent of o, and up to a subsequence, we get with the estimate of Lemma 77
that

we(z) < C (2.19)
for all € By(61/2) and all o, where C' > 0 is independent of o and z. Now we
may follow the arguments of the proof of Lemma ??. On one hand, the w,’s are
solutions of (??) in By(d1/2), where di o and ds o are given by (?7). On the other
hand, they are bounded in By(d1/2) by (??). Then it follows from standard elliptic
theory that the w,’s are bounded in C*%(By(6,/4)), 0 < 6 < 1. In particular,
up to a subsequence, we can assume that w, — w in C*(By(61/8)) as a — +o0.
Moreover, w(0) = 1 since w,(0) = 1 for all a. Let d2 = §1/8. We have that

2t _ 2t
/ ug, dvg = / wy, dvg,
By, (02pa) Bo(62)

=/ wQﬁdJ;—Fo(l) ,
Bo(d2)

where o(1) — 0 as @ — 400, while, by Lemma ?7?,

/ u¥ dv, < CZ/ )2 dvg + o(1) (2.21)
By (021a) By, 52#m

(2.20)
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where C' > 0 is independent of «, and the (BY)’s are the bubbles in Lemma ??.
Independently, here again, we can write that

/B . )(Bg)z"dug:oa) (2.22)
Yo (021

for all i. Then, combining (??)-(??), we get that w satisfies

/ wQudx =0
By (d2)

and this is impossible since w is continuous, nonnegative, and such that w(0) = 1.
This proves Lemma ?7. (I

3. RELATIVE CONCENTRATIONS WHEN n > 8

We let (M, g) be a smooth compact Riemannian manifold of dimension n. We
assume in what follows that n > 8 and, for the reader’s convenience, we discuss
the notion of L?-concentration. We let (u,) be a bounded sequence in H3(M) of
nonnegative solutions of (??). The material below, and in the following section,
is concerned with pseudo-compactness. We may therefore assume by contradiction
that the u,’s converge weakly in H3(M) to the zero function. If S is the set
consisting of the geometrical blow-up points of the u,’s, as defined in (?77), we
write that S = {xl, e ,xp}. Given § > 0, we define

fB uidvg
R 0) = "2 ——— 3.1
L2 (057 ) fM uidvg ’ ( )
where B;s is the union of the B,,(6)’s, i = 1,...,p. Since we assumed that u° = 0,

the two quantities in this ratio go to zero as o — +oo. Then L2-concentration
states as follows.

Lemma 3.1. Assume u® = 0. When n > 8, up to a subsequence, and for any
0>0, Rr2(a,0) > 1 as a — +o0.

Lemma ?7 is easy to prove when n > 9. The proof is slightly more delicate when
n = 8. When n < 7, as is easily checked, bubbles as in (??) do not concentrate in L?
and L2-concentration fails in this case to be the right key notion for concentration.
The cases of dimensions n = 6 and n = 7 are treated in Section 77.

Proof of Lemma ?7. Let A > 0 be such that E(u,) < A for all &. For convenience,

we set g = ||uq |5 ta so that [, @2 dvy = 1. Then
A2 + baDgli + Caiia = Aadi2 ', (3.2)

where A\, = ||ua||§§(n74). Noting that the operator in the left hand side of (?7?)
is uniformly coercive as @ — +oo (the coefficients are positive and converge to
positive limits), there exist Aj, Ao > 0 such that A; < A\, < Ay for all a. Up to
a subsequence, thanks to the compactness of the embedding of H2 in H?, we may
assume that [|ta [ gz — 0 as @ — +o00. We let also 9, be given by

Vo = Agﬂa + d2,o¢aa ’
where da , is as in (??). We have that

Agu + baAgu + cou = (Ag + dl’a) (Ag + d27a)u



FOURTH ORDER EQUATIONS OF CRITICAL SOBOLEV GROWTH 13

for all functions w, where di o is as in (??). Hence Ay0q + d1,00a > 0, and 9, is
nonnegative. Let § > 0 be given. Thanks to (??) with u® = 0, /\aﬁiﬁ_l —Calia <0
in M\Bs when « is sufficiently large. It follows that

Ay (Byita +baiia) <0 (3.3)

in M\B;s when « is sufficiently large. Also, we have that Ayt + balia > 04 since
Uq > 0 and dg, < by. By the De Giorgi-Nash-Moser iterative scheme, that we
apply to (??), we then get that
sup U, < sup (Agﬂa + ba&a)
M\Bs /o M\Bs 2
< C (Agtia + batia)dvy
M\Bs /3

where C' > 0 is independent of «. Let 1 be a smooth function such that 0 <7 <1,
n=01in B;s/4, and n = 1 in M\Bs/3. Then, integrating by parts,

M\Bs /3 M

< C Uadyg ,
M\Bs 4

where C' > 0 is independent of «. It follows that
sup Vo < C/ U dvg (3.4)
M\B; /2 M\Bs 4

when « is sufficiently large, where C' > 0 is independent of a. Applying the De
Giorgi-Nash-Moser iterative scheme to the equation Agtiy + d2,olla = V0, it follows
from (?7?) that

sup iy, < C Uadug (3.5)
M\Bs M\Bs 4

when « is sufficiently large, where C' > 0 is independent of . In particular, thanks

to (?7),
/ a2dvy, < C / Giadvg / Giadvg
M\ Bs M M\Bs /4

and integrating (??7) we get that

/ aidvggc/ aff*ldvg(/ 2 dvg) ' (3.6)
M\Bs M M

when « is sufficiently large, where C' > 0 is independent of a. First we assume that
n>12. Then 1 < 2! —1 < 2, and it follows from Holder’s inequality that

_
/ aiﬂfldvg < C(/ ﬂidvg)(z /2 ,
M M

where C' > 0 is independent of a. Thanks to (??) we then get that

#
/ @2 dvy < c(/ a2)*?
M\Bs M

28 4

1 —R2(a,d) < C(/ @)

M

and that
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Noting that @, — 0 in L? as a — +oo0, it follows that Rpz(a,d) — 1 as a — +o0.

Lemma 7?7 is proved when n > 12. Now we assume that 9 < n < 12. Then
2 < 2% — 1 < 2% and it follows from Holder’s inequality that

[, < ([ atan) T ([ @)
M M M
< (] )
M

since ||tq||2r = 1. Thanks to (?7) we then get that

/ 2 dv, gc(/ a2)"®
M\Bs M

1 —Rp2(a,d) < C’(/ ai)%’l :
M

Here again, i, — 0 in L? as o — +oc. It follows that Rp2(a,d) — 1 as a — 400
when 9 < n < 12. This proves Lemma 7?7 for such n’s, and we are left with the
case when n = 8. It easily follows from (??) that

/ w2 dv, < C’/ ui“*ldvg(/ udug) ' (3.7)
M\Bs M M
when « is sufficiently large, where C' > 0 is independent of a. Given § > 0, we
write that
/ uiﬁ_ldvg—i—/ uin_ldvg
]\/[\65 Bé

f_
/ui 1dvg
M
i o
(max ua)/ u? 2dvng/ u? "tdv, .
M\B5 M\B(s Bs

Coming back to (??), and since 2* = 4 when n = 8, we get that

Rprz(a,0) < (er?\aé(é ua)||ua||2 + Rs(a) , (3.8)

IN

and that

IN

IN

where
'
- fBa ug, ~tdvg
\ o wédvg
Clearly, see for instance (?7) with u® = 0,

li =0 3.10
I g el o10

Rs(a)

and we are left with getting estimates for Rs(c). We come back here to the H3-
decomposition of the u,’s given by Lemma ??. We let the 2%,’s and the ! ’s be the
centers and weights of the bubbles involved in this decomposition. Given R > 0,
and for k as in Lemma 7?7, we let also Q,(R) be the union from i = 1 to k of the
geodesic balls centered at ¢, and of radii Ru’. Since 2 = 4 when n = 8, we can
write by Holder’s inequality that

/ uiﬁfldvgg/ uiﬁfldvg—i— / u2dv, / uZdvy .
Bs Qo (R) Bs\Qa (R) M
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Then,

f ul a v \// u2 dv (3.11)
« g .
,/fM u2dvg Bs\Qa (R)

where Rs(a) is as in (??). As is easily checked, we get with the H2-decomposition
of Lemma ?7? that

/ uiﬁdvg =er(a),

Bs\Qa (R)

/ u¥ v, < C(maxug)% / u?~dz +o(1) | , and (3.12)
0u(R) g Bo(R)

/ uZdv, > (maux,uf)()n_4 / u?dx + o(1)
M i Bo(R)
(1) =

)
0 as a — o0,
? (?

where limp oo limy 100 er(a) = 0, where o C > 0is
independent of o and R, and u = uy o is given by (??). By (??) and (??) we then
get that
21
u” " rdx
limsup Rs(a) < eg + C’fBO(R) (3.13)

a—r+00 fBo(R) ’U,Qd(E

where egp — 0 as R — 400, and C > 0 does not depend on R. We have that

/ uzﬁ_ldx</ uQu_ldac
Bo(R) n

for all R, so that the integrals in the left hand side of this equation are uni-
formly bounded with respect to R. On the other hand, when n = 8, we have
that fBO(R) u?dr — 400 as R — +oo. Hence, we get with (??) that Rs(a) — 0
for all § > 0 as @ — +o0o. Coming back to (??), and by (??), it follows that
Rprz2(a, ) — 1 as a — 4oo for all § > 0, and this ends the proof of Lemma ??. O

We still write that S = {xl, . ,xp}, where S is the set consisting of the geo-
metrical blow-up points of (u,), and, for § > 0, we define the ratio

f35 [Vua|*dvg
Sy Vug 2dvg

where B;s is the union of the B,,(d)’s, i = 1,...,p. Since we assumed that u° = 0,
the two quantities in this ratio go to zero as a — +o0o0. We claim here that, as it
was the case for L2-concentration, the ratio itself goes to 1 as a — +o00. We refer to
this property as VL2-concentration. We obtain VL?-concentration in Lemma ??
below as a corollary of L2-concentration. The cases n = 6 and n = 7 with respect
to this concentration are treated in the following section.

Ryr2(a,d) = (3.14)

Lemma 3.2. Assume u® = 0. When n > 8, up to a subsequence, and for any
§>0, Ryr2(,0) = 1 as @ — +o0.

Proof of Lemma ??. We let the @,’s be as in (??), and let 0o = Ayly + d2 oUa,
where da , is as in (?7). Given 6 > 0, we let also 1 be a smooth function such that
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0<n<1,n=0in Bss, and n=1in M\Bs. Then, thanks to (??),
/ n(Agﬁa + dgyaﬂa)ﬂadvg < C/ nﬂadvg/ Uadvg
M M M\Bs /4

< C a2 dv,
M\Bs /4

when « is sufficiently large, where C' > 0 is independent of . Integrating by parts,
it follows that

/ n|Viig|*dv, < C a2 dv,
M M\Bs 4
when « is sufficiently large, where C' > 0 is independent of a. In particular,

/ |Viig|?dvy, < C a2 dv,
M\Bs M\Bs 4
and writing that

fM\Ba |Vﬂa|2d1}g X fM aidvg
fM a2 dvg fM |Viig |[2dvg

we get that VL2-concentration follows from Lemma ?? and Lemma ?? below. [

1 - Ryr2(a,d) =

Another estimate we need to prove the assertion on pseudo-compactness in The-
orem 77, which we also used in the proof of Lemma 7?7, is the global balance
L? — VL?. Here again we obtain this balance, as stated in Lemma ?? below, as
a corollary of L2-concentration. The cases n = 6 and n = 7 with respect to this
balance are treated in the following section.

Lemma 3.3. Assume u® =0. When n > 8, up to a subsequence,

/ uldv, = 0(1)/ Vg |2dv, (3.15)
M M
where o(1) = 0 as a — +o0.

Proof of Lemma ?7?7. We let 6 > 0. By Holder’s inequalities,

/ uZdvg < Voly(Bs)® 2/ ||uglf3. ,
Bs

where Vol,(Bs) stands for the volume of Bs with respect to g. Independently, we
can write with the Sobolev inequality corresponding to the embedding of the second
order Sobolev space H} into L?" that

||ua||§* <A (||Vua||§ + ||uoc||g) )
where A > 0 is independent of a. Noting that

/ uidvg :/ uidvg+/ uidvg
M Bs M\Bs

and since Voly(Bs) — 0 as 6 — 0, we then get that

/ u? dv, gCl/ uidvg+02Vozg(85)<2*—2>/2*/ |Vua|*dv,
M M\B;s M

for all 4 > 0 small, where C,C5 > 0 are independent of « and 4. In particular, if
Rirz2(a, ) = 1 as a — +oo, we get (??) by letting first & — 400, and then § — 0.
This proves Lemma ?7. [
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As a remark, it follows from Lemma ?? and Lemma 7?7 that when n > 8, and
for any § > 0,

/ V20 [2dv, = o(1) / Vo 2do, | (3.16)
M\Bs M

where o(1) — 0 as & — +oo. In order to prove (??), we fix 6 > 0 and let 5 be
a smooth function such that 0 <7 < 1, n = 0 in B/, and n = 1 in M\Bs. We

consider (??) with u = u,, multiply the equation by n?u,, and integrate over M.
Then,

/ AgUaAg(TIQU/Q)d/Ug + ba / (vuav(n2ua))dvg
M M

¢
+ca/ nQUidvg:/ n*u? dvg .
M M

As is easily checked,

(3.17)

[ BguadsyiPuaivy = [ (200" 4oy + O (Jual s, )
M M
where [[ul| g2 (a) = [, (IVul* +u*)dv,, and
| (Vo)) = [ 19+ 0 (Jualleis, ) -

M M

Independently, thanks to (?7),
/ nguindvg =0 (/ nQuidvg> .
M M
Coming back to (?7), it follows that
[ @) oy b [ (9 Ga) Py + (e +o(1) [ e,
M M M

(3.18)
= 0 (luallzz@\8 ) + O (IVualz@s) -

where o(1) — 0 as @ — 4o00. By the Bochner-Lichnerowicz-Weitzenbock formula,

/Mmg(nua))?dvg - /M|v2<nua>|2dvg+ /Mchwmua),vmua))dvg

- /M|V2(77ua)|2dvg+0(/M |V(nua)|2dvg> ;

where Reg is the Ricci curvature of g. By (?7) we then get that

V2uq |*dv, < Cy Vue|?dv, + Cs u2dv, ,
g g [e g
M\Bs M\Bs /2 M\Bs 2

where C,Cs > 0 do not depend on «, and (??) follows from Lemma ?? and Lemma
29
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4. RELATIVE CONCENTRATIONS WHEN n = 6,7

We let (M, g) be a smooth compact Riemannian manifold of dimension n. As in
Section ??, we are concerned with pseudo-compactness. We let (u,) be a bounded
sequence in H3(M) of nonnegative solutions of (??), and we assume by contradic-
tion that the u,’s converge weakly in H3(M) to the zero function. We prove that
Lemma 7?7 and Lemma ?7? of the preceding section still hold when n = 6,7. In the
sequel the notations are those of Section ?7. In particular, Ryrz(c,d) is defined in
(?7). We claim that the following result holds.

Lemma 4.1. Assume u® = 0. When n = 6,7, VL?-concentration holds so that,
up to a subsequence, and for any 6 > 0, Ryr2(a,d) = 1 as a — +oo. Moreover,
the global balance L?> — V L? holds also so that

/ uidvg =0(1)/ \Vua|2dvg,
M M

where o(1) — 0 as o — +o0.

Proof of Lemma ?7. We assume n = 6,7, and let § > 0 be given. We claim that

2/2*
/ uZdv, = o(1) (/ u? dvg> ) (4.1)
M\Bs M

where o(1) — 0 as & — +o0. In order to prove (??), we first note that similar
arguments to those used in the proof of Lemma 77 give that

Sup g < C/ U dvg (4.2)
M\B; M\Bs /4
when « is sufficiently large, where C' > 0 is independent of o, and @, = ||Ua||;ulua.

In particular, we can write with (??) that

vy < Cllaali o,
M\Bs

(4.3)
< Clltallr (an [1Tall L2* (ary
and then, with (?7), we can write that
~off_q 2/2*
U dv x
/ w2 dv, < CM ( / a2 dvg) : (4.4)
M\Bs ||Ua||L2*(M) M
where C' > 0 is independent of «, since, integrating equation (??) satisfied by the
uy’s, we get that c, fM uadvg = [, uiﬁ_ldvg. If we assume now that n = 7, then
2% < 28 — 1 < 2%, and we can write by Holder’s inequality that
~of _ ~2r /(28 —2F
/M a2 " tdv, < C||ua||L2<((M) ) (4.5)

Since 2*/(2* — 2*) > 1 when n = 7, and |[Gia || 12+ (ar) = 0 as @ — 400, we get with
(??) and (??) that (??) is true when n = 7. Now we assume that n = 6. We let
the x%’s and the u’’s be the centers and weights of the bubbles involved in the
decomposition of Lemma ??. Given R > 0, and for k£ as in Lemma 7?7, we let, as
in the proof of Lemma ??, Q,(R) be the union from i = 1 to k of the geodesic
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balls centered at z¢, and of radii Ryu’,. Then, coming back to the u,’s, by Holder’s
inequality as above, and since n = 6, we can write that

/ u?j—ldvg:/ uiu_ldvg—i—/ uin_ldvg
M M\Qq (R) Qa(R)

2/3
< / uZ dv lluallL2+ (ar) +/ uZ " du, .
M\Qa (R) Qa(R)

By the H2-decomposition of Lemma ?? we have that, when n = 6,

/ uindvg =er(a),
M\Qa (R)

21 i
us, " dvg < C(max py, ) , and
/QQ(R) 9 ( ¢ ) (4.7)

[ v, = ) ([ adeson)) |
M v Bo(R)

lim lim eg(a)=0
R—+4o00 a—+o0 R( ) ’

(4.6)

where

where o(1) — 0 as @ — +oo0, C' > 0 is independent of o and R, and u = uq g is
given by (?77). By (??) and (??) we can then write that when n = 6,

2'—1 C
limsup{|Mu”avg§ER+ T3
a—+oo ||Ual|lL2* (M *

« (M) (fBo(R) u2 d.l?)

(4.8)

where eg — 0 as R — 400, and C > 0 does not depend on R. Noting that
Jpomy v dx = +00 as R — +oo when n = 6, it follows from (??) and (?7) that
(??) is also true when n = 6. Now that we have (?7) for all § > 0, similar arguments
to those developed in the proof of Lemma ?7? give that

2/2*
/ uzdvgy = o(1) </ u? dvg> , (4.9)
M M

/ uidv, = 0(1)/ Vg |*dv, . (4.10)
M M

In particular, the global balance L? — VL? holds when n = 6,7. We obtain VL2-
concentration as in the proof of Lemma ?7. This ends the proof of Lemma ?7. [

and then that

As in Section 77, it follows from Lemma ?7 that for any § > 0,
/ V2, |*dv, = 0(1)/ Vg |2dv, (4.11)
M\Bs M

where o(1) — 0 as @ — +o0.
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5. A SPLITTING ESTIMATE

We let (M, g) be a smooth compact Riemannian manifold of dimension n > 5.
We are concerned in this section with getting estimates to prove the compactness
assertion of Theorem ?? and Theorem ?7. We borrow material developed for second
order equations by Devillanova and Solimini [?]. We let (u, ) be a bounded sequence
in H3(M) of nonnegative solutions of (?7), and assume that the u,’s blow up. In
this section, u° may be nonzero. Up to renumbering and up to a subsequence, with
the notations of Section 7?7, we can assume that

1 7
= .1
Fo = IDAX flo (5.1)

where the ¢, ’s are the weights of the bubbles (B?) of Lemma ??. We let

To =t and p = pl (5.2)

where the 2 ’s are the centers of (Bl). The main purpose of this section is to prove
the following splitting type estimate.

Lemma 5.1. Let p1,py be arbitrary real numbers such that 2%/2 < py < 2% < py.

Then there exists C > 0, and sequences (ul) and (u2) of nonnegative functions

such that, up to a subsequence, uo < ul, +u2, ||ulll, <C, and

2 llp, < Cpé?
for all ., where p,, is given by (77) and (77).

We prove Lemma 77 thanks to Steps 77 to 7?7 below. Note that a basic model

for Lemma ?? is u, = u® + B}, ul = u° and w2 = BLl. For p; and py such that

20/2 < py < 2% < py, and ¢ > 0, we define the norm || - ||, p,.c on L>(M), the
space of bounded functions in M, by

P1,pP2

1wl py po,o = inf {C > 0s.t. (I7 ) holds for u} ,

where (I7, ,,,) holds for w if there exist nonnegative functions u',u* € L>(M) such

that |u| < ub + u?,
iy, < C and [u],, < Cod 3 .
Step 77 states as follows.

Step 5.1. Let u,v € H3(M) N L®(M) and K € L>(M) be nonnegative functions
such that

(Ag + %)2 u< Kv (5.3)

for some a € [A1,As] where Ay < Ao are positive. Let p1,pa be arbitrary real
numbers such that 28 /2 < py < 28 < py1, and o > 0 arbitrary. Then

[ullps po.oc < ClE nyallvllps pao
where C' > 0 depends only on the manifold, p1, pa, A1, and As.

Proof of Step ??. Let A > ||v||p, ps,0» A arbitrary. Then there exist v!,v? > 0 in
L>(M) such that v < o' + 02, [[vl],, <A, and |[v?|,, < Ag(/2)=(n/p2)  We let
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u' € H2(M) and @' € H2(M) be such that
(Ag + %) @ = Kv', and

(Ag—l—%)ui:@i.

Then @' € HY(M), and v’ € HJ(M) for all p > 1. In particular u* € L>®(M),
i =1,2, and, of course, it follows from (?7?) that

(5.4)

2>2 ul = Ko .

2

By the maximum principle that we apply to the two equations in (??), u® > 0
for all ¢« = 1,2. Now we let ¢; > 1, ¢ = 1,2, be such that qi = % + p% Noting
that Kv' € L% (M), we get that @' € HJ'(M) and then that u* € H{ (M). In
particular, u’ € H," (M) where, for k integer and ¢ > 1, H,7(M) is the (reduced)
Sobolev space defined as the completion of C*°(M) with respect to the norm

(a5 +

B(k/2) B((h-1)/2)
lall = > I8Gullg+ Y- [VAGullg
=0 =0

and where F(s) is the greatest integer not exceeding s. By Step ?? below, that
we apply to the second equation in (??), we easily get that ||ui||H£qi < CHfLiHH;Ji
where C' > 0 depends only on the manifold, p;, A1, and As. Applying now Step 77
to the first equation in (??), we can write that for any i = 1,2,

laill e < CIEV ],

< K |jall’

pi >

where C' > 0 depends only on the manifold, p1, p2, A1, and A;. By the Sobolev
embedding theorem for H,’-spaces, see for instance Aubin [?], H)" (M) C LPi(M),
i =1,2. Hence, for any i = 1, 2,

lu’

pi < ClIK lyallv’

Di

where C > 0 depends only on the manifold, p;, p2, A1, and Ay. By (?7?), and since
v<ol+ UZ,
a\?2 a\? a\2 ,
(Ag+§) u < (Ag+§) u +(Ag+§) u” .
Then, by the maximum principle that we apply again twice, v < u' +u2. It follows
that [|ul|p, p,,0 < C|K]n/4A, and since A > [|v]|p, p, o is arbitrary, this proves Step
?7?. O

Step ?? (inspired from Gilbarg and Trudinger [?]) is standard. We state it with
no proof.

Step 5.2. Let u € HY(M) and f € LP(M), p > 1, be two functions such that
Lou = f where Ly = Ag+a, a € [A1,As], and Ay < Ay are positive. Then
lull gz < Cl|fll, where C >0 depends only on the manifold, p, A1, and Az.

The next step in the proof, Step ?? below, is a bootstrap argument to improve
the values of p; and py we get from Step ??7. We let (n) = %. Step 77 states

as follows.



22 EMMANUEL HEBEY, FREDERIC ROBERT, AND YULIANG WEN

Step 5.3. Let u,v € H2(M) N L>(M) be nonnegative functions such that
a
2
for some a, A € [A1, As] where 0 < Ay < Ay. Let p1,p2 be arbitrary real numbers

such that 28 —1 < py < 28 < py < 0(n), and q1,q2 > 1 be such that % = % — %,
i1 =1,2. Then, for any o > 0,

f_
s az.o < C (012380 +1) -

where C' > 0 depends only one the manifold, p1, p2, A1, and As.

(Ag + >2u — 21 + Av

Proof of Step ??. Let A > ||v||p, ps,0» A arbitrary. Then there exist v!,v? > 0 in
L>®(M) such that v < o' + 02, |[vl],, <A, and [[v?|,, < Ag(/2)=(n/p2)  We let
u! and u? be such that

a\? 4 21, 1y20—1
(Ag+§) wl= 1+ A)2F P14+ A, and
2
A

Then u' € HY (M)NL>®(M),i = 1,2, for all p > 1, and it follows from the maximum
principle applied twice that u',u? > 0. Since p; > 2f — 1, i = 1,2, we can write
with Step 77, as in the proof of Step 77, that

' f_

HulllHépl/(zm) <O+ A4) 27 Hw) T+ Allp, 261y » and
f_ t_

HUQHHQPQ/(%—U <O (1+4) 22 1(U2)2 1||zoz/(2tu1) )

where C' > 0 depends only on the manifold, p;, p2, A1, and As. Independently,
since 2 — 1 < p; < 0(n), we can write with the Sobolev embedding theorem for

et
H,%-spaces that Hfl/(z V(M) c L% (M), i = 1,2. Tt follows that
' < € (0157 +1) |, and

B
lu?llg, < Cllo?I5,71

where C' > 0 depends only on the manifold, p;, p2, A1, and A;. Noting that
2
(Ag + g) u = ¥4 A
< (14 A)vQ"‘1 +A
22n_1(1+A)(vl)2n_1+A+22u_1(1+A)(v2)2n_1
a2 4 a\2 o
(a5+5) w+ (20 5)

we then get with the maximum principle applied twice that v < u! 4+ u2. In
particular, since (2* — 1) ((n/2*) — (n/p2)) = (n/2*) — (n/q2), we get that

IN

||qu1,q2;G' <C (Agﬁ—l + 1) ’

where C' > 0 depends only on the manifold, p1, p2, A1, and Ag. Since A > ||v|py po.o
is arbitrary, this proves Step 77. (]
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The initialisation step in the proof, Step 77 below, states as follows. We recall
that if G : M x M\A — R, A being the diagonal in M x M, is the Green function
of L=Ag4+a,a>0,then

Glay) = /M G, 2)G (2, y)duy (2)

is the Green function of L2 = L o L. The integral makes sense and estimates on G
follow from material in Druet, Hebey and Robert [?].

Step 5.4. Let (u,) be a bounded sequence in H2(M) of nonnegative solutions of
(7?). There exists po(n) = max (2%/(2% — 1),2%/2) and p(n) > 2* with the property
that for any p1,pe satisfying po(n) < pa < 2% < p1 < p(n) there exists C > 0 such
that, up to a subsequence,

<C

[4ally, pyuzt <
for all a, where p,, is given by (77) and (77).

Proof of Step 7?7. We let G, be the Green function of the operator (Ag + b‘*)z.

2
Then,
2

walo) = [ Gt (200 + (% = a0 waliiey

for all x € M. By Lemma ?7?, up to a subsequence, it follows that

k
uq () < C/M Gal(z,y) (1 +3 (BT 2 (y) + IRa(y)zu”) ua(y)dvg(y) , (5.5)

i=1
where C' > 0 is independent of «, the (B?)’s are bubbles, and R, — 0 in H3(M)
as a — +00. We let v, and w?, i =1,...,k, be given by
Vo (LL') = Ga (277 y)ua (y)dvg (y)
M (5.6)

; i \of
wh@) = [ Galen) (B wuaw)i )
From the equation (Ag + %‘*)2% = wuq, from Step ??7 and arguments as in the
proof of Step ??, and since the u,’s are bounded in H2(M), there exists p(n) > 2¢,
depending only on n, such that for any 2* < p; < p(n), and any a,

||va||171 S C ’ (57)

where C' > 0 does not depend on «a. In a similar way, we get with the equations

b, 2 i iyt —
(Ag + ;) W = (Ba)2 2u04

that for any pg(n) < py < 2%, there exists C,C’ > 0 such that for any i and any a,
- of
[will, < CIBL* [l luallas

it
< By,

where r € (%,%) is such that + = p% 4 _ L. From equation (??), from (??) and

(?7), and since § < r < 7, we can write that for any 7 and any a,

P28 — i\
(B> 2l < Clug)™"

n_4
< Cpsé
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where C' > 0 is independent of a and 4. It follows that for any pg(n) < py < 21, for
any «, and any ¢,
e llps < Clug™)2 72, (5.8)
where C' > 0 is independent of a and 7. Now we let 9, be given by
. i
(@) = [ Gala i)l Ra)Pua()iduy(o)
Then

b 2 4
(Ag + ;) Vo = |Ral® 2uq

and it follows from Step 7?7 that for any 2—; <py <2< py,

12ally, gzt = 0 (10l st ) - (5.9)

By (??) and (?7?), if po(n) < p2 < 2¢ < p; < p(n), then

k
Vo + E wy,
i=1

where C' > 0 does not depend on «. Noting that if 0 < u < v, then for any p;, p2,
and o, ||ullp, po.o < [[V[|psps.o, and that by (?7),

k
Uy SC(vawLZwéwL@a)

i=1

<C, (5.10)

P1.p2Ha

we get with (??) and (??) that for any pg(n) < p2 < 2% < p; < p(n), there exists

C > 0 such that, for any o, [luall,, ,, ,-1 < C. This proves Step ?7. O

With Steps ?7? to ?? we are in position to prove Lemma ?7. The proof of Lemma
7?7 proceeds as follows.

Proof of Lemma ?7?7. We proceed by induction, starting from Step 7?7, using Step
?7. An easy remark is that

||u||1317p270 < ”uHPth,U (5'11)

if p1 < p;. We fix p1, po such that 2—; < py <28 < pr. We let pf > 2% be close to
2% and let ky > 1 be such that the increasing sequence (p¥) given by
1 261 4

k+1 &
P b1 n

satisfies p¥ < 6(n) for all k < ko, and pf°™" > 6(n), where 6(n) is as in Step ?7?.
Similarly, for p9 < 2 we construct the decreasing sequence (p5) by

1 2P—1 4

pstt s m
We choose pJ such that p§°+2 = py. Then, since py > 2¢/2, p§ > 2f — 1 for all

k < ko 4+ 1. The closer p) > 2% is to 2, the larger kg is, and the larger kg is, the
closer p§ < 2% has to be to 2. In particular, we can assume that p > 2¢/(2% — 1).
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Then, by Steps ?? and 7?7, we get that there exists C' > 0 such that, up to a
subsequence, and for any «,

||ualelc0+1)p1260+l7M;1 < C.

In particular, by (??), ||uoé|\]51 prott -1 < O for py < O(n) as close as we want to
sPo sHa

6(n). We then apply Step ?? once more and get that
”u"‘Hﬁhng”,uEl <C,

where p; — +o00 as p1 — 6(n). Choosing p; sufficiently close to 6(n), we can
assume that p; > py, and, thanks to (?7?), this proves Lemma ?7?. O

6. AN INTEGRAL ESTIMATE

We let (M, g) be a smooth compact Riemannian manifold of dimension n >
5. Here also we are concerned with getting estimates to prove the compactness
assertion of Theorem ?? and Theorem ??. We let (u,) be a bounded sequence in
H2(M) of nonnegative solutions of (??), and assume that the u,’s blow up. As in
Section ??, u° may be nonzero. Up to renumbering and up to a subsequence, as
done in Section 77?7, we can assume that

Hoo = JAX 1l (6.1)
where the 1 ’s are the weights of the bubbles (BY,) of Lemma ??. Then, as in (?7),
we let 2, = 2L and pu, = pl, where the xl’s are the centers of (BLl). The main
purpose of this section is to prove the following integral estimate.

Lemma 6.1. There exists C1,Cy > 0 such that, up to a subsequence,

n—4
2

1 a
/ Uadog < Cqp + CQL and
8Ba,, (1) r

Tn—l

n—4

n—4
Pa”
’I“"_Q

1

Tn—l

/ﬁ LAgua|d0g5201+fC§
OBy, (1)

for all « and all v > 0 sufficiently small, independent of o, where OB, (r) is the
boundary of the geodesic ball By, (1), and dog is the measure induced on 0B, (r)

by g.

We prove Lemma 7?7 thanks to Steps 7?7 and 77 below. As a preliminary remark,
given xg € M, we let 3, be the smooth function around z( such that for v smooth
in M, and r > 0 small (less than the injectivity radius of the manifold),

d 1 / wd
— | — o
dr \ rn—1 OBy, (1) I

1 0 1
= — / (u) dog + ﬁ/ ﬂioudag ,
r 0B, (r) \OV r 0Ba (1)

where 0By, (r) is the boundary of the geodesic ball By, (), where do is the volume
element on 0B, (r) induced by g, and -2 is the normal derivative with respect to
the outward unit normal vector v. As is well known, see for instance Sakai [?],

dg(xva) |6Io (x)| = O// (dg($0,x)2) 3 (63)

(6.2)
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where the notation in the right hand side of (??) stands for a C3-function such
that the kth derivatives of this function, k = 0,1, 2, are bounded by Cd,,(zq,z)?*
where C' > 0 does not depend on zy and . We also have for the function f,, that
Bzo(z) = O (dg(x0,x)) where the notation in the right hand side of this equation
stands for a C'-function such that the kth derivatives of this function, & = 0,1,
are bounded by Cd,,(zo,z)'~* where C > 0 does not depend on xg and z. In what
follows, for r > 0 small, we let

1
palr) = —— / (Dytia) oy, (6.4)
r Bg,, (1)

where z, is given by (??), and set So = Bs,. We let also Fy o, Fs 4, and F3 , be
the functions given by

1 t_
Fialr) = 7«"7—1/3 (r) (u?’“ - Ca““) dvy

. n (6.5)
Foalr) = 5 /B (") (1 + 71) dvg
and
1
Foalr) = /3 ot (6.6)

We regard the ¢, ’s alternatively as functions of the variable r or functions of the
variable z in R™ such that r = |z|. The first step in the proof of Lemma ?? is as
follows.

Step 6.1. Forr > 0 small, the p,’s in (?7) are solutions of

> i
Agpa + %aﬂpa + Ca(T)SOa

. (6.7)

= Flo(r) + Fra(r) + 04(r) Faa(r) + ©4(r) Fsa(r) |

where A is the Euclidean Laplacian, where Fy o, F o, and F3 o are given by (77)
and (?7), and where the By’s, Cy’s, ©OL s, and ©2’s are bounded functions both
with respect to r and .

Proof of Step ??7. By (77),

d(Pa 1 8Agua
ra = d
( dr ) r) rnl /aBM(r) ( ov ) 70

1 (6.8)
+ —/ Bal juodo
ot Jop, e T
and, by (??), it easily follows that
dpa ba [T .
(SD) (r) = —Fra(r) + —% / "L (t)dt
dr rn 0
(6.9)

1
+ = / Balguadog .
r 8B, (1)
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Then we get that

n—1
Apa + bapa = Fll,a(r) +

Fl’a(r)

r
1 d
Con=ldp (/g)BM (r) BaAguadUg) 7

where A is the Euclidean Laplacian (so that, if u is radially symmetrical, then Au
is given by —Au = v + "Tflu’) Independently, see for instance (?7), we can write

that
d / OA Uy
— BalAguqdo :/ ﬂa( J )do
dr ( 0B, ) ¢ 0B, (r) ov J

0B 5 mn—1
+f <+ﬁa+ ﬁa>A Uada .
ana (7‘) 61/ T g g

(6.10)

(6.11)

From now on we define the functions 3, : (0, +00) x M — R of the variables (r, x)
by

Ba(r ) = Lfa(e) + Dolalta) 2

, 6.12
T 2nr ( )

where 7, = dy(7a,2), and f, = O (r2) is the function in the right hand side of
(??). Then

2

B.(rz)=0 (T:) and A,B,(r,z) =0 (La) . (6.13)

r

Moreover, we can write that

aAgUQ . _ aAgua
/BBIQ(T) Pa ( v >dgg = /f)BIa(r) Baolr, ) < ey > (x)dog(x)

2 (6.14)
Agﬁa(l‘a) / (aAgua)
-4y dog .
271 8Bxa (7") 6'1/
Integrating by parts, using (??), we have that
— O0A Uy
Bo(r,x (g) z)do,(x
Ly, o Bt (T ) @it
— [ (Ba(r2) + 8B 2) Bytae)iuy (@)
Bra ) (6.15)

—|—/ MAgua(aj)dag(z)
0B, (r) OV

- /Bma(r) Ba(r ) (ui _1(@ - Caua(af)) dvg(x) .
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Let (he) be a sequence of functions such that |, (z)| < C for all a, all x, and some
C > 0 independent of o and z. Since (Ag + %“) uq > 0, we can write that

/ haAguadug
Ba, (1)
ba ba
= ha | Agua + —uq | dvg — — hatadvg
By, (1) 2 2 Ba, (1)

b b
= Ha(r)/ (Agua + 2’ua> dvg - ?/ hauadvg
Bwa (T) Ba‘,a (7‘)

ba
= Ha(r)/ Aguadug + ?/ (Ho(r) — ha) uadvg ,
By, (1) B, (1)

(6.16)

where H,, is such that |H,(r)| < C for all r and all o. With this remark (??), with
(?7), and with (??) we can then write that

/eam,a (r) Palr,) (3%;%) (z)dog(x)

o) [ Agadey + Hor) [ Byuads, (6.17)
B, (1) OBy, (1)

+H3704(T)/ Uqdog +H4,a(7“)/ (1 +uiﬁ_1) dv, .
Bag (1)

where the H; o’s, 1 < i <4, are such that |H; o(r)| < C for all r and all a. Clearly,
thanks to the properties of f3,, we also have that

0B s n—1 >
—— + B4+ Ba | Aguado
/SBIQ (r) < ov ' r I I

(6.18)
= H57a(7‘)/ Aguadog + H67a(7")/ uqdoy
8BM (T) aBma (T’)
and, by (??), we have that
OA JUq,
/ (gu> dog = H7,a(r)/ Aguqdy,
9B, (r) \ OV Bao () (6.19)

+ Hg’a(T)/ (1 + uin_1> dvg ,

Bao (1)

where the H;,’s, 5 < ¢ < 8, are such that |H; ,(r)] < C for all r and all a.
Combining (??)—(?7?), (??), and (??)—(??), it follows that

n—1
Apy + bapa = Fll,a(r) + , Fio(r)
HQa(T)/ Hig,o 7“)/
+ — Ajundv, + : Agundo
™1 Jp o g 9 ™1 Jop. g g (6.20)

+7H11,a(r)/ U do +7H127a(7")/ (1+u2u_1) dv
mt Jopoy 0 e ° .
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where, as above, the H; ,’s, 8 < i < 12, are such that |H; ,(r)| < C for all r and
all a. Independently, by (??) and (?7),

dpq, ba
o _ —F o(r) + / Aguadug
dr ’ 7‘"_1 Ba, (1)
1 "" (6.21)
+ o) /OBM o BaAguadog
and, since we have that (Ag + %‘*) Uy > 0, we can write that
/ Balguadog = ngva(r)/ Agundo,
OBz, (1) OBz, (1) (622)

+ H14,o¢(r)/ uadUg 5
0Bq,, (1)

where the the H, ,’s, ¢ = 13, 14, are such that |H; ()| < C for all r and all a. As
a supplementary remark, we can also write that

1
Fia(r)=0 <rn1) / (1 + uff‘l) dvy . (6.23)
Ba (r)

Combining (??)—(??) we then get that

dy n—1

Apy + His0(r) dra + Hi6,a (1) 00 = Fll,a(r) + ,

Hi7,(r) Hiso(r) b
+7rnil / Updoy + 774:1 (1 +u? 1) dvg ,
9By, (1) By, (1)

where the H;,’s, 15 < i < 18, are such that |H; o(r)| < C for all r and all «.
Noting that such an equation reads also as

Fl_’a(’f’)

T

His o(r)z?
A‘)Da + %@@a + HlG,a(r)QDa

n—1
" Fio(r) + Hi7,0(r)F3,a(r) + Hig,a(r)F2a(r) ,

this ends the proof of Step 77. a

= F] ,(r) +

In what follows we let L, be the operator of Step ?7. Namely,
B, i
Lou=Au+ %@u + Co(r)u, (6.24)

where A is the Euclidean Laplacian and the B,’s and C,’s are bounded functions
both with respect to r and a. We write that 2zy < e22% + £729? for two real
numbers x and y, and that

/ rt |Ba(r)xiu8iu‘ dzx < C’/ |u||Vu|dx
BO(fs) Bo((S)

for all u € C§° (By(9)), the space of smooth functions with compact support in the
Euclidean ball centered at 0 and of radius §. Then we easily get that for § > 0
small, and any u € C§° (By(9)),

1
/ (Lou)udx > f/ \Vu|?dx — A/ w?dr |
By (6) 2 /o (5) By (6)
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where A > 0 is independent of u and «. If Ay is the first eigenvalue of the Laplacian
for the Dirichlet problem in By(1), we then get that for any u € C§° (By(9)),

1 A
/ (Low)udx > 7/ \Vu|?dz + (12 - A) / u?da
Bo (%) 4 Jpo(s) 49 Bo(5)

so that for § > 0 sufficiently small, there exists Cs > 0 with the property that
/ (Low)udz > Cs|lul|3
Bo(9) !

for all u € C§° (Bo(d)), where || - || g2 is the usual norm on H?. In particular, the
operators L, are uniformly coercive on balls By(d) when § > 0 (independent of )
is sufficiently small. Then the second step in the proof of Lemma 7?7 is as follows.

Step 6.2. There exists C' > 0 such that, up to a subsequence, for any o and r > 0
sufficiently small, independent of a,

n—4

Ha
pa(r)] < C+C (6.25)

where the 1, ’s are given by (77), and the v, ’s are given by (7).

Proof of Step ?7. Let xzp be the limit of the z,’s in (??). Let also § > 0 be such
that the L,’s are uniformly coercive on By(d), and By, (26) NS = {xo}, where S,
the set of geometrical blow-up points, is as in (??). By (??), the p,’s converge
in C?_ (Bo(26)\{0}). We let n smooth be such that n = 0 in By(s) and n = 1
in M\By(2s) where s € (0,6/2). By the Lax-Milgram theorem we can solve the
equation LoPa = —La(Npa) in Bo(d), ¢o = 0 on 0By(d), where L, is given by

(?7). Letting ¢o, = @0 + Na we then get that ¢, solves the equation
Lopa =0 in By(d) , and
- 12 0(9) (6.26)
Pa = pa on IBy(0) .

By standard elliptic theory, and the above remark on the uniform coercivity of the
Ly’s, the ¢,’s are in HY (By(d)) for all p, and we have that

H@’D‘HCI(?((S)) <C (6.27)

for all o, where C' > 0 is independent of ov. Now we let Fy , be the right hand side
in equation (??) so that

n—1

Fia(z) = Fi o(r) + F1a(r) + Og(r) Faa(r) + ©3(r) Fsa(r) . (6.28)

where r = |z|, F1 o, Fs,a, and F3 , are given by (??) and (??), and the ©}’s, and
©2’s are bounded functions both with respect to r and a. Letting @, = ©a — Pas
it follows that

Loz@a = F4,o¢ in Bo(é) y and

6.29
D, =0 on 0By(9) . (6.29)

Moreover, by (??), we have that
||¢a||CI(M\Bo(5/2)) <C (6.30)
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for all o, where C > 0 is independent of a. Of course we also have that the ©,’s
are in Hy (Bo(0)) for all p. Computing Fj , we easily find that

n—1

Fl o) + == Fua(r)

1 1
e / faldo, | +0 / faldvy ) |
(7‘"‘1 aBmm‘ | g) (’"”‘2 Bmm' 9%

1

— CqUg. It follows that

Fyo(r) < 011/ (1+u?j_1) doy
=" JoB,, (r)

C.
+ nfl / (1+U?j71) dvg
r Ba (1)
and we can also write that

f@@s@/

0Bo(1)

C4 / ~of_q
+ 1+az " (x))dx,
Tn_l Bo(r) ( « )

where the C;’s are positive constants independent of 7 and «, where the function .,
is given by @a () = uq (exp,, (z)), and where do is with respect to the Euclidean
measure dz. Now we let G, be the Green’s function of L, for the Dirichlet problem
in By(6) (as discussed in Section ?7). Then there exists C' > 0 such that for any «,
and any x,y € By(d),

i
where f, = u?

(1 n afj*l(m)) do(z)
(6.31)

C
Go(@,y)| < —— 7 6.32
Galr, )] € s (6.32)
and we also have that for any «,
@)= [ Golwn)Fray+ [ Gale.)0Baw)io(w).
Bo(d) 0Bo (%)
We fix z in By(6/2). By (??) and (?7),
Fya
B, (z) <C 477@)@ +C, (6.33)

Bo(s) |y — |72

where C' > 0 is independent of « and a. Let K, be the function given by

Ko (z) :/B (6)|y_i“ (/BB N (1+a§“—1(|y\9)) da(6)> dy (6.34)

and let v, be the function given by

balr) = /BO(T) (1 + ai”*l(x)) dz . (6.35)
Noting that
B =t /830(1) (1+a21(0)) do(0) .
and integrating by parts, we easily get that

uwm§@+@/ Yol __,

Vel gy 6.36)
Bo(s) |y — "yt (
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where C5,Cs > 0 do not depend on x and «. Combining (??), (??), and (??), we
then get that for x € By(6/2),

[Pa ()] < C7 + Cs/ Yally) d

Vel g 6.37
Bo(s) |y — "yt (6.37)

where C7,Cs > 0 do not depend on z and «, and where v, is given by (?7?).
Now we let p > n/2, and set p; = (2% — 1)p, po = 2¢ — 1. By Lemma ??, there
exist sequences (u}) and (u2) of nonnegative functions such that u, < ul + u2,
ugllp, < C, and

ludllp, < Cpé? #

where C' > 0 is independent of «. It follows that

4

[Ya(r)] < Cor"=2) + Cropa® (6.38)

where Cy, C1p > 0 do not depend on r and «. Then, combining (??) and (?7?), we
get that

1—n
P

P (@) < 011+C12/ B —dy
Bo(6) ly — z|

n—4 ]_
+C13pa’ / ———dy
oy ly — =Pyt

and, since p > n/2, it follows from Giraud’s lemma [?] that

n—4
2

Ha”

[Pa(@)] < Cra + Cis 2

where the C;’s, i = 11,...,15, are independent of z and «. Since ¢, = P, + Pa,
and (?7?) holds, this proves Step ?7. O

With Steps ??7 and 7?7 we are now in position to prove Lemma 77?.

Proof of Lemma ?7. Let ®, be the function F5 , in (??). Then
D,(r) = nl—l/ Uadoy .
r 9Bu, (1)
By (??), and thanks to the definition (??) of ¢,, we can write that

@ (r) = L /Ortnlsoa(t)dwha(r)%(r), (6.39)

Tn—l

where the h,’s are bounded functions both with respect to r and «. Integrating
(??) between r and 0/2, where § > 0 is small, we get that

o I ha(t)dtq)a<r) P ha(t)dtq)a(é‘/Q)

t —
_ /5/2 Jo s" ltpa<s>dse— Ji ha()ds gy
- n—1 :

By Step 7?7 we then get that
it
fa (6.40)

rn

o (r)] < CL + Oy
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for all r < §/2, where Cy,Cs > 0 are independent of « and r. On the other hand,
since ¢, < b2 /4, we can write that Agu, + %u, > 0. By (??) of Step ??, by (?7),

and since u, > 0, we can then write that

: /
|Ajug|do
=t JoB,., (1) g

1
/ Aguqdoy
9Bz, (1)

<
- ,rnfl
n—4

2

ba
ey / Uadog
r 9By, (1)

Mo
rn—2

<C3+Cy

)

where C3,Cy > 0 are independent of o and r. Together with (??), this proves
Lemma ?7. O

7. ASYMPTOTIC ESTIMATES

As in the previous sections, we let (M, g) be a smooth compact Riemannian
manifold of dimension n > 5, and we are concerned with getting estimates to prove
the compactness assertion of Theorem ?? and Theorem ?7. We let (uo) be a
bounded sequence in HZ(M) of nonnegative solutions of (??), and assume that the
ua’s blow up. As in Sections ?? and ??, u® may be nonzero. Up to renumbering
and up to a subsequence, as done in Sections 7?7 and 77?7, we can assume that

Ho = X Ho, (7.1)
where the p?’s are the weights of the bubbles (BY,) of Lemma ??. Then, as in (??),
we let z, = x), and p, = pl, where the zl’s are the centers of (Bl). We let also
Uq be the function defined in the Euclidean space by

U (2) = ua (exp,, (Viaz)) (7.2)

where exp, _ is the exponential map at z,. We use the terminology biharmonic in
the sequel for functions u such that A%u = 0, where A is the Euclidean Laplacian.
We prove in this section that the following estimate holds.

Lemma 7.1. There exist 6 > 0, A > 0, and a biharmonic function p € C* (By(24))
such that, up to a subsequence,

A
U (T) = ——— + p(z)
|z
in C}_(Bo(26)\{0}) as o — +oo, where Uy is given by (??7). Moreover, ¢ is
positive in By(26) if u® # 0, where u® is as in Lemma ?7.

We prove Lemma 7?7 using Steps 77 to ?7?7. Up to a subsequence we may assume
that for any given i, either dy(zq,’) < C\/fia for some C' > 0 and all «, or
dg(Ta,7,)/\/Tha — +00 as o — +00, where the z7,’s are the centers of the bubbles
(B) given by Lemma ??. If I is the subset of {1,...,k} consisting of the i’s for
which dy(zq,},) < C\/liq for some C' > 0 and all a, we then let

; T
S= {QEIEOO \//Taexpxj(%) i€ I} : (7.3)
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where exp,, is the exponential map at x,, and the limits in S are assumed to exist
up to passing to a subsequence. Clearly, 0 € S. Step ?? in the proof of Lemma ?7?
is as follows.

Step 7.1. There exists u € C* (R”\S’) such that, up to a subsequence, U, — U in
c} (R"\S), where Ty, is given by (7?). Moreover T is biharmonic in R™\S with

loc

the property that u and Au are both nonnegative in R”\S'
Proof of Step ??. By (77),
A2 o + bapiaDg, To + Capidlle = ol , (7.4)

where go(2) = (exp}, 9) (\/Ba®), and hq = ,uiﬂin_z. If ¢ stands for the Euclidean
metric, g, — & in C?(K) for any compact subset K of R™. Given R > 0 and § > 0,

we let K = Bo(R)\U,cg Bz(9). By Lemma ?7, the h,’s are uniformly bounded in
K. By Lemma 77,

he = 0in L*>(K) (7.5)
as @« — +o0o. Now we claim that for any d; < &9 positive, and any p € (1, ﬁ),
there exists C = C(d1, d2,p) positive such that
/mméc (7.6)
Ry

for all «, where Rgf is the Euclidean annulus centered at 0 and of radii §; and 5.

In order to prove (??) we use Lemma ??. We let Ag’;‘ = Agf (o) be the annulus
centered at x, and of radii d1./tq and d2,/1. Integrating the two equations in
Lemma ?7 over this annulus we get that

1
7/ Uadvg < C , and
Vol, (45 Jai:

1
7/ |Agua|dvg < Cug"
Vol, (48 Jaiz

where C' > 0 is independent of «, and Vol (Agf) is the volume of Agf with respect
to g. Then (?7?) gives that

/5 TUqdvg, < C and /5 Ay, Ta|dvg, <C. (7.8)
R 2

2
81 R(Sl

(7.7)

We let F,, be such that F,, = Ay T, in Rgf and F,, = 0 outside Rgf. Given 6 > 09
we let also G, be the Green’s function of Ay, in By(4) with zero Dirichlet boundary
condition, and set

valz) = /B o ol W Fa(0), ).

By standard properties of the Green’s function, there exists C' > 0 such that

Ga(z,y) < ¢

— n—2
ly — |

(7.9)
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for all z € Rgf, all y € By(0), and all .. For p € (1, -25) we let ¢ be such that

T n—2

% + % =1. For p € Lq(Rgf), by (??7), we can write that

T
/5 vapdr| < C/é /5 Lzﬁdx |Fo(y)|dy .
Ry? Rz \/Rg? ly — |

This implies that
1/p
dx
Cllgll, s / / W) R dy
L (R(s?) R}Sf Rgf |y—x‘p(n*2)

/5 vapdx
R
= CH@HLQ(RZ?)||F0‘HL1(R§?)

and then, by (??), that
/ Vapdz
Rgf

where C' > 0 does not depend on « and . By duality, taking ¢ = v2~1, we get
that

IN

AN

< C”QOHLCI(R%) )

/ vhdug, < C, (7.10)
R(?

o1

where C' > 0 is independent of a. Since Ay, (vq —U) = 0 in Rgf, it follows
from standard elliptic theory (the De Giorgi-Nash-Moser iterative scheme) that if
Q1 CC R}, then

Slgllph}a _Ua| < CHUQ _Ea”Ll(Rgf) )

where C' > 0 is independent of a. By (?77?) and (??), and since §; < &2 are arbitrary,
this implies (??). In particular, with similar ideas to those developed in Agmon-
Douglis-Nirenberg [?, ?] (see also Section ?? for the global version of the local
estimates in [?, ?] we use here), we get with (?7?), (??), and (??) that for any
p€ (1,7%5), and any Q CC R"™\S, the T, ’s are uniformly bounded in H? (). By
standard bootstrap arguments, it follows that the %, ’s are uniformly bounded in
HY(Q) for all p > 1. Then, by the Sobolev embedding theorem, we get that, up
to a subsequence, the u,’s converge in CfOC(R”\S) to some nonnegative function
T as o — +o0o. By (??) and (??), w is biharmonic. In particular, @ is smooth in
R™\S. Independently, since ¢, < b2 /4, we can also write that (L/,)%T, > 0, so
that L 4, > 0, where L), = Ay + (bafta)/2. It follows by passing to the limit as
a — +oo that Aw > 0, and this proves Step ?77. (]

In what follows we write that S = {xl, .. .,xp} with 1 = 0. Step 7?7 in the
proof of Lemma ?? is as follows.

Step 7.2. There exist a;,b; € R, i = 1,...,p, and a smooth biharmonic function
@ in R™ such that

p P
bi a;
a(zx) = E E 7.11
" L e T L e TR (710

for all z in R™\S.
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Proof of Step ??. We fix i = 1,...,p. Since Au is harmonic and nonnegative in
By, (60)\{x;}, for some dp > 0, classical results in harmonic analysis (see for instance
Veron [?]) give that

A
Au(z) = o — 2" 2 +9(2) ,

where A € R and 1 is harmonic in By, (5). Let ¢ be such that A = in By, (&),
and let @ be the function in By, (dp)\{z;} given by

N _ A -

i(z) = u(x) — W — () .
Then 4 is harmonic in By, (09)\{z;}. Clearly, for B € R, the function ip given by

B
|z — x;|n—2

ip(z) = u(x) +

is still harmonic in By, (d0)\{x;}, while i is nonnegative in B, (dp/2)\{z;} if we
choose B > 0 sufficiently large. Then (see again Veron [?]), for B > 0 large, ip
writes as

C

- | — a2

ip(z)

+ ()

where C' € R and ¢ is harmonic in B, (o). In particular,
_ Ch Cs
(@) = |z — z;|m 4 + |z — x;|n—2

in By, (60)\{x:}, where C1,C2 € R and ¢; is biharmonic in By, (dp). A local result
from which we easily get that Step 7?7 holds. O

+ @i(x)

Since ©w > 0 and Aw > 0, it follows from (??) and equation (??) below that
a; > 0 and b; > 0 for all 7. Step ?7 in the proof of Lemma 77 is as follows.

Step 7.3. The biharmonic function @ in (??) is nonnegative and constant, while
a1 =01n (?77?).

Proof of Step ?7. It follows from (??) that
P
_ 2(n — 4)bl

for all z € R"\S. By (??) and (??) we then get that ¢ and Ay are uniformly
bounded from below since @ > 0 and Aw > 0. By Liouville’s theorem, since Ay
is harmonic, Ay = K, is constant. Noting that by (??), Ky is the limit of the
Au(x)’s as © — 400, we get that Ko > 0. Writing that

K
A(¢+°mﬁ>:o
2n
K,

and noting that ¢ + 272|:c|2 is bounded from below since ¢ is bounded from below,
another application of Liouville’s theorem gives that ¢ + £2|z|? = K{ is constant.
By (??), and since @ > 0, ¢(x) has to be nonnegative for x large. This implies that

Ky = 0 and thus that ¢ is a nonnegative constant. This proves the first assertion
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in Step ??. Concerning the second assertion, we know from Lemma 7?7 that there
exists C7,Cs > 0 such that

n—4
2

1

rn—l

/ Uad09§01+02u
OBz, (1)

«a
Tn—4

for all a and all r» > 0 sufficiently small. By Step 77, letting r = 0/jte, With 6 > 0
small, we then get that

1 / _ Cy
udo < C3 + —
6" JoBo(s) o4

where do is the measure on 9By(9) induced by the Euclidean metric, and C3,Cy > 0
are independent of ¢ and a. By (?7), letting 6 — 0, it follows that a; = 0. This
proves Step ?77. O

By Step ?? and (??) we can now write that

A P @‘ P a;
u(xr) = —— K 7.13
)= Gt L e P G ey 0 (9

for all x € R”\S, where A, the a;’s and b;’s, and K are nonnegative constants.
Then Step ?7 in the proof of Lemma ?7 is as follows.

Step 7.4. The constant A in (??) is positive.

Proof of Step 7?. For dy o and dg o as in (?77), we can write the fourth order oper-
ator P, = A2 + bo Ay + co as the product L), L2 where L, and L2 are the second
order operators given by L} = Ag+di o and L? = Ag+doo. If G} stands for the
Green function of L%, and G? for the Green function of L2, we then get that
Galry) = [ Gh2)G v (2)
M

is the Green function of P,. By standard properties of GL, and G2, as studied for
instance in the appendix of Druet, Hebey and Robert [?], there exists C' > 0 such
that GL(z,y) and G2%(z,y) are both controlled from below by C/d,(z,y)"~?2 for all
x # y. Then it follows that there exists C' > 0 such that for any « # y in M, and
any «,

Ga(z,y) (7.14)

TN
We assume from now on that the ratios dg(wq, z%,)/ 1o converge (with a limit pos-
sibly +o00) for all ¢ as &« — +oo. This holds up to passing to a subsequence. We
let §; < d9 positive be such that the closed interval [07, d3] does not contain any of
such limits. Then, for z € By(82)\Bo(61), dg (%, exp,_ (ttaz)) > Cpo where C > 0
is independent of a and z, and if we let v, be the function given by

n—4
Va () = pa® ta(exp,_ (Hat))

it follows from the above equation and Lemma 77 that there exists C' > 0 such
that ve(x) < C for all o and all x € By(d2)\Bo(d1). We let g, be the metric
given by g (z) = (expg*E(v g) (o). If € stands for the Euclidean metric, g, — £ in
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C?(K) as a — +oo0 for all compact subsets K of R™. Since the v,’s are bounded
n BO(52)\B0(51),

/ vindvga <C viﬁ_ldvga ,
Bo(82)\Bo(d1) Bo(62)\Bo(d1)

where C' > 0 is independent of «. Independently, by Lemma 7?7, we can write that

/ vin dvg, = / uiﬁ dvg
Bo(62)\Bo(d1) Bay, (02p00)\ By (01 10a)

> Biﬁ dvg +o(1) ,

|,
Bz, (52 Ha)\Ba:a (51 :Ufa)

where (B,,) is the bubble of centers the x,’s and weights the p,’s, C > 0 is inde-
pendent of «, and o(1) — 0 as a — +o0o. Noting that

/ Bindvg :/ u%‘jodvgu ,
Bg, (0200 )\Bag (014a) Bo(62)\Bo(31)

where u; o is the positive function given by (?7?), it follows that there exists C' > 0

such that
/ Uitldvga >C (7.15)
Bo(62)\Bo(d1)

for all a. Now we fix 2 € By(6)\{0}, where § > 0 is such that By(d) N S contains
only 0, and, for y € By(62)\Bo(01), © # \/Hay, we let G, be the function given by
éa(x,y) = Gq (expmw( o), exp,, (,uay)) Then, by the Green’s representation
formula, we write that

aa(a:):/M Ga(exp,, ( ,uaﬂﬁ),y)uitl(y)dvg(y)

= t_
/ Ga(expy, (Viar) y)us ' (y)dvg(y)  (7.16)
Bua (52110)\Bug (5110)

n—4 [
> e / Gz, y)0? ~ (y)dvg. (y)
B (82)\Bo(d1)

Noting that by (??), there exists C' > 0 such that

M;;Al Gaolz,y) > Chta —
‘\/ F‘axc_ May‘ (717)

’n—4

2 -
|z — Ity
for all z € By(d) and all y € By(d2)\Bo(01) with © # /lay, it follows from (?7?),
(??), (7?), and Step ?? that there exists C' > 0 such that

() > |x|24 (7.18)

for all x € By(d)\{0}. Coming back to (??), we get with (??) that A > 0. This
proves Step 77. O

The last step we need in the proof of Lemma 77 is as follows.

Step 7.5. If u® # 0, the constant Ko in (?7) is positive.
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Proof of Step 77. First if u® # 0 then, since u" is a nonnegative solution of (7?), it
is smooth and positive everywhere. Now we let g be the limit of the x,’s, and let
d > 0 small. As in the proof of Step 77, given x € R™\ S, we write that

Uo(r) = /M éa (esza( p,am),y)uiu_l(y)dvg(y) )

where G, is the Green function of A3 + boAy + co. In particular,

_ ~ f_
o () > / G (expy, (VEa),y)u2 " (y)dug (y)
M\ B, (8)

Letting a — 400, it follows that

() > / G (0, 1) (1) ~Lduy (y) ,
M\Bs, (5)

where G is the Green function of the limit operator Ag + booAg + Coo. Letting 6
tend to zero, we get that

a() 2 [ Gliny)P* duy(y)

M
= u’ (o)

since u” is a solution of (??). By (??), u(z) — Ky as |z| = 4o00. By assumption,

u®(#9) > 0. It follows from these remarks and equation (??) that Ky > 0. This
proves Step 77. O

(7.19)

0

With Steps ?? to 7?7 we are now in position to prove Lemma ??7. The proof of
Lemma 77 proceeds as follows.

Proof of Lemma ??. We let § > 0 be such that By(30) and $ intersect only at 0,
where S is given by (?77?). By Step ?7?, the u,’s converge, up to a subsequence, to
uin C} (Bo(26)\{0}) as a — +o0. By Steps ?? to ?7, we can write that

loc
_ A

for all € By(20)\{0}, where A > 0, and ¢ is biharmonic and nonnegative in
By (25). The explicit equation for ¢ is

p p
bi a;
= K
o) ; T ; w2

where a;, b;, and Ky are nonnegative constants. By Step 7?7, Ky, and thus ¢ in
Bo(26), is positive if u® # 0. This proves Lemma ?7?. O

Lemma ?? below is the infinitesimal analogue of the global balance L? — VL2
stated in Lemmas ?? and ??. Since, here, u° may not be zero, the proof is more
involved.

Lemma 7.2. Let § > 0 be as in Lemma ??7. Then, for any «,

/ uldv, = 0(1)/ |V |*do,
Bz, (6+/Ita) By, (0/Ita)

where o(1) — 0 as o = +00. Moreover, [, )|Vua|2dvg > Cu? for all «,

where C' > 0 is independent of .

o (0y/Tia



40 EMMANUEL HEBEY, FREDERIC ROBERT, AND YULIANG WEN

Proof of Lemma ?7. By Lemma 77, the Euclidean Sobolev inequality for the em-
bedding H? C L?" that we apply in By(5), and Holder’s inequality,

/ s dr < Cl/ |V, |2 dz + Cy | (7.20)
By (9) Bo(9)

where § > 0 is as in Lemma ??, and C7,Cy > 0 are independent of «. In order
to get (??), we write that Bo(8) = Bo(r) U (Bo(6)\Bo(r)), that the L2-norm of
Uy in Bo(d)\Bo(r) is bounded by Lemma ??, that the L2 -norm of %, in By(r) is
controled by r times the L% -norm of &, in By(d) by Hélder, and then we choose
r > 0 small. Coming back to the u,’s, it follows from (??) that

n—4
uZdv, < C3/.La/ Vg *dvg + Capipia® (7.21)

/Bza(fsx/ﬁ) Bz (8y/a)

where C3,Cy > 0 are independent of . Now we let ¢ € C§°(R™) be such that
0<¢p<1, p=1in By(1/2), and p =0 in R™\By(1). Then we define ¢, by

_n-2 1 _
Pa(T) = pia > @ (M expm:(x)) .

[e3%

Given r > 0, we can write that for « large,

/ |V |*do,
Bza (ta)

2 / Vua|262 ~2du, |
Bg., Na)

|V |*do,

Y

/BM(T\/IE)

v

Thanks to the decomposition in Lemma ??, noting that H3(M) Cc H} (M), and
by Holder’s inequalities, we can also write that

[, o Tl = [ By o)
Bwa (1a) Bza (ta)

where (B,) is the bubble of centers the z,’s and weights the u,’s, and where
o(1) = 0 as a — 400. Then, noting that

/ |VBa|2ng*_2dvg :/ |Vu|2<p2*_2dvga ,
Bog (a) Bo(1)
where u = w19 is given by (?7?), and go(z) = (exp}_ g) (ka®), we easily get that
for any r > 0, there exists C' > 0, independent of «, such that for « large,
/ |V [*dvy > Cp . (7.22)
Bag, (ry/lha)
Taking r = §, coming back to (?7?), we get with (??) that

n—4
uZdvg < Cs(pa + pa® ) / | Vg [2dv,,

/Bmw\/m B., (6,/i)

where Cs > 0 is independent of «. This ends the proof of Lemma ?7. [
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8. THE GREEN’S FUNCTION OF L,

We let © be a smooth bounded domain of R™. For k integer and p > 1, we let
HY () be the standard Sobolev space of functions in LP(Q) with k derivatives in
LP. Then we let H ;(€2) be the completion of C§°(Q2) in H (), where C5°(€2) is
the space of smooth functions with compact support in 2. We let ¢ and the b%’s be
functions in L>(Q), 1 <i <n, and let Ky be such that

(@) + Y [b'(2)| < Ko
i=1

for all z € 2. We also assume that the operator Lu = Au + b'0;u + cu is coercive
in the sense that there exists A > 0 such that

/ (IVul® + ub*0;u + cu®) da > )\/ |Vul?dx (8.1)
Q Q

for all u € Hf ;(€2). Then we claim that there exists a Green function for L which

satisfies uniform bound with respect to the coefficients b® and c. More precisely, we
claim that there exists G : Q x Q\D — R, where D is the diagonal in Q x Q, such
that G satisfies the three propositions:

(G1) for any = € €, the function y — G(x,y) is in L'(2) and in L>°(99),
(G2) for any u € H3(Q) N H{ ,(Q), ¢ > n,

u(w) = [ Glany) (Su+ B0+ cw) Gy + [ Glay)dsuly)doty)
Q o0
for all x € 0, where v is the outward unit normal vector of 9f2, and

(G3) there exists C' > 0, depending only on €2, Ky, and A, such that
C
Glz,y)| < —
G(z,y)| =z

for all z € Q and all y € Q such that = # v,

where, concerning (G2), it should be noted that by the Sobolev embedding theorem,
HI(Q) € CH(Q). The existence of G (for the operator L, of Section ??) was used
in Section ??. The difficult point here is that the coefficients b° (and c¢) are not
assumed to be differentiable functions (the situation we face with L,). In order to
prove (G1)-(G3) we proceed as follows. For x,y € R™, x # y, we let

1

(n = 2)wn1ly — |2

H(.%‘,y) =

and for i = 1,...,n, we let also H;(z,y) = 0; . H(z,y) so that

yi —

Hi(z,y) = ————— .
1( y) wn—l‘y_x‘n

It is easily checked that for u € H3(Q) N H{ ((R2), ¢ > n, and z € Q,

/Q (e, p)Au)dy = u(w) ~ | H@)d,us)doly) (8.2)
and that for u € Hy (Q) N H{ 4(?), ¢ > n, for i = 1,...,n, and for z € Q,
/Q i, ) Auly)dy = Ouu(z) — | Hilr,y)o,u(y)do(y) (8.3)
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Forz,y € Q, 2 #y,and i = 1,...,n, we define I'; and the I'}’s by the equations

Fl(mvy) = —c(y)H(m,y) ’ and
Then, by induction, we define the I';’s and F;-’s, where j > 1 is integer, by the
equations

Ljvi(z,y) = —c(y)/Q (Fj(:r:,z)H(z,y) + ZF?(m,z)Hﬁz,y)) dz , and

k=1

k=1
It follows from Giraud’s lemma [?] that for j > 1 there exists C;(Q, Ky) > 0 such
that

C;(9, Ko)

Fj(xay” +Z|F;(x,y)| < W ifn>j+1

I0(z, )| + 3 D@ y)] < Q. Ko) (L+ |Infy —2f]) ifn=j+1  (84)

i=1
n
ITj(2,9)| + Y [Tz, y)] < Ci(R,Ko) ifn<j+1,
i=1
For z € Q and y € Q\{z} we let
G(a,y) = H(z,y)

n

+Z/ ( 2,y) +ZF§(x,Z)Hk(z,y)> oty &Y

k=1
and for y € 012, we let

G(z, H(z,y +Z/< H(z,y +ZI’ (x,2)Hy(z, y)) dz, (8.6)

k=1

where u, € Hf ((Q) will be fixed later on. By (??), the function y — G(z,y) is in
LP(Q) for all 1 < p < -5 and also in L*°(9€2). In particular, y — G(z,y) satisfies
(G1). Independently, by (??) and (??), and thanks to the definition of the I';’s and
I'%’s, we easily get that for u € H3(Q) N H{ ;(), and z € Q,

/Q G(z,y) (Au+ b'Opu + cu) (y)dy
= (@)~ [ Loty = [ Thile)outdy (8.7)

+ /Q ((Vug Vu) 4 ugb'dpu + cugu) dy — /{)Q G(z,y)0u(y)do(y) .

By (??) we have that

n

Coti(@, )+ [T (@ y)] < C(Q, Ko)

i=1
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for z,y € Q, x #y. Now we let u, € Hf 5(€2) be such that

/ (Vua V) + ugb'd;0 + cugp) dy
@ (8.8)

=/Fn+1(%y)¢(y)dy+/Ffi+1(x,y)8w(y)dy
Q Q

for all ¢ € le,o(Q)~ The existence of u, easily follows from the Lax-Milgram
theorem and the coercivity assumption (??). Moreover, we get by (??) and (??)
that for any u € H3(Q) N H{ ((22), and any = € Q,

u(e) = [ o) (Bu+ b+ cu) iy + [ Glap)duly)iot).
Q o9
In particular, (G2) is satisfied and we are left with the proof of (G3). By standard
elliptic theory, and (?7?), there exists C'(£2, Ko, A) > 0 such that

yeN

for all x € Q. Then, by the definition of G, by (??), and by (??), we get that

c
G,y < —
|G(z,y)| = a2

for all z,y € Q, with z # y, where C' > 0 depends only on Q, Ky, and A. This
proves (G3) and the above claim.

9. PROOF OF PSEUDO-COMPACTNESS

We prove the pseudo-compactness assertion of Theorem 77 in this section. We
let (M, g) be a smooth compact locally conformally flat Riemannian manifold of
dimension n > 5, and let (u,) be a bounded sequence of nonnegative solutions of
(?7). By contradiction we can assume that the u,’s blow up and that the weak
limit u® in HZ(M) of the u,’s is zero. Roughly speaking, the argument in this
section consists in applying a Pohozaev type identity to the u,’s in small balls of
the type By, (d), where the z;’s stand for the geometrical blow-up points of the
Uus’s, and then to get the contradiction by conformal invariance and the estimates
we proved in Sections 7?7 and ??. We start with conformal invariance. As already
mentioned in the introduction, the geometric Paneitz-Branson operator and the Q-
curvature satisfy conformal transormation laws. The same holds for the conformal
Laplacian and the scalar curvature. Let § be a conformal metric to g. We write
that g = %/ ("4 §. Let also i, = uay. Then, by conformal invariance,

A28 + ba9™ 1 Agila — Ba(V, Vi) + hafia + 971 divg (™" Agdia)
(9.1)

n —

2
4(n—1)

~2f 1

—14
= divy(Aydiiy) — ”Tana - ba™ TSyt + a2 1

where A, is given by (??), B, is given by

4bo¢ 8—n 12—n
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and where
2 2 n — 2 8 8
ha = bOt n—4 A» n—4 — 7b(¥ "_45 o n—4
()0 g‘p 4(n o 1) QO g + & <)0
n — 4 8 n+4 _
—TQQQD”*‘* + pr=idivg(Agdy by,

We assumed here, as in Theorem 77, that our manifold is locally conformally flat.
We let zg € S where S is the set of geometrical blow-up points given by (??). Then
there exists § > 0 and a conformal metric § to g such that g is flat in B, (49).
According to what we just said, see in particular equation (?7), we can write that

A%l + bap7 3 Aty — Ba(Vip, Vi) + hala (0.2)
+ i divg (o Agdit) = 42! |

in B,,(49), where A,, By, and h, are as above, and A = Ay is the Euclidean
Laplacian. We choose ¢ > 0 sufficiently small such that S N B, (49) = {zo}.
Also, we let n be a smooth function in R™ such that n = 1 in By(d) and n = 0
in R™\By(26), where By(r) stands for the Euclidean ball of center 0 and radius r.
We regard nt, as a function in the Euclidean space. Also, we regard ¢ and A, as
defined in the Euclidean space. By Lemmas ?7, ??, and ??, and by (??) and (?7?),
we can write that when n > 6, and for any j = 0,1, 2,

/ |Vitg|?de = o (/ |Vua|2dvg> . (9.3)
B0 (26)\Bo(9) M

Now we apply to the ni,’s the Pohozaev type identity

/ (:ckaku) A%udz + 71774/ ulA?udx
Q 2 Ja

n—4 0Au  Ou

+ /aQ (;(x, V) (Au)? — (z, Vu) 38Ayu + 8(968,1/Vu) Au) do

which holds for all smooth bounded domains € in R™ and all u € C*(Q), where v
is the outward unit normal of 02, and do is the Euclidean volume element on 9f).
We let in what follows Q = By(26) and u = nt,. By (??), integrating by parts, we
easily get that

—4
/ PR O tia A% g d + ”T g Al dr = o (/ |Vua2dvg> . (9.5)
n R™ M

Multiplying equation (??) by n?d,., and integrating by parts, we can write by
Lemmas 77, 77, and ?? that

/ nQQQAQQQdJU—l—ba/ n2¢ﬁ|Vﬁa\2dm
n ]R'n.

(9.6)
:/ n%ﬁAg(V{La,Vﬁ(,)der/ nZa(z:dero(/ Vua|2dvg) .
n n M
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In a similar way, multiplying equation (??) by n?z*0dy i, and integrating by parts,
we can write by Lemmas 7?7, 77, and 7?7 that

-2 4
/ 7]2(A2ﬂa)mkakaad$ — (n D) )ba 772@@ |V’l)a|2dl‘
n R™

—4
+ nT 2ot Ay (Vilg, Vil )dz + % / n*aZ dx (9.7)
R'IL n

=50 (/ |Vua|2dvg) +o ( |Vua|2dvg> )
M M

where €5 — 0 as 6 — 0. The proofs of equations (??), (??), and (??) involve only
straightforward computations. Now, plugging (??) and (??) into (??), it comes
that

ba/ n2wﬁ|Vﬂalzdz*/ 12071 Ag(Vila, Vi) de
R'ﬂ/ n

=50 (/ |Vua2dvg> +o </ |Vua|2dvg> )
M M

where 5 — 0 as § — 0. The norm of Vi, in the first term of (??) is with respect
to the Euclidean metric § = §. Noting that [Vul? = @t/ (n=4) [Vul2, it follows from
(??) that

(9.8)

/n 77%?% (Ag — bag> (Viig, Viig )dz

=¢e50 (/ |Vua|2dvg> +o (/ |Vua|2dvg> .
M M

Since boo & Sc, where S, is as in (?7?), Ay — bog has a sign when « is sufficiently
large. In particular, coming back to our manifold, it follows from (??) and Lemmas
7?7 and 77 that there exists ¢t > 0, independent of a and §, such that

/ Vg |*dv, = €50 </ Vua|2dvg> +o (/ |Vua2dvg) (9.10)
Ba, (t5) M M

for all 6 > 0 sufficiently small, and all « sufficiently large. Summing (??) over the
o € S, and thanks to Lemmas 7?7 and 77, we then get that for any § > 0,

/ |Vue|*dv, = e;0 (/ |Vua|2dvg) +o (/ |Vua|2dvg>
M M M

for all « sufficiently large. The contradiction easily follows since 5 — 0 as 6 — 0.
This proves the pseudo-compactness part of Theorem ?7.

(9.9)

10. PROOF OF COMPACTNESS

We prove the compactness assertion of Theorem 7?7 and Theorem ?7? in this
section. We let (M, g) be a smooth compact locally conformally flat Riemannian
manifold of dimension n > 5, and (u,) be a bounded sequence of nonnegative
solutions of (??). By contradiction we can assume that the wu,’s blow up, since if
not we get Theorem ?? and Theorem ?? by (??). Up to renumbering and up to a
subsequence, as in Sections 77-77, we can assume that

1

Fo = 1AX g (10.1)



46 EMMANUEL HEBEY, FREDERIC ROBERT, AND YULIANG WEN

where the 1 ’s are the weights of the bubbles (BY,) of Lemma ??. Then, as in the
preceding sections, we let x, = x. and pu, = pl, where the x'’s are the centers
of (BL). Roughly speaking, the argument in this section consists in applying the
Pohozaev type identity (?7) to the u,’s in small balls B, (6/fia), and then to get
the contradiction by conformal invariance and the estimates we proved in Sections
7?7 to 7?7. As a remark, we need to consider smaller balls than in the preceding
section, of radii 0/, instead of d, because of the weak limit u® which, when
nonzero, dominates the other terms in the Pohozaev identity on balls of fixed radii.
A similar phenomenon (with the limit of the u,’s after rescaling) appears on balls
of radii dus. The sharp quantity in this argument turns out to be the C%-range of
interaction d./11o. We need also to be more precise than in the preceding section
and compute the boundary terms in the right hand side of (??). As in Section 77,
we start with conformal invariance. We let zg € S be the limit of the z,’s, and
let o > 0 and § be such that § is flat in B,,(400). We write that g = ¢*/("=%g,
with ¢(x¢) = 1, and let 4, = uqe. Then equation (??) holds in B,,(4dy). Now, as
already mentioned, we apply the Pohozaev identity (?7) of Section ?? to the ,’s
with © = By (6/fta) where 6 > 0 is given by Lemmas ?? and ??. In the process we
assimilate z, with 0 (thanks to the exponential map exp, with respect to g) and
regard i, as a function in the Fuclidean space. With an abusive use of notations,
we still denote by ¢ the function ¢ o exp, , by Ay the tensor field (exp, )*Ay,
and by ¢ the metric (exp, )*§. Applying the Pohozaev identity (?7) to the i ’s in
Bo(6/la) we get that

—4
/ (¥ O tin) A%tipda + = 10 A2l d
Bo (8 /fiz) 2 JBosyma)

n—4 N aAﬁa aﬁa ~
- g, LM T ng ) do (10.2)
2 JoBo(symm) ov ov
+/ (1@, D) (Ad)? — (z, Vi) 220 a(x’V“a)Aaa) do .
OB (5 fia) \2 Ov v

Integrating by parts, using (??), we can also write that

n—4

(2" Optia) A%l dz + o A2l da

/Bo(5x/lTa)

= ba/ 07 |Vig|2da —/ 071 Ay (Vily, Vil )d
Bo(3/fix) Bo(8/fiz)
(10.3)
+o0 (/ |Vzla|2da:> +0 (/ aida;)
Bo(8/fia) Bo(8/7ia)

+0/ 2(1+a%"%)dz | +0 / Vi |?da |
8Bo (8+/fiw) 0B (5/iw)

where, in this equation, as already mentioned, we regard ¢ and Ay as defined in
the Euclidean space. The proof of (??) involves only straightforward computations.

/30(5\/#7@
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By Lemma 77,

n—4
/ ﬁ2(1+ﬁ2n72)d:17:0<ua2 ) , and
OBo (6/w)
» (10.4)
/ |Vﬁa|2dx=0<ua2 )
OBo(8,/fiw)

while, by Lemma 77,

W2dr = o Vi |?dz | . 10.5
«@
Bo(8/Fra) Bo(3/fra)

Independently, we can also write with the change of variables z = /1oy and Lemma
?7? that if R, stands for the right hand side in (??), then

_n—4 —4 Al U
o 2 Ry — n / (—118 v + a“Aa) do
2 8By () ov ov

i N (10.6)
1 . OAT - O(x,Va) , .
+/ < z,v)(Aw)? — (z, Vi + Au)do
o (G0 - 9 Tt S
as a — 400, where
A
a(z) = 7\x|”—4 + () (10.7)

is given by Lemma ?? (so that A%p = 0). Coming back to the Pohozaev identity
(??) of Section ??, taking 2 = By(8)\Bo(r), and since A%% = 0 in Q, it comes that

n- 4/ (aaA“ + &‘Aa) do
2 8By () ov ov
1 . OAL  O(z,Va) , .
—|—/ ( z,v)(AQ)? — (x, Vi + Au) do
I L e

n—4 _0Aw  Ou , _
= /330(7~) (—uay + &/Au> do
1 N _9AG A, Va)
+/830(r) (2(3371/)(Au) — (z,Va) % + ey At | do

for all » > 0. Combining (??), (??), and (??), letting r — 0, we then get that

(10.8)

_n—4
,uoc 2 Ra — KO (109)

as o — +o0, where Ko = (n — 2)(n — 4)?w,,_1A¢(0). By Lemma ??, A > 0, and
we can assume that ¢(0) > 0 (since if not u® = 0 and we are back to Section ?7).
In particular, Ky > 0, and we get by combining (??)—(??), and (??), that

ba/ wﬁlwalzdx—/ 71 Ay(Vilg, Vil )dz
Bo(8y/pa) Bo(6\/fta)

n—4

=0 (/ |Vﬁa|2da§> + (Ko + o(1)) pa®
Bo(dy/Ita)

where o(1) — 0 as & — +oo. The norm of Vi, in the first term of (??) is with
respect to the Euclidean metric § = & Noting that [Vul2 = o¥ =9 |Vul2, it

(10.10)
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follows from (??) that

/ 71 (Ay = bog) (Vila, Viig)dz
Bo(dy/Ita)

n—4

—0 / Via?de | — (Ko + o(1)ua®
Bo(d/Ita)

an equation from which we easily get with Lemma 77 that

2n_
/ pn-1 (Ag — bag) (Vug, Vug)dx
Bo(dy/Ita)
. (10.11)
=0 / Vua|?dz | — (Ko +0(1))pa®
Bo(6v/1ta)
If by > max S, where S, is given by (?7?), then (??) implies that
n—4
(/\+o(1))/ VualPdz = (Ko + o(1)pa® (10.12)
Bo(d+/Ita)
for some A > 0 independent of . By Lemma 7?7, we can also write that
/ |V, |*de > Cu2 (10.13)
Bo(6y/Fa)
for some C' > 0 independent of a. The contradiction follows from (??) and (?7)
when n > 9 since, in this case, ”774 > 2. This proves the assertion on compactness
in Theorem ??. If, on the contrary, b, < minS,, then (??) gives that
n—4
()\+0(1))/ Vua|?dz + (Ko + o(1)) pa® =0 (10.14)
Bo(6v/1ta)

for some A > 0 independent of «. In particular, (??) would give that Ky < 0, and,
since Ky > 0, the contradiction follows here again. This proves Theorem ?7.
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